File: wolves.rst

package info (click to toggle)
obitools 1.2.13%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,652 kB
  • sloc: python: 18,199; ansic: 1,542; makefile: 98
file content (648 lines) | stat: -rw-r--r-- 27,230 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
Wolves' diet based on DNA metabarcoding
=======================================


Here is a tutorial on how to analyze DNA metabarcoding data produced on Illumina 
sequencers using:

    - the *OBITools*
    - some basic *Unix* commands

The data used in this tutorial correspond to the analysis of four wolf scats, using the 
protocol published in Shehzad et al. (2012) for assessing carnivore diet.
After extracting DNA from the faeces, the DNA amplifications were carried out using the 
primers TTAGATACCCCACTATGC and TAGAACAGGCTCCTCTAG amplifiying the 12S-V5 region 
(Riaz et al. 2011), together with a wolf blocking oligonucleotide. 

The complete data set can be downloaded here: :download:`the tutorial dataset<../../../wolf_tutorial.zip>`


+-------------------------------------------------------------+
| Good to remember: I am working with tons of sequences       |
+-------------------------------------------------------------+
| It is always a good idea to have a look at the intermediate |
| results or to evaluate the best parameter for each step.    |
| Some commands are designed for that purpose, for example    |
| you can use :                                               |
|                                                             |
| - :doc:`obicount <scripts/obicount>` to count the number    |
|   of sequence records in a file                             |
| - :doc:`obihead <scripts/obihead>` and                      |
|   :doc:`obitail <scripts/obitail>` to view the first        |
|   or last sequence records of a file                        |
| - :doc:`obistat <scripts/obistat>` to get some basic        |
|   statistics (count, mean, standard deviation) on the       |
|   attributes (key=value combinations) in the header of each |
|   sequence record (see The `extended OBITools fasta format` |
|   in the :doc:`fasta format <fasta>` description)           |
| - any *Unix* command such as ``less``, ``awk``, ``sort``,   |
|   ``wc`` to check your files                                |
+-------------------------------------------------------------+


Data
----

The data needed to run the tutorial are the following:


- :doc:`fastq <fastq>` files resulting of a GA IIx (Illumina) paired-end (2 x 108 bp) 
  sequencing assay of DNA extracted and amplified from 
  four wolf faeces:
  
    * ``wolf_F.fastq``
    * ``wolf_R.fastq``
    
- the file describing the primers and tags used for all samples sequenced:

    * ``wolf_diet_ngsfilter.txt``
      The tags correspond to short and specific sequences added on the 5' end of each 
      primer to distinguish the different samples
    
- the file containing the reference database in a fasta format:

    * ``db_v05_r117.fasta``
      This reference database has been extracted from the release 117 of EMBL using 
      :doc:`ecoPCR <scripts/ecoPCR>`
    
- the NCBI taxonomy formatted in the :doc:`ecoPCR <scripts/ecoPCR>` format (see the 
  :doc:`obiconvert <scripts/obiconvert>` utility for details) :

    * ``embl_r117.ndx`` 
    * ``embl_r117.rdx`` 
    * ``embl_r117.tdx`` 


Step by step analysis
---------------------


Recover full sequence reads from forward and reverse partial reads
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

When using the result of a paired-end sequencing assay with supposedly overlapping forward
and reverse reads, the first step is to recover the assembled sequence.

The forward and reverse reads of the same fragment are *at the same line position* in the 
two fastq files obtained after sequencing. 
Based on these two files, the assembly of the forward and reverse reads is done with the 
:doc:`illuminapairedend <scripts/illuminapairedend>` utility that aligns the two reads 
and returns the reconstructed sequence.

