1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
|
Wolves' diet based on DNA metabarcoding
=======================================
Here is a tutorial on how to analyze DNA metabarcoding data produced on Illumina
sequencers using:
- the *OBITools*
- some basic *Unix* commands
The data used in this tutorial correspond to the analysis of four wolf scats, using the
protocol published in Shehzad et al. (2012) for assessing carnivore diet.
After extracting DNA from the faeces, the DNA amplifications were carried out using the
primers TTAGATACCCCACTATGC and TAGAACAGGCTCCTCTAG amplifiying the 12S-V5 region
(Riaz et al. 2011), together with a wolf blocking oligonucleotide.
The complete data set can be downloaded here: :download:`the tutorial dataset<../../../wolf_tutorial.zip>`
+-------------------------------------------------------------+
| Good to remember: I am working with tons of sequences |
+-------------------------------------------------------------+
| It is always a good idea to have a look at the intermediate |
| results or to evaluate the best parameter for each step. |
| Some commands are designed for that purpose, for example |
| you can use : |
| |
| - :doc:`obicount <scripts/obicount>` to count the number |
| of sequence records in a file |
| - :doc:`obihead <scripts/obihead>` and |
| :doc:`obitail <scripts/obitail>` to view the first |
| or last sequence records of a file |
| - :doc:`obistat <scripts/obistat>` to get some basic |
| statistics (count, mean, standard deviation) on the |
| attributes (key=value combinations) in the header of each |
| sequence record (see The `extended OBITools fasta format` |
| in the :doc:`fasta format <fasta>` description) |
| - any *Unix* command such as ``less``, ``awk``, ``sort``, |
| ``wc`` to check your files |
+-------------------------------------------------------------+
Data
----
The data needed to run the tutorial are the following:
- :doc:`fastq <fastq>` files resulting of a GA IIx (Illumina) paired-end (2 x 108 bp)
sequencing assay of DNA extracted and amplified from
four wolf faeces:
* ``wolf_F.fastq``
* ``wolf_R.fastq``
- the file describing the primers and tags used for all samples sequenced:
* ``wolf_diet_ngsfilter.txt``
The tags correspond to short and specific sequences added on the 5' end of each
primer to distinguish the different samples
- the file containing the reference database in a fasta format:
* ``db_v05_r117.fasta``
This reference database has been extracted from the release 117 of EMBL using
:doc:`ecoPCR <scripts/ecoPCR>`
- the NCBI taxonomy formatted in the :doc:`ecoPCR <scripts/ecoPCR>` format (see the
:doc:`obiconvert <scripts/obiconvert>` utility for details) :
* ``embl_r117.ndx``
* ``embl_r117.rdx``
* ``embl_r117.tdx``
Step by step analysis
---------------------
Recover full sequence reads from forward and reverse partial reads
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When using the result of a paired-end sequencing assay with supposedly overlapping forward
and reverse reads, the first step is to recover the assembled sequence.
The forward and reverse reads of the same fragment are *at the same line position* in the
two fastq files obtained after sequencing.
Based on these two files, the assembly of the forward and reverse reads is done with the
:doc:`illuminapairedend <scripts/illuminapairedend>` utility that aligns the two reads
and returns the reconstructed sequence.
In our case, the command is:
.. code-block:: bash
> illuminapairedend --score-min=40 -r wolf_R.fastq wolf_F.fastq > wolf.fastq
The :py:mod:`--score-min` option allows discarding sequences with low alignment quality.
If the alignment score is below 40, the forward and reverse reads are not aligned but
concatenated, and the value of the :py:mod:`mode` attribute in the sequence header is set
to :py:mod:`joined` instead of :py:mod:`alignment`
Remove unaligned sequence records
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Unaligned sequences (:py:mod:`mode=joined`) cannot be used. The following command allows
removing them from the dataset:
.. code-block:: bash
> obigrep -p 'mode!="joined"' wolf.fastq > wolf.ali.fastq
The :py:mod:`-p` requires a *python* expression. :py:mod:`mode!="joined"` means that if
the value of the :py:mod:`mode` attribute is different from :py:mod:`joined`, the
corresponding sequence record will be kept.
