File: OaklispSummary.tex

package info (click to toggle)
oaklisp 1.3.7-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 5,776 kB
  • sloc: ansic: 4,014; makefile: 149
file content (692 lines) | stat: -rw-r--r-- 15,803 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
\documentclass[12pt]{article}
\usepackage[letterpaper,margin=.75in]{geometry}
\usepackage{alltt}
\addtolength{\parskip}{\baselineskip}  % causes a blank line between paragraphs
\setlength{\parindent}{0in}

\usepackage{fancyhdr}
\pagestyle{fancy}
\renewcommand{\headrulewidth}{0in}
\rfoot{\small Page \thepage\ of \pageref{lastpage}}
\cfoot{}
\lfoot{\small rev. 12/26/14}

\begin{document}

\centerline{\Huge Oaklisp Summary}
\centerline{Blake McBride (blake@mcbride.name)}

\medskip

{\large \bfseries Startup:}
\smallskip
\begin{verbatim}
    oaklisp  [--world <file>]  [--dump <file>]  [-G]

where:
        --world indicates what world to load. Default is oakworld.bin
                that comes with the system

        --dump provides a file name where a new world will be dumped
               when the system exits

        -G  option to perform a GC prior to dumping a world
\end{verbatim}

{\large \bfseries Exiting the system:}

\begin{verbatim}
    (exit)

    Use ^D to exit error states
\end{verbatim}

{\large \bfseries File types:}

\smallskip

\hspace{.75in}
\hbox{\begin{tabular}{|l|l|}\hline
File ending & Description \\\hline
oak & Oaklisp source file \\
&\\
oa & compiled Oaklisp file (fasl) \\
&\\
bin & Oaklisp world --- binary representation of\\
    & an entire Oaklisp system representing all \\
    & objects in the running environment.\\\hline
\end{tabular}}

\smallskip

{\large \bfseries Loading and compiling files:}
\smallskip
\begin{verbatim}
    (load "myfile")  ; will load "myfile.oa" or "myfile.oak"

    (compile-file #*current-locale "myfile") ; compiles myfile.oak to myfile.oa
\end{verbatim}

\newpage

{\Large \bfseries Data Types}

Use {\ttfamily (get-type x)} to get the type of an item.

\hspace{.75in}
\hbox{\begin{tabular}{|l|l|l|}\hline
Type & Comment & Example \\\hline
null-type & null list \& false & nil or \#f or {\ttfamily \symbol{13}}() \\
truths & true & t or \#t \\
&&\\
fixnum &  decimal & 48  \\
\ \ \&  & binary & \#b1011 \\
bignum & binary & \#2r1011 \\
 & octal & \#o755 \\
 & hex & \#xD5 \\
&&\\
fraction & decimal & 2/3 \\
 & hex & \#xDE/FF \\
 & floats are converted to fraction & 3.141 \\
&&\\
character & letter `M' & \#\verb+\+M \\
 & & \#\verb+\+Space \\
 & & \#\verb+\+Newline \\
 & & \#\verb+\+Backspace \\
 & & \#\verb+\+Tab \\
 & & \#\verb+\+Return \\
 & & \#\verb+\+Page \\
&&\\
symbol & case insensitive (up-cased) &  {\ttfamily \symbol{13}}symb \\
 & case sensitive &   {\ttfamily \symbol{13}}$\mid$symb$\mid$ \\
 & embedded `(' &   {\ttfamily \symbol{13}}sy\verb+\+(mb \\
&&\\
string & with embedded \verb+"+ & ``hello\verb+\"+ there'' \\
&&\\
list && {\ttfamily \symbol{13}}(hello there) \\
&&\\
simple-vector && \#(3 4 hello) \\
&&\\
type & root of all types & type \\
     & root of all objects & object \\
\hline
\end{tabular}}