In our case, the command is: 

.. code-block:: bash

   > illuminapairedend --score-min=40 -r wolf_R.fastq wolf_F.fastq > wolf.fastq

The :py:mod:`--score-min` option allows discarding sequences with low alignment quality. 
If the alignment score is below 40, the forward and reverse reads are not aligned but 
concatenated, and the value of the :py:mod:`mode` attribute in the sequence header is set 
to :py:mod:`joined` instead of :py:mod:`alignment`   

Remove unaligned sequence records
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Unaligned sequences (:py:mod:`mode=joined`) cannot be used. The following command allows 
removing them from the dataset:

.. code-block:: bash

   > obigrep -p 'mode!="joined"' wolf.fastq > wolf.ali.fastq

The :py:mod:`-p` requires a *python* expression. :py:mod:`mode!="joined"` means that if 
the value of the :py:mod:`mode` attribute is different from :py:mod:`joined`, the 
corresponding sequence record will be kept. 

The first sequence record of ``wolf.ali.fastq`` can be obtained using the following 
command line:

.. code-block:: bash

   > obihead --without-progress-bar -n 1 wolf.ali.fastq
   
And the result is:

.. code-block:: bash

   @HELIUM_000100422_612GNAAXX:7:119:14871:19157#0/1_CONS ali_length=61; 
   direction=left; seq_ab_match=47; sminR=40.0; seq_a_mismatch=7; seq_b_deletion=1; 
   seq_b_mismatch=7; seq_a_deletion=1; score_norm=1.89772607661; 
   score=115.761290673; seq_a_insertion=0; mode=alignment; sminL=40.0; 
   seq_a_single=46; seq_b_single=46; seq_b_insertion=0;
   ccgcctcctttagataccccactatgcttagccctaaacacaagtaattattataacaaaatcattcgccagagtgtagc
   gggagtaggttaaaactcaaaggacttggcggtgctttatacccttctagaggagcctgttctaaggaggcgg
   +
   ddddddddddddddddddddddcddddcacdddddddddddddc\d~b~~~b~~~~~~b`ryK~|uxyXk`}~ccBccBc
   ccBcBcccBcBccccccc~~~~b|~~xdbaddaaWcccdaaddddadacddddddcddadbbddddddddddd



Assign each sequence record to the corresponding sample/marker combination
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Each sequence record is assigned to its corresponding sample and marker using the data
provided in a text file (here ``wolf_diet_ngsfilter.txt``). This text file contains one 
line per sample, with the name of the experiment (several experiments can be included in 
the same file), the name of the tags (for example: ``aattaac`` if the same tag has been 
used on each extremity of the PCR products, or ``aattaac:gaagtag`` if the tags were 
different), the sequence of the forward primer, the sequence of the reverse primer, the 
letter ``T`` or ``F`` for sample identification using the forward primer and tag only or 
using both primers and both tags, respectively (see :doc:`ngsfilter  <scripts/ngsfilter>` 
for details).

.. code-block:: bash

   > ngsfilter -t wolf_diet_ngsfilter.txt -u unidentified.fastq wolf.ali.fastq > \
     wolf.ali.assigned.fastq

This command creates two files:

- ``unidentified.fastq`` containing all the sequence records that were not assigned to a 
  sample/marker combination

- ``wolf.ali.assigned.fastq`` containing all the sequence records that were properly 
  assigned to a sample/marker combination

Note that each sequence record of the ``wolf.ali.assigned.fastq`` file contains only the 
barcode sequence as the sequences of primers and tags are removed by the 
:doc:`ngsfilter <scripts/ngsfilter>` program. Information concerning the experiment, 
sample, primers and tags is added as attributes in the sequence header.

For instance, the first sequence record of ``wolf.ali.assigned.fastq`` is:

.. code-block:: bash

   @HELIUM_000100422_612GNAAXX:7:119:14871:19157#0/1_CONS_SUB_SUB status=full; 
   seq_ab_match=47; sminR=40.0; ali_length=61; tail_quality=67.0; 
   reverse_match=tagaacaggctcctctag; seq_a_deletion=1; sample=29a_F260619; 
   forward_match=ttagataccccactatgc; forward_primer=ttagataccccactatgc; 
   reverse_primer=tagaacaggctcctctag; sminL=40.0; forward_score=72.0; 
   score=115.761290673; seq_a_mismatch=7; forward_tag=gcctcct; seq_b_mismatch=7; 
   experiment=wolf_diet; mid_quality=69.4210526316; avg_quality=69.1045751634; 
   seq_a_single=46; score_norm=1.89772607661; reverse_score=72.0; 
   direction=forward; seq_b_insertion=0; seq_b_deletion=1; seq_a_insertion=0; 
   seq_length_ori=153; reverse_tag=gcctcct; seq_length=99; mode=alignment; 
   head_quality=67.0; seq_b_single=46; 
   ttagccctaaacacaagtaattattataacaaaatcattcgccagagtgtagcgggagtaggttaaaactcaaaggact
   tggcggtgctttataccctt
   +
   cacdddddddddddddc\d~b~~~b~~~~~~b`ryK~|uxyXk`}~ccBccBcccBcBcccBcBccccccc~~~~b|~~
   xdbaddaaWcccdaadddda