The first sequence record of ``wolf.ali.fastq`` can be obtained using the following
command line:
.. code-block:: bash
> obihead --without-progress-bar -n 1 wolf.ali.fastq
And the result is:
.. code-block:: bash
@HELIUM_000100422_612GNAAXX:7:119:14871:19157#0/1_CONS ali_length=61;
direction=left; seq_ab_match=47; sminR=40.0; seq_a_mismatch=7; seq_b_deletion=1;
seq_b_mismatch=7; seq_a_deletion=1; score_norm=1.89772607661;
score=115.761290673; seq_a_insertion=0; mode=alignment; sminL=40.0;
seq_a_single=46; seq_b_single=46; seq_b_insertion=0;
ccgcctcctttagataccccactatgcttagccctaaacacaagtaattattataacaaaatcattcgccagagtgtagc
gggagtaggttaaaactcaaaggacttggcggtgctttatacccttctagaggagcctgttctaaggaggcgg
+
ddddddddddddddddddddddcddddcacdddddddddddddc\d~b~~~b~~~~~~b`ryK~|uxyXk`}~ccBccBc
ccBcBcccBcBccccccc~~~~b|~~xdbaddaaWcccdaaddddadacddddddcddadbbddddddddddd
Assign each sequence record to the corresponding sample/marker combination
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Each sequence record is assigned to its corresponding sample and marker using the data
provided in a text file (here ``wolf_diet_ngsfilter.txt``). This text file contains one
line per sample, with the name of the experiment (several experiments can be included in
the same file), the name of the tags (for example: ``aattaac`` if the same tag has been
used on each extremity of the PCR products, or ``aattaac:gaagtag`` if the tags were
different), the sequence of the forward primer, the sequence of the reverse primer, the
letter ``T`` or ``F`` for sample identification using the forward primer and tag only or
using both primers and both tags, respectively (see :doc:`ngsfilter <scripts/ngsfilter>`
for details).
.. code-block:: bash
> ngsfilter -t wolf_diet_ngsfilter.txt -u unidentified.fastq wolf.ali.fastq > \
wolf.ali.assigned.fastq
This command creates two files:
- ``unidentified.fastq`` containing all the sequence records that were not assigned to a
sample/marker combination
- ``wolf.ali.assigned.fastq`` containing all the sequence records that were properly
assigned to a sample/marker combination
Note that each sequence record of the ``wolf.ali.assigned.fastq`` file contains only the
barcode sequence as the sequences of primers and tags are removed by the
:doc:`ngsfilter <scripts/ngsfilter>` program. Information concerning the experiment,
sample, primers and tags is added as attributes in the sequence header.
For instance, the first sequence record of ``wolf.ali.assigned.fastq`` is:
.. code-block:: bash
@HELIUM_000100422_612GNAAXX:7:119:14871:19157#0/1_CONS_SUB_SUB status=full;
seq_ab_match=47; sminR=40.0; ali_length=61; tail_quality=67.0;
reverse_match=tagaacaggctcctctag; seq_a_deletion=1; sample=29a_F260619;
forward_match=ttagataccccactatgc; forward_primer=ttagataccccactatgc;
reverse_primer=tagaacaggctcctctag; sminL=40.0; forward_score=72.0;
score=115.761290673; seq_a_mismatch=7; forward_tag=gcctcct; seq_b_mismatch=7;
experiment=wolf_diet; mid_quality=69.4210526316; avg_quality=69.1045751634;
seq_a_single=46; score_norm=1.89772607661; reverse_score=72.0;
direction=forward; seq_b_insertion=0; seq_b_deletion=1; seq_a_insertion=0;
seq_length_ori=153; reverse_tag=gcctcct; seq_length=99; mode=alignment;
head_quality=67.0; seq_b_single=46;
ttagccctaaacacaagtaattattataacaaaatcattcgccagagtgtagcgggagtaggttaaaactcaaaggact
tggcggtgctttataccctt
+
cacdddddddddddddc\d~b~~~b~~~~~~b`ryK~|uxyXk`}~ccBccBcccBcBcccBcBccccccc~~~~b|~~
xdbaddaaWcccdaadddda
Dereplicate reads into uniq sequences
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The same DNA molecule can be sequenced several times. In order to reduce both file size
and computations time, and to get easier interpretable results,
it is convenient to work with unique *sequences* instead of *reads*. To *dereplicate* such
*reads* into unique *sequences*, we use the :doc:`obiuniq <scripts/obiuniq>` command.