\newpage


{\Large \bfseries List Operations}

\bigskip

\hbox{\begin{tabular}{|l|l|l|l|l|l|}\hline
Type & Comment & Sp & D & Example & Result \\\hline
car & first element & fast & no & (car {\ttfamily \symbol{13}}(A B C)) & A \\
cdr & rest of list & fast & no & (cdr {\ttfamily \symbol{13}}(A B C)) & (B C) \\
c????r & shorthand for & fast & no & & \\
 & multiple car \& cdr's & & & & \\
 & & & & & \\
cons & add a list node & fast & no & (cons {\ttfamily \symbol{13}}A {\ttfamily \symbol{13}}(B C)) & (A B C) \\
list & create a list & fast & no & (list {\ttfamily \symbol{13}}A {\ttfamily \symbol{13}}B {\ttfamily \symbol{13}}C) & (A B C) \\
append & append lists & slow & no & (append {\ttfamily \symbol{13}}(A B) {\ttfamily \symbol{13}}(D) {\ttfamily \symbol{13}}(G H)) & (A B D G H) \\
length & & slow & no & (length {\ttfamily \symbol{13}}(A B C)) & 3 \\
nth & & slow & no & (nth {\ttfamily \symbol{13}}(A B C) 1) & B \\
first & same as (nth 0 x) &  &  & & \\
second & same as (nth 1 x) &  &  & & \\
third & same as (nth 2 x) &  &  & & \\
etc. & &  &  & & \\
 & & & & & \\
last & & slow & no & (last {\ttfamily \symbol{13}}(A B C)) & (C) \\
 & & & & & \\
 & Given: & & & & \\
 & (setq lst {\ttfamily \symbol{13}}(A B C)) & & & & \\
 & replace car cell & fast & yes & (set! (car lst) {\ttfamily \symbol{13}}X) & (X B C) \\
 & replace cdr cell & fast & yes &  (set! (cdr lst) {\ttfamily \symbol{13}}X) & (A . X) \\
\hline
\end{tabular}}

\bigskip
\begin{description}
  \item{Sp} = Speed
  \item{D} = Destructive
\end{description}

\newpage


{\Large \bfseries Comments}

\smallskip

Semi-colon `;' introduces a comment.  Comments extend from the semi-colon to the end of the line.

\bigskip

{\Large \bfseries Evaluation and Quotes}

\smallskip

Lists are recursively evaluated.  The first element of a list is the function and the remainder are arguments to the function.  For example:

\begin{verbatim}
    (func arg1 arg2 ...)
\end{verbatim}

Quoting stops evaluation, so


\begin{verbatim}
    (quote (abc def ghi))
\end{verbatim}

would not attempt to evaluate \emph{abc}, \emph{def}, or \emph{ghi}.  The ``{\ttfamily \symbol{13}}'' symbol acts as a shorthand for \emph{quote}, so the following is equivelent to the previous statement.

\hspace*{.3in}{\ttfamily \symbol{13}}\verb+(abc def ghi)+






\bigskip

{\Large \bfseries Predicates}

\bigskip

\hbox{\begin{tabular}{|l|l|}\hline
function & Returns \emph{NIL}, or \emph{\#T} for \\\hline
null? & null \\
symbol? & symbols \\
atom? & non-list items \\
list? &  list items (including \emph{NIL}) \\
number? & all numbers \\
integer? & integers \\
string? & strings \\
vector? & vectors \\
eq? & same object \\
equal? & structurally similar objects \\
       & or same number\\
\hline
\end{tabular}}

\newpage

{\Large \bfseries Logical Operators}

\bigskip

\hbox{\begin{tabular}{|l|l|l|l|}\hline
function & Returns & Example & Comment \\\hline
not & nil or \#T & (not exp) & Logical inverse \\
and & last exp or nil & (and exp1 exp2 ...) & Stops evalution on first null expression \\
or  & first non-nil exp & (or exp1 exp2 ...)  & Stops evalution on first non-null expression \\
\hline
\end{tabular}}

\emph{and} and \emph{or} can be used as conditionals too.  For example:

\begin{verbatim}
    (and exp1 exp2 exp3)
\end{verbatim}

is the same as

\begin{verbatim}
    (if exp1
        (if exp2 exp3))
\end{verbatim}



\bigskip

{\Large \bfseries Block}

\bigskip

\parbox[t]{3.4in}{
(block\\
\hspace*{2em}    exp1\\
\hspace*{2em}    exp2\\
\hspace*{2em}    ...)
}\parbox[t]{3.5in}{
 Execute each expression and return the value of the last expression.
}

\bigskip

{\Large \bfseries Local Variables}

\bigskip

\parbox[t]{3.4in}{
(let ((var1 val1) ; initialize \emph{var1} to \emph{val1}\\
\hspace*{2.5em}(var2 nil) ; initialize \emph{var2} to \emph{nil}\\
\hspace*{2.5em}...)\\
\hspace*{4em}    exp1\\
\hspace*{4em}    exp2\\
\hspace*{4em}    ...)
}\parbox[t]{3.5in}{
 \emph{LET:}\ \ Creates local variables and executes the expressions in their context.  Returns the value of the last expression.
}

\parbox[t]{3.4in}{
(let* (vars)  exp1 exp2 ...)
}\parbox[t]{3.5in}{
 \emph{LET*:}\ \ Sames as \emph{LET} except the variables are assigned sequentially.  Previously defined variables may be used in subsequent variable initializations.
}


\newpage

{\Large \bfseries Defining Functions}

\bigskip


\parbox[t]{3.4in}{
(define (function-name arg1 arg2 arg3 ...)\\
\hspace*{4em}    exp1\\
\hspace*{4em}    exp2\\
\hspace*{4em}    ...)\\
\\
(define function-name\\
\hspace*{4em}(lambda (arg1 arg2 arg3 ...)\\
\hspace*{4em}    exp1\\
\hspace*{4em}    exp2\\
\hspace*{4em}    ...))
}\parbox[t]{3.5in}{
 \emph{DEFINE:}\ \ Define function named \emph{function-name} with specified arguments, and run the expressions in that context.
}

\bigskip

{\Large \bfseries Conditionals}

\smallskip

In Oaklisp, conditions are considered true if they are any value other
than \emph{NIL} or \emph{\#F}.  Therefore, \emph{NIL} and \emph{\#F} are considered as \emph{false},
and all other values are treated as \emph{true} conditions.