Dereplicate reads into uniq sequences
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The same DNA molecule can be sequenced several times. In order to reduce both file size 
and computations time, and to get easier interpretable results, 
it is convenient to work with unique *sequences* instead of *reads*. To *dereplicate* such 
*reads* into unique *sequences*, we use the :doc:`obiuniq <scripts/obiuniq>` command.

+-------------------------------------------------------------+
| Definition: Dereplicate reads into unique sequences         |
+-------------------------------------------------------------+
| 1. compare all the reads in a data set to each other        |
| 2. group strictly identical reads together                  |
| 3. output the sequence for each group and its count in the  |
|    original dataset (in this way, all duplicated reads are  |
|    removed)                                                 |
|                                                             |
| Definition adapted from Seguritan and Rohwer (2001)         |
+-------------------------------------------------------------+


For dereplication, we use the :doc:`obiuniq <scripts/obiuniq>` command with the `-m 
sample`. The `-m sample` option is used to keep the information of the samples of origin 
for each unique sequence.

.. code-block:: bash

   > obiuniq -m sample wolf.ali.assigned.fastq > wolf.ali.assigned.uniq.fasta

Note that :doc:`obiuniq <scripts/obiuniq>` returns a fasta file.

The first sequence record of ``wolf.ali.assigned.uniq.fasta`` is:

.. code-block:: bash

   >HELIUM_000100422_612GNAAXX:7:119:14871:19157#0/1_CONS_SUB_SUB_CMP ali_length=61; 
   seq_ab_match=47; sminR=40.0; tail_quality=67.0; reverse_match=ttagataccccactatgc; 
   seq_a_deletion=1; forward_match=tagaacaggctcctctag; forward_primer=tagaacaggctcctctag; 
   reverse_primer=ttagataccccactatgc; sminL=40.0; merged_sample={'29a_F260619': 1}; 
   forward_score=72.0; seq_a_mismatch=7; forward_tag=gcctcct; seq_b_mismatch=7; 
   score=115.761290673; mid_quality=69.4210526316; avg_quality=69.1045751634; 
   seq_a_single=46; score_norm=1.89772607661; reverse_score=72.0; direction=reverse; 
   seq_b_insertion=0; experiment=wolf_diet; seq_b_deletion=1; seq_a_insertion=0; 
   seq_length_ori=153; reverse_tag=gcctcct; count=1; seq_length=99; status=full; 
   mode=alignment; head_quality=67.0; seq_b_single=46; 
   aagggtataaagcaccgccaagtcctttgagttttaacctactcccgctacactctggcg
   aatgattttgttataataattacttgtgtttagggctaa
   
The run of :doc:`obiuniq <scripts/obiuniq>` has added two key=values entries in the header
of the fasta sequence:

   - :py:mod:`merged_sample={'29a_F260619': 1}`: this sequence have been found once in a 
     single sample called 29a_F260619
   - :py:mod:`count=1` : the total count for this sequence is 1 
   
To keep only these two ``key=value`` attributes, we can use the 
:doc:`obiannotate <scripts/obiannotate>` command:


.. code-block:: bash

   > obiannotate -k count -k merged_sample \
     wolf.ali.assigned.uniq.fasta > $$ ; mv $$ wolf.ali.assigned.uniq.fasta


The first five sequence records of ``wolf.ali.assigned.uniq.fasta`` become:

.. code-block:: bash

   >HELIUM_000100422_612GNAAXX:7:119:14871:19157#0/1_CONS_SUB_SUB_CMP merged_sample={'29a_F260619': 1}; count=1; 
   aagggtataaagcaccgccaagtcctttgagttttaacctactcccgctacactctggcg
   aatgattttgttataataattacttgtgtttagggctaa
   >HELIUM_000100422_612GNAAXX:7:108:5640:3823#0/1_CONS_SUB_SUB_CMP merged_sample={'29a_F260619': 7, '15a_F730814': 2}; count=9; 
   aagggtataaagcaccgccaagtcctttgagttttaagctattgccggtagtactctggc
   gaacaattttgttatattaattacttgtgtttagggctaa
   >HELIUM_000100422_612GNAAXX:7:97:14311:19299#0/1_CONS_SUB_SUB_CMP merged_sample={'29a_F260619': 5, '15a_F730814': 4}; count=9; 
   aagggtataaagcaccgccaagtcctttgagttttaagctcttgccggtagtactctggc
   gaataattttgttatattaattacttgtgtttagggctaa
   >HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB merged_sample={'29a_F260619': 4697, '15a_F730814': 7638}; count=12335; 
   aagggtataaagcaccgccaagtcctttgagttttaagctattgccggtagtactctggc
   gaataattttgttatattaattacttgtgtttagggctaa
   >HELIUM_000100422_612GNAAXX:7:57:18459:16145#0/1_CONS_SUB_SUB_CMP merged_sample={'26a_F040644': 10490}; count=10490; 
   agggatgtaaagcaccgccaagtcctttgagtttcaggctgttgctagtagtactctggc
   gaacattcttgtttattgaatgtttatgtttagggctaa


Denoise the sequence dataset
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To have a set of sequences assigned to their corresponding samples does not mean that all 
sequences are *biologically* meaningful i.e. some of these sequences can contains PCR 
and/or sequencing errors, or chimeras. To remove such sequences as much as possible, we 
first discard rare sequences and then rsequence variants that likely correspond to 
artifacts.



Get the count statistics
~~~~~~~~~~~~~~~~~~~~~~~~

In that case, we use :doc:`obistat <scripts/obistat>` to get the counting statistics on 
the 'count' attribute (the count attribute has been added by the :doc:`obiuniq 
<scripts/obiuniq>` command). By piping the result in the *Unix* commands ``sort`` and 
``head``, we keep only the count statistics for the 20 lowest values of the 'count' 
attribute.

.. code-block:: bash

   > obistat -c count wolf.ali.assigned.uniq.fasta |  \  
     sort -nk1 | head -20

This print the output:

.. code-block:: bash

    count      count     total
    1          3504      3504
    2           228       456
    3           136       408
    4            73       292
    5            61       305
    6            47       282
    7            34       238
    8            27       216
    9            26       234
    10           25       250
    11           13       143
    12           14       168
    13           10       130
    14            5        70
    15            9       135
    16            8       128
    17            4        68
    18            9       162
    19            5        95
    
The dataset contains 3504 sequences occurring only once.  

 
    
Keep only the sequences having a count greater or equal to 10 and a length shorter than 80 bp
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Based on the previous observation, we set the cut-off for keeping sequences for further 
analysis to a count of 10. To do this, we use the :doc:`obigrep <scripts/obigrep>` 
command.
The ``-p 'count>=10'`` option means that the ``python`` expression :py:mod:`count>=10` 
must be evaluated to :py:mod:`True` for each sequence to be kept. Based on previous 
knowledge we also remove sequences with a length shorter than 80 bp (option -l) as we know 
that the amplified 12S-V5 barcode for vertebrates must have a length around 100bp.

.. code-block:: bash

   > obigrep -l 80 -p 'count>=10' wolf.ali.assigned.uniq.fasta \
       > wolf.ali.assigned.uniq.c10.l80.fasta
       
       
The first sequence record of ``wolf.ali.assigned.uniq.c10.l80.fasta`` is:

.. code-block:: bash    

   >HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB count=12335; merged_sample={'29a_F260619': 4697, '15a_F730814': 7638}; 
   aagggtataaagcaccgccaagtcctttgagttttaagctattgccggtagtactctggc
   gaataattttgttatattaattacttgtgtttagggctaa
   

Clean the sequences for PCR/sequencing errors (sequence variants)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

As a final denoising step, using the :doc:`obiclean <scripts/obiclean>` program, we keep 
the `head` sequences (``-H`` option) that are sequences with no variants with a count 
greater than 5% of their own count  (``-r 0.05`` option).

.. code-block:: bash

   > obiclean -s merged_sample -r 0.05 -H \
     wolf.ali.assigned.uniq.c10.l80.fasta > wolf.ali.assigned.uniq.c10.l80.clean.fasta 

The first sequence record of ``wolf.ali.assigned.uniq.c10.l80.clean.fasta`` is:

.. code-block:: bash

   >HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB 
   merged_sample={'29a_F260619': 4697, '15a_F730814': 7638}; 
   obiclean_count={'29a_F260619': 5438, '15a_F730814': 8642}; obiclean_head=True; 
   obiclean_cluster={'29a_F260619': 
   'HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB', '15a_F730814': 
   'HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB'}; 
   count=12335; obiclean_internalcount=0; obiclean_status={'29a_F260619': 'h', '15a_F730814': 'h'}; 
   obiclean_samplecount=2; obiclean_headcount=2; obiclean_singletoncount=0; 
   aagggtataaagcaccgccaagtcctttgagttttaagctattgccggtagtactctggc
   gaataattttgttatattaattacttgtgtttagggctaa

Taxonomic assignment of sequences
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Once denoising has been done, the next step in diet analysis is to assign the barcodes to 
the corresponding species in order to get the complete list of species associated to each 
sample.

Taxonomic assignment of sequences requires a reference database compiling all possible 
species to be identified in the sample. Assignment is then done based on sequence 
comparison between sample sequences and reference sequences.


Build a reference database
~~~~~~~~~~~~~~~~~~~~~~~~~~

