File: dat.py

package info (click to toggle)
oarc-dsc-datatool 1.4.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 492 kB
  • sloc: python: 1,151; xml: 859; sh: 125; makefile: 4
file content (177 lines) | stat: -rw-r--r-- 5,569 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""dsc_datatool.input.dat

Input plugin to generate `Dataset`'s from DSC DAT files.

Part of dsc_datatool.

:copyright: 2024 OARC, Inc.
"""

import re

from dsc_datatool import Input, Dataset, Dimension, process_dataset, encoding


_dataset1d = [
    'client_subnet_count',
    'ipv6_rsn_abusers_count',
]

_dataset2d = {
    'qtype':  'Qtype',
    'rcode':  'Rcode',
    'do_bit':  'D0',
    'rd_bit':  'RD',
    'opcode':  'Opcode',
    'dnssec_qtype':  'Qtype',
    'edns_version':  'EDNSVersion',
    'client_subnet2_count':  'Class',
    'client_subnet2_trace':  'Class',
    'edns_bufsiz':  'EDNSBufSiz',
    'idn_qname':  'IDNQname',
    'client_port_range':  'PortRange',
    'priming_responses':  'ReplyLen',
}

_dataset3d = {
    'chaos_types_and_names': [ 'Qtype', 'Qname' ],
    'certain_qnames_vs_qtype': [ 'CertainQnames', 'Qtype' ],
    'direction_vs_ipproto': [ 'Direction', 'IPProto' ],
    'pcap_stats': [ 'pcap_stat', 'ifname' ],
    'transport_vs_qtype': [ 'Transport', 'Qtype' ],
    'dns_ip_version': [ 'IPVersion', 'Qtype' ],
    'priming_queries': [ 'Transport', 'EDNSBufSiz' ],
    'qr_aa_bits': [ 'Direction', 'QRAABits' ],
}


class DAT(Input):
    def process(self, dir):
        global _dataset1d, _dataset2d, _dataset3d

        datasets = []

        for d in _dataset1d:
            if process_dataset and not d in process_dataset:
                continue
            try:
                datasets += self.process1d('%s/%s.dat' % (dir, d), d)
            except FileNotFoundError:
                pass
        for k, v in _dataset2d.items():
            if process_dataset and not k in process_dataset:
                continue
            try:
                datasets += self.process2d('%s/%s.dat' % (dir, k), k, v)
            except FileNotFoundError:
                pass
        for k, v in _dataset3d.items():
            if process_dataset and not k in process_dataset:
                continue
            try:
                datasets += self.process3d('%s/%s.dat' % (dir, k), k, v[0], v[1])
            except FileNotFoundError:
                pass

        return datasets


    def process1d(self, file, name):
        datasets = []
        with open(file, 'r', encoding=encoding) as f:
            for l in f.readlines():
                if re.match(r'^#', l):
                    continue
                l = re.sub(r'[\r\n]+$', '', l)
                dat = re.split(r'\s+', l)
                if len(dat) != 2:
                    raise Exception('DAT %r dataset %r: invalid number of elements for a 1d dataset' % (file, name))

                dataset = Dataset()
                dataset.name = name
                dataset.start_time = int(dat.pop(0))
                dataset.stop_time = dataset.start_time + 60

                d1 = Dimension('All')
                d1.values = { 'ALL': int(dat[0]) }
                dataset.dimensions.append(d1)

                datasets.append(dataset)

        return datasets


    def process2d(self, file, name, field):
        datasets = []
        with open(file, 'r', encoding=encoding) as f:
            for l in f.readlines():
                if re.match(r'^#', l):
                    continue
                l = re.sub(r'[\r\n]+$', '', l)
                dat = re.split(r'\s+', l)

                dataset = Dataset()
                dataset.name = name
                dataset.start_time = int(dat.pop(0))
                dataset.stop_time = dataset.start_time + 60

                d1 = Dimension('All')
                d1.value = 'ALL'
                dataset.dimensions.append(d1)

                d2 = Dimension(field)
                while dat:
                    if len(dat) < 2:
                        raise Exception('DAT %r dataset %r: invalid number of elements for a 2d dataset' % (file, name))
                    k = dat.pop(0)
                    v = dat.pop(0)
                    d2.values[k] = int(v)
                d1.dimensions.append(d2)

                datasets.append(dataset)

        return datasets


    def process3d(self, file, name, first, second):
        datasets = []
        with open(file, 'r', encoding=encoding) as f:
            for l in f.readlines():
                if re.match(r'^#', l):
                    continue
                l = re.sub(r'[\r\n]+$', '', l)
                dat = re.split(r'\s+', l)

                dataset = Dataset()
                dataset.name = name
                dataset.start_time = int(dat.pop(0))
                dataset.stop_time = dataset.start_time + 60

                while dat:
                    if len(dat) < 2:
                        raise Exception('DAT %r dataset %r: invalid number of elements for a 2d dataset' % (file, name))
                    k = dat.pop(0)
                    v = dat.pop(0)

                    d1 = Dimension(first)
                    d1.value = k
                    dataset.dimensions.append(d1)

                    d2 = Dimension(second)
                    dat2 = v.split(':')
                    while dat2:
                        if len(dat2) < 2:
                            raise Exception('DAT %r dataset %r: invalid number of elements for a 2d dataset' % (file, name))
                        k2 = dat2.pop(0)
                        v2 = dat2.pop(0)
                        d2.values[k2] = int(v2)
                    d1.dimensions.append(d2)

                datasets.append(dataset)

        return datasets


import sys
if sys.version_info[0] == 3 and sys.version_info[1] == 5: # pragma: no cover
    Input.__init_subclass__(DAT)