\parbox[t]{3.4in}{
(if test\\
\hspace*{2em}    exp1\\
\hspace*{2em}    [exp2])
}\parbox[t]{3.5in}{
 \emph{IF:}\ \ If \emph{test} expression is \emph{true}, return \emph{exp1}.
 \emph{exp2} is optional.  If \emph{test} is \emph{false}, return \emph{exp2} or \emph{undefined-value}.
}

\parbox[t]{3.4in}{
(cond\\
\hspace*{2em}    (test1 exp1 exp2 ...)\\
\hspace*{2em}    (test2 exp1 exp2 ..)\\
\hspace*{2em}    ...\\
\hspace*{2em}    (else exp1 exp2 ...))
}\parbox[t]{3.5in}{
 \emph{COND:}\ \ Evalute each \emph{testN} until one is \emph{true}.
 If a \emph{true} test is found, its expressions are evaluated and the
 result of the last one is returned.  The \emph{else} test is always \emph{true}.
}



\bigskip

{\Large \bfseries Math Predicates}

\bigskip

\hbox{\begin{tabular}{|l|l|}\hline
Function & Description \\\hline
(number? n) & Is \emph{n} a number \\
(zero? n) & \\
(odd? n) & \\
(even? n) & \\
(negative? n) & \\
(positive? n) & \\
(= a b) & \\
(!= a b) & \\
(\verb+<+ a b) & \\
(\verb+>+ a b) & \\
(\verb+<+= a b) & \\
(\verb+>+= a b) & \\
\hline
\end{tabular}}

\newpage

{\Large \bfseries Numeric Operators}

\bigskip

\hbox{\begin{tabular}{|l|l|}\hline
Function & Description \\\hline
+ - * / & Math functions \\
(abs n) & Absolute value \\
(1+ n) & \\
(quotient a b) & integers only \\
(minus n) & \\
(floor n) & \\
(ceiling n) & \\
(round n) & \\
(truncate n) & \\
(modulo a b) & \\
(remainder a b) & \\
(expt n p) & \\
(max a b c ...) & \\
(min a b c ...) & \\
(numerator f) & \\
(denominator f) & \\
\hline
\end{tabular}}


\bigskip

{\Large \bfseries String Predicates}

\bigskip

\hbox{\begin{tabular}{|l|l|}\hline
Function & Description \\\hline
(string? s) & is \emph{s} a string \\
(= a b) & \\
(equal? a b) & \\
(!= a b) & \\
(\verb+<+ a b) & \\
(\verb+>+ a b) & \\
(\verb+<+= a b) & \\
(\verb+>+= a b) & \\
\hline
\end{tabular}}

\bigskip

{\Large \bfseries String Operators}

\bigskip

\hbox{\begin{tabular}{|l|l|}\hline
Function & Description \\\hline
(length s) &  \\
(nth s i) & 0 origin\\
(upcase s) &\\
(downcase s)&\\
(reverse s)&\\
(append s1 s2)&return an appended copy\\
(copy s)&\\
(subseq s beg len)&\\
\hline
\end{tabular}}

\newpage


{\Large \bfseries Macros}

\smallskip

\begin{alltt}
    (define-syntax (add a b)
        \symbol{18}(+ ,a ,b))

    (gensym \symbol{13}tmp)
\end{alltt}

{\Large \bfseries Named let}

\smallskip

\begin{alltt}
    (let loop ((v 0))
        (if (!= v 10)
            (block
                (print v standard-output)
                (newline)
                (loop (1+ v)))))
\end{alltt}


{\Large \bfseries Printing}

\smallskip

\begin{alltt}
    (print x standard-output)
    (newline)
    (format <stream> <fmt> <arg1> <arg2> ...)
        <stream> = #T = standard-output
                   #F = return a string
\end{alltt}

\newpage

{\Large \bfseries Classes and Types}

In classical object-oriented terminology, the following terms apply:

\bigskip

\hbox{\begin{tabular}{|l|l|}\hline
Name & Description \\\hline
Class & describes the structure and functionality associaed with instances of it \\
& (e.g.\ instance variables and instance methods) \\
Meta Class & describes the structure and functionality of the class object \\
& (e.g.\ class variables and class methods) \\
Instance & a unique instance of a class \\
Object & a class, metaclass, or instance \\
\hline
\end{tabular}}


In Oaklisp, classes and types are the same thing.  So, every type in
Oaklisp, such as list, symbol, string, number, fraction, etc., are all
classes.  Also, all types and instances are objects.  In Oaklisp, all
types and objects are first-class, this means they can be passed to
functions, assigned to variables, etc..  They are all treated the
same.