One way to build the reference database is to use the :doc:`ecoPCR <scripts/ecoPCR>` 
program to simulate a PCR and to extract all sequences from the EMBL that may be amplified 
`in silico` by the two primers (`TTAGATACCCCACTATGC` and `TAGAACAGGCTCCTCTAG`) used for 
PCR amplification. 

The full list of steps for building this reference database would then be:
 
1. Download the whole set of EMBL sequences (available from: 
   ftp://ftp.ebi.ac.uk/pub/databases/embl/release/)
2. Download the NCBI taxonomy (available from: 
   ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz)
3. Format them into the ecoPCR format (see :doc:`obiconvert <scripts/obiconvert>` for how 
   you can produce ecoPCR compatible files)
4. Use ecoPCR to simulate amplification and build a reference database based on putatively
   amplified barcodes together with their recorded taxonomic information  

As step 1 and step 3 can be really time-consuming (about one day), we alredy provide the 
reference database produced by the following commands so that you can skip its 
construction. Note that as the EMBL database and taxonomic data can evolve daily, if you 
run the following commands you may end up with quite different results.


Any utility allowing file downloading from a ftp site can be used. In the following 
commands, we use the commonly used ``wget`` *Unix* command.

Download the sequences
......................

.. code-block:: bash

   > mkdir EMBL
   > cd EMBL
   > wget -nH --cut-dirs=4 -Arel_std_\*.dat.gz -m ftp://ftp.ebi.ac.uk/pub/databases/embl/release/
   > cd ..

Download the taxonomy
.....................

.. code-block:: bash

   > mkdir TAXO
   > cd TAXO
   > wget ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz
   > tar -zxvf taxdump.tar.gz
   > cd ..

Format the data
...............

.. code-block:: bash

   > obiconvert --embl -t ./TAXO --ecopcrDB-output=embl_last ./EMBL/*.dat


Use ecoPCR to simulate an in silico` PCR
........................................

.. code-block:: bash

   > ecoPCR -d ./ECODB/embl_last -e 3 -l 50 -L 150 \ 
     TTAGATACCCCACTATGC TAGAACAGGCTCCTCTAG > v05.ecopcr


Note that the primers must be in the same order both in ``wolf_diet_ngsfilter.txt`` and in 
the :doc:`ecoPCR <scripts/ecoPCR>` command.