+-------------------------------------------------------------+
| Definition: Dereplicate reads into unique sequences |
+-------------------------------------------------------------+
| 1. compare all the reads in a data set to each other |
| 2. group strictly identical reads together |
| 3. output the sequence for each group and its count in the |
| original dataset (in this way, all duplicated reads are |
| removed) |
| |
| Definition adapted from Seguritan and Rohwer (2001) |
+-------------------------------------------------------------+
For dereplication, we use the :doc:`obiuniq <scripts/obiuniq>` command with the `-m
sample`. The `-m sample` option is used to keep the information of the samples of origin
for each unique sequence.
.. code-block:: bash
> obiuniq -m sample wolf.ali.assigned.fastq > wolf.ali.assigned.uniq.fasta
Note that :doc:`obiuniq <scripts/obiuniq>` returns a fasta file.
The first sequence record of ``wolf.ali.assigned.uniq.fasta`` is:
.. code-block:: bash
>HELIUM_000100422_612GNAAXX:7:119:14871:19157#0/1_CONS_SUB_SUB_CMP ali_length=61;
seq_ab_match=47; sminR=40.0; tail_quality=67.0; reverse_match=ttagataccccactatgc;
seq_a_deletion=1; forward_match=tagaacaggctcctctag; forward_primer=tagaacaggctcctctag;
reverse_primer=ttagataccccactatgc; sminL=40.0; merged_sample={'29a_F260619': 1};
forward_score=72.0; seq_a_mismatch=7; forward_tag=gcctcct; seq_b_mismatch=7;
score=115.761290673; mid_quality=69.4210526316; avg_quality=69.1045751634;
seq_a_single=46; score_norm=1.89772607661; reverse_score=72.0; direction=reverse;
seq_b_insertion=0; experiment=wolf_diet; seq_b_deletion=1; seq_a_insertion=0;
seq_length_ori=153; reverse_tag=gcctcct; count=1; seq_length=99; status=full;
mode=alignment; head_quality=67.0; seq_b_single=46;
aagggtataaagcaccgccaagtcctttgagttttaacctactcccgctacactctggcg
aatgattttgttataataattacttgtgtttagggctaa
The run of :doc:`obiuniq <scripts/obiuniq>` has added two key=values entries in the header
of the fasta sequence:
- :py:mod:`merged_sample={'29a_F260619': 1}`: this sequence have been found once in a
single sample called 29a_F260619
- :py:mod:`count=1` : the total count for this sequence is 1
To keep only these two ``key=value`` attributes, we can use the
:doc:`obiannotate <scripts/obiannotate>` command:
.. code-block:: bash
> obiannotate -k count -k merged_sample \
wolf.ali.assigned.uniq.fasta > $$ ; mv $$ wolf.ali.assigned.uniq.fasta
The first five sequence records of ``wolf.ali.assigned.uniq.fasta`` become:
.. code-block:: bash
>HELIUM_000100422_612GNAAXX:7:119:14871:19157#0/1_CONS_SUB_SUB_CMP merged_sample={'29a_F260619': 1}; count=1;
aagggtataaagcaccgccaagtcctttgagttttaacctactcccgctacactctggcg
aatgattttgttataataattacttgtgtttagggctaa
>HELIUM_000100422_612GNAAXX:7:108:5640:3823#0/1_CONS_SUB_SUB_CMP merged_sample={'29a_F260619': 7, '15a_F730814': 2}; count=9;
aagggtataaagcaccgccaagtcctttgagttttaagctattgccggtagtactctggc
gaacaattttgttatattaattacttgtgtttagggctaa
>HELIUM_000100422_612GNAAXX:7:97:14311:19299#0/1_CONS_SUB_SUB_CMP merged_sample={'29a_F260619': 5, '15a_F730814': 4}; count=9;
aagggtataaagcaccgccaagtcctttgagttttaagctcttgccggtagtactctggc
gaataattttgttatattaattacttgtgtttagggctaa
>HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB merged_sample={'29a_F260619': 4697, '15a_F730814': 7638}; count=12335;
aagggtataaagcaccgccaagtcctttgagttttaagctattgccggtagtactctggc
gaataattttgttatattaattacttgtgtttagggctaa
>HELIUM_000100422_612GNAAXX:7:57:18459:16145#0/1_CONS_SUB_SUB_CMP merged_sample={'26a_F040644': 10490}; count=10490;
agggatgtaaagcaccgccaagtcctttgagtttcaggctgttgctagtagtactctggc
gaacattcttgtttattgaatgtttatgtttagggctaa
Denoise the sequence dataset
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
To have a set of sequences assigned to their corresponding samples does not mean that all
sequences are *biologically* meaningful i.e. some of these sequences can contains PCR
and/or sequencing errors, or chimeras. To remove such sequences as much as possible, we
first discard rare sequences and then rsequence variants that likely correspond to
artifacts.
