
Oaklisp Summary
Blake McBride (blake@mcbride.name)

Startup:

oaklisp [--world <file>] [--dump <file>] [-G]

where:

--world indicates what world to load. Default is oakworld.bin

that comes with the system

--dump provides a file name where a new world will be dumped

when the system exits

-G option to perform a GC prior to dumping a world

Exiting the system:

(exit)

Use ^D to exit error states

File types:

File ending Description
oak Oaklisp source file

oa compiled Oaklisp file (fasl)

bin Oaklisp world — binary representation of
an entire Oaklisp system representing all
objects in the running environment.

Loading and compiling files:

(load "myfile") ; will load "myfile.oa" or "myfile.oak"

(compile-file #*current-locale "myfile") ; compiles myfile.oak to myfile.oa

rev. 12/26/14 Page 1 of 13

Data Types

Use (get-type x) to get the type of an item.

Type Comment Example
null-type null list & false nil or #f or '()
truths true t or #t

fixnum decimal 48
& binary #b1011

bignum binary #2r1011
octal #o755
hex #xD5

fraction decimal 2/3
hex #xDE/FF
floats are converted to fraction 3.141

character letter ‘M’ #\M
#\Space
#\Newline
#\Backspace
#\Tab
#\Return
#\Page

symbol case insensitive (up-cased) 'symb
case sensitive '|symb|
embedded ‘(’ 'sy\(mb

string with embedded " “hello\" there”

list '(hello there)

simple-vector #(3 4 hello)

type root of all types type
root of all objects object

rev. 12/26/14 Page 2 of 13

List Operations

Type Comment Sp D Example Result
car first element fast no (car '(A B C)) A
cdr rest of list fast no (cdr '(A B C)) (B C)
c????r shorthand for fast no

multiple car & cdr’s

cons add a list node fast no (cons 'A '(B C)) (A B C)
list create a list fast no (list 'A 'B 'C) (A B C)
append append lists slow no (append '(A B) '(D) '(G H)) (A B D G H)
length slow no (length '(A B C)) 3
nth slow no (nth '(A B C) 1) B
first same as (nth 0 x)
second same as (nth 1 x)
third same as (nth 2 x)
etc.

last slow no (last '(A B C)) (C)

Given:
(setq lst '(A B C))
replace car cell fast yes (set! (car lst) 'X) (X B C)
replace cdr cell fast yes (set! (cdr lst) 'X) (A . X)

Sp = Speed

D = Destructive

rev. 12/26/14 Page 3 of 13

Comments

Semi-colon ‘;’ introduces a comment. Comments extend from the semi-colon to the end of the line.

Evaluation and Quotes

Lists are recursively evaluated. The first element of a list is the function and the remainder are
arguments to the function. For example:

(func arg1 arg2 ...)

Quoting stops evaluation, so

(quote (abc def ghi))

would not attempt to evaluate abc, def, or ghi. The “'” symbol acts as a shorthand for quote, so
the following is equivelent to the previous statement.

'(abc def ghi)

Predicates

function Returns NIL, or #T for
null? null
symbol? symbols
atom? non-list items
list? list items (including NIL)
number? all numbers
integer? integers
string? strings
vector? vectors
eq? same object
equal? structurally similar objects

or same number

rev. 12/26/14 Page 4 of 13

Logical Operators

function Returns Example Comment
not nil or #T (not exp) Logical inverse
and last exp or nil (and exp1 exp2 ...) Stops evalution on first null expression
or first non-nil exp (or exp1 exp2 ...) Stops evalution on first non-null expression

and and or can be used as conditionals too. For example:

(and exp1 exp2 exp3)

is the same as

(if exp1

(if exp2 exp3))

Block

(block
exp1
exp2
...)

Execute each expression and return the value of
the last expression.

Local Variables

(let ((var1 val1) ; initialize var1 to val1
(var2 nil) ; initialize var2 to nil
...)

exp1
exp2
...)

LET: Creates local variables and executes the
expressions in their context. Returns the value of
the last expression.

(let* (vars) exp1 exp2 ...) LET*: Sames as LET except the variables are as-
signed sequentially. Previously defined variables
may be used in subsequent variable initializations.

rev. 12/26/14 Page 5 of 13

Defining Functions

(define (function-name arg1 arg2 arg3 ...)
exp1
exp2
...)

(define function-name
(lambda (arg1 arg2 arg3 ...)
exp1
exp2
...))

DEFINE: Define function named function-name
with specified arguments, and run the expressions
in that context.

Conditionals

In Oaklisp, conditions are considered true if they are any value other than NIL or #F. Therefore,
NIL and #F are considered as false, and all other values are treated as true conditions.

(if test
exp1
[exp2])

IF: If test expression is true, return exp1. exp2 is
optional. If test is false, return exp2 or undefined-
value.

(cond
(test1 exp1 exp2 ...)
(test2 exp1 exp2 ..)
...
(else exp1 exp2 ...))

COND: Evalute each testN until one is true. If
a true test is found, its expressions are evaluated
and the result of the last one is returned. The else
test is always true.