Clean the database
..................

    1. filter sequences so that they have a good taxonomic description at the species, 
       genus, and family levels (:doc:`obigrep <scripts/obigrep>` command below).
    2. remove redundant sequences (:doc:`obiuniq <scripts/obiuniq>` command below).
    3. ensure that the dereplicated sequences have a taxid at the family level 
       (:doc:`obigrep <scripts/obigrep>` command below).
    4. ensure that sequences each have a unique identification 
       (:doc:`obiannotate <scripts/obiannotate>` command below)

.. code-block:: bash

   > obigrep -d embl_last --require-rank=species \
     --require-rank=genus --require-rank=family v05.ecopcr > v05_clean.fasta
   
   > obiuniq -d embl_last \ 
     v05_clean.fasta > v05_clean_uniq.fasta
   
   > obigrep -d embl_last --require-rank=family \ 
     v05_clean_uniq.fasta > v05_clean_uniq_clean.fasta
   
   > obiannotate --uniq-id v05_clean_uniq_clean.fasta > db_v05.fasta


.. warning::
   From now on, for the sake of clarity, the following commands will use the filenames of 
   the files provided with the tutorial. If you decided to run the last steps and use the 
   files you have produced, you'll have to use ``db_v05.fasta`` instead of 
   ``db_v05_r117.fasta`` and ``embl_last`` instead of ``embl_r117``


Assign each sequence to a taxon
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Once the reference database is built, taxonomic assignment can be carried out using
the :doc:`ecotag <scripts/ecotag>` command.

.. code-block:: bash

   > ecotag -d embl_r117 -R db_v05_r117.fasta wolf.ali.assigned.uniq.c10.l80.clean.fasta > \
     wolf.ali.assigned.uniq.c10.l80.clean.tag.fasta


The :doc:`ecotag <scripts/ecotag>` adds several `key=value` attributes in the sequence 
record header, among them:

- best_match=ACCESSION where ACCESSION is the id of hte sequence in the reference database 
  that best aligns to the query sequence;
- best_identity=FLOAT where FLOAT*100 is the percentage of identity between the best match 
  sequence and the query sequence;
- taxid=TAXID where TAXID is the final assignation of the sequence by 
  :doc:`ecotag <scripts/ecotag>` 
- scientific_name=NAME where NAME is the scientific name of the assigned taxid.

The first sequence record of ``wolf.ali.assigned.uniq.c10.l80.clean.tag.fasta`` is:


.. code-block:: bash

   >HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP 
   species_name=Capreolus capreolus; family=9850; scientific_name=Capreolus 
   capreolus; rank=species; taxid=9858; best_identity={'db_v05_r117': 1.0}; 
   scientific_name_by_db={'db_v05_r117': 'Capreolus capreolus'}; 
   obiclean_samplecount=2; species=9858; merged_sample={'29a_F260619': 4697, 
   '15a_F730814': 7638}; obiclean_count={'29a_F260619': 5438, '15a_F730814': 8642}; 
   obiclean_singletoncount=0; obiclean_cluster={'29a_F260619': 
   'HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP', 
   '15a_F730814': 
   'HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP'}; 
   species_list={'db_v05_r117': ['Capreolus capreolus']}; obiclean_internalcount=0; 
   match_count={'db_v05_r117': 1}; obiclean_head=True; taxid_by_db={'db_v05_r117': 
   9858}; family_name=Cervidae; genus_name=Capreolus; 
   obiclean_status={'29a_F260619': 'h', '15a_F730814': 'h'}; obiclean_headcount=2; 
   count=12335; id_status={'db_v05_r117': True}; best_match={'db_v05_r117': 
   'AJ885202'}; order_name=None; rank_by_db={'db_v05_r117': 'species'}; genus=9857; 
   order=None; 
   ttagccctaaacacaagtaattaatataacaaaattattcgccagagtactaccggcaat
   agcttaaaactcaaaggacttggcggtgctttataccctt


Generate the final result table
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Some unuseful attributes can be removed at this stage. 