Get the count statistics
~~~~~~~~~~~~~~~~~~~~~~~~
In that case, we use :doc:`obistat <scripts/obistat>` to get the counting statistics on
the 'count' attribute (the count attribute has been added by the :doc:`obiuniq
<scripts/obiuniq>` command). By piping the result in the *Unix* commands ``sort`` and
``head``, we keep only the count statistics for the 20 lowest values of the 'count'
attribute.
.. code-block:: bash
> obistat -c count wolf.ali.assigned.uniq.fasta | \
sort -nk1 | head -20
This print the output:
.. code-block:: bash
count count total
1 3504 3504
2 228 456
3 136 408
4 73 292
5 61 305
6 47 282
7 34 238
8 27 216
9 26 234
10 25 250
11 13 143
12 14 168
13 10 130
14 5 70
15 9 135
16 8 128
17 4 68
18 9 162
19 5 95
The dataset contains 3504 sequences occurring only once.
Keep only the sequences having a count greater or equal to 10 and a length shorter than 80 bp
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Based on the previous observation, we set the cut-off for keeping sequences for further
analysis to a count of 10. To do this, we use the :doc:`obigrep <scripts/obigrep>`
command.
The ``-p 'count>=10'`` option means that the ``python`` expression :py:mod:`count>=10`
must be evaluated to :py:mod:`True` for each sequence to be kept. Based on previous
knowledge we also remove sequences with a length shorter than 80 bp (option -l) as we know
that the amplified 12S-V5 barcode for vertebrates must have a length around 100bp.
.. code-block:: bash
> obigrep -l 80 -p 'count>=10' wolf.ali.assigned.uniq.fasta \
> wolf.ali.assigned.uniq.c10.l80.fasta
The first sequence record of ``wolf.ali.assigned.uniq.c10.l80.fasta`` is:
.. code-block:: bash
>HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB count=12335; merged_sample={'29a_F260619': 4697, '15a_F730814': 7638};
aagggtataaagcaccgccaagtcctttgagttttaagctattgccggtagtactctggc
gaataattttgttatattaattacttgtgtttagggctaa
Clean the sequences for PCR/sequencing errors (sequence variants)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As a final denoising step, using the :doc:`obiclean <scripts/obiclean>` program, we keep
the `head` sequences (``-H`` option) that are sequences with no variants with a count
greater than 5% of their own count (``-r 0.05`` option).
.. code-block:: bash
> obiclean -s merged_sample -r 0.05 -H \
wolf.ali.assigned.uniq.c10.l80.fasta > wolf.ali.assigned.uniq.c10.l80.clean.fasta
The first sequence record of ``wolf.ali.assigned.uniq.c10.l80.clean.fasta`` is:
.. code-block:: bash
>HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB
merged_sample={'29a_F260619': 4697, '15a_F730814': 7638};
obiclean_count={'29a_F260619': 5438, '15a_F730814': 8642}; obiclean_head=True;
obiclean_cluster={'29a_F260619':
'HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB', '15a_F730814':
'HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB'};
count=12335; obiclean_internalcount=0; obiclean_status={'29a_F260619': 'h', '15a_F730814': 'h'};
obiclean_samplecount=2; obiclean_headcount=2; obiclean_singletoncount=0;
aagggtataaagcaccgccaagtcctttgagttttaagctattgccggtagtactctggc
gaataattttgttatattaattacttgtgtttagggctaa
Taxonomic assignment of sequences
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Once denoising has been done, the next step in diet analysis is to assign the barcodes to
the corresponding species in order to get the complete list of species associated to each
sample.