Math Predicates

Function Description
(number? n) Is n a number
(zero? n)
(odd? n)
(even? n)
(negative? n)
(positive? n)
(= a b)
(!= a b)
(< a b)
(> a b)
(<= a b)
(>= a b)

rev. 12/26/14 Page 6 of 13

Numeric Operators

Function Description
+ - * / Math functions
(abs n) Absolute value
(1+ n)
(quotient a b) integers only
(minus n)
(floor n)
(ceiling n)
(round n)
(truncate n)
(modulo a b)
(remainder a b)
(expt n p)
(max a b c ...)
(min a b c ...)
(numerator f)
(denominator f)

String Predicates

Function Description
(string? s) is s a string
(= a b)
(equal? a b)
(!= a b)
(< a b)
(> a b)
(<= a b)
(>= a b)

String Operators

Function Description
(length s)
(nth s i) 0 origin
(upcase s)
(downcase s)
(reverse s)
(append s1 s2) return an appended copy
(copy s)
(subseq s beg len)

rev. 12/26/14 Page 7 of 13

Macros

(define-syntax (add a b)

`(+ ,a ,b))

(gensym 'tmp)

Named let

(let loop ((v 0))

(if (!= v 10)

(block

(print v standard-output)

(newline)

(loop (1+ v)))))

Printing

(print x standard-output)

(newline)

(format <stream> <fmt> <arg1> <arg2> ...)

<stream> = #T = standard-output

#F = return a string

rev. 12/26/14 Page 8 of 13

Classes and Types

In classical object-oriented terminology, the following terms apply:

Name Description
Class describes the structure and functionality associaed with instances of it

(e.g. instance variables and instance methods)
Meta Class describes the structure and functionality of the class object

(e.g. class variables and class methods)
Instance a unique instance of a class
Object a class, metaclass, or instance

In Oaklisp, classes and types are the same thing. So, every type in Oaklisp, such as list, symbol,
string, number, fraction, etc., are all classes. Also, all types and instances are objects. In Oaklisp,
all types and objects are first-class, this means they can be passed to functions, assigned to variables,
etc.. They are all treated the same.

Oaklisp has two root classes/types named Object and Type. Type is the root of all types, and Object
is the root of all objects.

For purposes of this and following examples, the following naming scheme shall be used:

Name Description
Type the Type type
type a type
Object the Object type
object an object
iv* instance variable
cv* class variable
i* an instance object
im* instance method
cm* class method

Classes – Simple

By “simple” we mean without meta classes.

Creating a type or class:

Format:

(define <type-name>

(make Type <instance variable names> <superclass list>))

rev. 12/26/14 Page 9 of 13

Example:

(define MyClass (make Type '(iv1 iv2) (list Object)))

Creating an instance of a type:

Format:

(make <your-type>)

Example:

(define i1 (make MyClass))

Inspecting an object:

Format:

(describe <object>)

Example:

(describe MyClass)

(describe i1)

Creating instance methods:

Format:

(define-instance <method-name> operation)

(add-method (<method-name>

(<type name> <instance variables this method will access>)

self <method argument list>)

<method code>

...)

rev. 12/26/14 Page 10 of 13

Example:

(define-instance imSet-iv1 operation)

(add-method (imSet-iv1 (MyClass iv1) self a)

(set! iv1 a))

(define-instance imGet-iv1 operation)

(add-method (imGet-iv1 (MyClass iv1) self)

iv1)

(imSet-iv1 i1 33)

(imGet-iv1 i1)

Instance constructor / initialization:

Format:

(add-method (initialize (<type name> <instance variables being accessed>)

self <argument list>)

<initilization code>

...

self)

Example:

(add-method (initialize (MyClass iv1 iv2) self arg1)

(set! iv1 arg1)

(set! iv2 44)

self)

(define i2 (make MyClass 88))

; in this case

; i2->iv1 would be 88

; i2->iv2 would be 44

rev. 12/26/14 Page 11 of 13

Classes – Complex

By “complex” we mean with the addition of meta classes. This gives us class variables and class
methods.

Creating a type or class:

Creating a type with a meta-type involves the creation of two types; one the meta type and the
other the type. The type created must be an instance of the meta type.

Adding initializers and instance methods are as before. The only difference is we now have the
ability to define and use class methods and variables. Those will be shown.

Format:

(define <meta-type-name>

(make Type <class variable names> <meta superclass list>))

(define <type-name>

(make <meta-type-name> <instance variable names> <superclass list>))

Example:

(define metaMyClass2 (make Type '(cv1 cv2) (list Type)))

(define MyClass2 (make metaMyClass2 '(iv1 iv2) (list Object)))

Class methods:

Format:

(define-instance <method-name> operation)

(add-method (<method-name>

(<meta type name> <class variables this method will access>)

self <method argument list>)

<method code>

...)

rev. 12/26/14 Page 12 of 13

Example:

(define-instance cmSet-cv1 operation)

(add-method (cmSet-cv1 (metaMyClass2 cv1) self a)

(set! cv1 a))

(define-instance cmGet-cv1 operation)

(add-method (cmGet-cv1 (metaMyClass2 cv1) self)

cv1)

(cmSet-cv1 MyClass2 33)

(cmGet-cv1 MyClass2)

(describe MyClass2) ; to see the contents of the class

rev. 12/26/14 Page 13 of 13