Oaklisp has two root classes/types named
\emph{Object} and \emph{Type}.  \emph{Type} is the root of all types, and \emph{Object} is the
root of all objects. 

For purposes of this and following examples, the following naming scheme shall be used:


\bigskip

\hbox{\begin{tabular}{|l|l|}\hline
Name & Description \\\hline
Type & the Type type \\
type & a type \\
Object & the Object type \\
object & an object \\
iv* & instance variable \\
cv* & class variable \\
i* & an instance object \\
im* & instance method \\
cm* & class method \\
\hline
\end{tabular}}


\bigskip

{\large \bfseries Classes -- Simple}

By ``simple'' we mean without meta classes.

\textbf{Creating a type or class:}

Format:

\begin{alltt}
   (define <type-name>
           (make Type <instance variable names> <superclass list>))
\end{alltt}

\newpage

Example:

\begin{alltt}
   (define MyClass (make Type \symbol{13}(iv1 iv2) (list Object)))
\end{alltt}

\textbf{Creating an instance of a type:}

Format:

\begin{alltt}
   (make <your-type>)
\end{alltt}

Example:

\begin{alltt}
   (define i1 (make MyClass))
\end{alltt}

\textbf{Inspecting an object:}

Format:

\begin{alltt}
   (describe <object>)
\end{alltt}

Example:

\begin{alltt}
   (describe MyClass)
   (describe i1)
\end{alltt}


\textbf{Creating instance methods:}

Format:

\begin{alltt}
   (define-instance <method-name> operation)
   (add-method (<method-name>
                     (<type name>  <instance variables this method will access>)
                     self  <method argument list>)
               <method code>
               ...)
\end{alltt}

\newpage

Example:

\begin{alltt}
   (define-instance imSet-iv1 operation)
   (add-method (imSet-iv1 (MyClass iv1) self a)
               (set! iv1 a))
  
   (define-instance imGet-iv1 operation)
   (add-method (imGet-iv1 (MyClass iv1) self)
               iv1)

   (imSet-iv1 i1 33)
   (imGet-iv1 i1)
\end{alltt}


\textbf{Instance constructor / initialization:}

Format:

\begin{alltt}
   (add-method (initialize  (<type name>  <instance variables being accessed>)
                            self  <argument list>)
                     <initilization code>
                     ...
                     self)
\end{alltt}

Example:

\begin{alltt}
   (add-method (initialize (MyClass iv1 iv2) self arg1)
        (set! iv1 arg1)
        (set! iv2 44)
        self)

    (define i2 (make MyClass 88))
    ; in this case
    ; i2->iv1 would be 88
    ; i2->iv2 would be 44
\end{alltt}

\newpage

{\large \bfseries Classes -- Complex}

By ``complex'' we mean with the addition of meta classes.  This gives us class variables and class methods.

\textbf{Creating a type or class:}

Creating a type with a meta-type involves the creation of two types; one the meta type and the other the type.
The type created must be an instance of the meta type.

Adding initializers and instance methods are as before.  The only difference is we now have the ability
to define and use class methods and variables.  Those will be shown.

Format:

\begin{alltt}
   (define <meta-type-name>
           (make Type <class variable names> <meta superclass list>))
   (define <type-name>
           (make <meta-type-name>  <instance variable names>  <superclass list>))
\end{alltt}

Example:

\begin{alltt}
    (define metaMyClass2 (make Type \symbol{13}(cv1 cv2) (list Type)))
    (define MyClass2 (make metaMyClass2 \symbol{13}(iv1 iv2) (list Object)))
\end{alltt}

\textbf{Class methods:}

Format:

\begin{alltt}
   (define-instance <method-name> operation)
   (add-method (<method-name>
                     (<meta type name>  <class variables this method will access>)
                     self  <method argument list>)
               <method code>
               ...)
\end{alltt}

\newpage

Example:

\begin{alltt}
   (define-instance cmSet-cv1 operation)
   (add-method (cmSet-cv1 (metaMyClass2 cv1) self a)
               (set! cv1 a))
  
   (define-instance cmGet-cv1 operation)
   (add-method (cmGet-cv1 (metaMyClass2 cv1) self)
               cv1)

   (cmSet-cv1 MyClass2 33)
   (cmGet-cv1 MyClass2)
   (describe MyClass2)  ; to see the contents of the class
\end{alltt}


\label{lastpage}
\end{document}