.. code-block:: bash

   > obiannotate  --delete-tag=scientific_name_by_db --delete-tag=obiclean_samplecount \
     --delete-tag=obiclean_count --delete-tag=obiclean_singletoncount \
     --delete-tag=obiclean_cluster --delete-tag=obiclean_internalcount \
     --delete-tag=obiclean_head --delete-tag=taxid_by_db --delete-tag=obiclean_headcount \
     --delete-tag=id_status --delete-tag=rank_by_db --delete-tag=order_name \
     --delete-tag=order wolf.ali.assigned.uniq.c10.l80.clean.tag.fasta > \
     wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.fasta


The first sequence record of ``wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.fasta`` is 
then:

.. code-block:: bash

   >HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP 
   match_count={'db_v05_r117': 1}; count=12335; species_name=Capreolus capreolus; 
   best_match={'db_v05_r117': 'AJ885202'}; family=9850; family_name=Cervidae; 
   scientific_name=Capreolus capreolus; taxid=9858; rank=species; 
   obiclean_status={'29a_F260619': 'h', '15a_F730814': 'h'}; 
   best_identity={'db_v05_r117': 1.0}; merged_sample={'29a_F260619': 4697, 
   '15a_F730814': 7638}; genus_name=Capreolus; genus=9857; species=9858; 
   species_list={'db_v05_r117': ['Capreolus capreolus']}; 
   ttagccctaaacacaagtaattaatataacaaaattattcgccagagtactaccggcaat
   agcttaaaactcaaaggacttggcggtgctttataccctt


The sequences can be sorted by decreasing order of `count`.

.. code-block:: bash

   > obisort -k count -r wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.fasta >  \ 
     wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.sort.fasta 
   
The first sequence record of ``wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.sort.fasta`` is then:

.. code-block:: bash

   >HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP count=12335; 
   match_count={'db_v05_r117': 1}; species_name=Capreolus capreolus; 
   best_match={'db_v05_r117': 'AJ885202'}; family=9850; family_name=Cervidae; 
   scientific_name=Capreolus capreolus; taxid=9858; rank=species; 
   obiclean_status={'29a_F260619': 'h', '15a_F730814': 'h'}; 
   best_identity={'db_v05_r117': 1.0}; merged_sample={'29a_F260619': 4697, 
   '15a_F730814': 7638}; genus_name=Capreolus; genus=9857; species=9858; 
   species_list={'db_v05_r117': ['Capreolus capreolus']}; 
   ttagccctaaacacaagtaattaatataacaaaattattcgccagagtactaccggcaat
   agcttaaaactcaaaggacttggcggtgctttataccctt

Finally, a tab-delimited file that can be open by excel or R is generated. 

.. code-block:: bash

   > obitab -o wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.sort.fasta > \ 
     wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.sort.tab
 
   
This file contains 26 sequences. You can deduce the diet of each sample:
 - 13a_F730603: Cervus elaphus
 - 15a_F730814: Capreolus capreolus
 - 26a_F040644: Marmota sp. (according to the location, it is Marmota marmota)
 - 29a_F260619: Capreolus capreolus

Note that we also obtained a few wolf sequences although a wolf-blocking oligonucleotide 
was used.


References
----------

 - Shehzad W, Riaz T, Nawaz MA, Miquel C, Poillot C, Shah SA, Pompanon F, Coissac E, 
   Taberlet P (2012) Carnivore diet analysis based on next generation sequencing: 
   application to the leopard cat (Prionailurus bengalensis) in Pakistan. Molecular 
   Ecology, 21, 1951-1965.
 - Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E (2011) ecoPrimers: 
   inference of new DNA barcode markers from whole genome sequence analysis. Nucleic 
   Acids Research, 39, e145.
 - Seguritan V, Rohwer F. (2001) FastGroup: a program to dereplicate libraries of 
   16S rDNA sequences. BMC Bioinformatics. 2001;2:9. Epub 2001 Oct 16.


Contact
-------

For any suggestion or improvement, please contact :

    - eric.coissac@metabarcoding.org
    - frederic.boyer@metabarcoding.org