Taxonomic assignment of sequences requires a reference database compiling all possible
species to be identified in the sample. Assignment is then done based on sequence
comparison between sample sequences and reference sequences.
Build a reference database
~~~~~~~~~~~~~~~~~~~~~~~~~~
One way to build the reference database is to use the :doc:`ecoPCR <scripts/ecoPCR>`
program to simulate a PCR and to extract all sequences from the EMBL that may be amplified
`in silico` by the two primers (`TTAGATACCCCACTATGC` and `TAGAACAGGCTCCTCTAG`) used for
PCR amplification.
The full list of steps for building this reference database would then be:
1. Download the whole set of EMBL sequences (available from:
ftp://ftp.ebi.ac.uk/pub/databases/embl/release/)
2. Download the NCBI taxonomy (available from:
ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz)
3. Format them into the ecoPCR format (see :doc:`obiconvert <scripts/obiconvert>` for how
you can produce ecoPCR compatible files)
4. Use ecoPCR to simulate amplification and build a reference database based on putatively
amplified barcodes together with their recorded taxonomic information
As step 1 and step 3 can be really time-consuming (about one day), we alredy provide the
reference database produced by the following commands so that you can skip its
construction. Note that as the EMBL database and taxonomic data can evolve daily, if you
run the following commands you may end up with quite different results.
Any utility allowing file downloading from a ftp site can be used. In the following
commands, we use the commonly used ``wget`` *Unix* command.
Download the sequences
......................
.. code-block:: bash
> mkdir EMBL
> cd EMBL
> wget -nH --cut-dirs=4 -Arel_std_\*.dat.gz -m ftp://ftp.ebi.ac.uk/pub/databases/embl/release/
> cd ..
Download the taxonomy
.....................
.. code-block:: bash
> mkdir TAXO
> cd TAXO
> wget ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz
> tar -zxvf taxdump.tar.gz
> cd ..
Format the data
...............
.. code-block:: bash
> obiconvert --embl -t ./TAXO --ecopcrDB-output=embl_last ./EMBL/*.dat
Use ecoPCR to simulate an in silico` PCR
........................................
.. code-block:: bash
> ecoPCR -d ./ECODB/embl_last -e 3 -l 50 -L 150 \
TTAGATACCCCACTATGC TAGAACAGGCTCCTCTAG > v05.ecopcr
Note that the primers must be in the same order both in ``wolf_diet_ngsfilter.txt`` and in
the :doc:`ecoPCR <scripts/ecoPCR>` command.
Clean the database
..................
1. filter sequences so that they have a good taxonomic description at the species,
genus, and family levels (:doc:`obigrep <scripts/obigrep>` command below).
2. remove redundant sequences (:doc:`obiuniq <scripts/obiuniq>` command below).
3. ensure that the dereplicated sequences have a taxid at the family level
(:doc:`obigrep <scripts/obigrep>` command below).
4. ensure that sequences each have a unique identification
(:doc:`obiannotate <scripts/obiannotate>` command below)
.. code-block:: bash
> obigrep -d embl_last --require-rank=species \
--require-rank=genus --require-rank=family v05.ecopcr > v05_clean.fasta
> obiuniq -d embl_last \
v05_clean.fasta > v05_clean_uniq.fasta
> obigrep -d embl_last --require-rank=family \
v05_clean_uniq.fasta > v05_clean_uniq_clean.fasta
> obiannotate --uniq-id v05_clean_uniq_clean.fasta > db_v05.fasta
.. warning::
From now on, for the sake of clarity, the following commands will use the filenames of
the files provided with the tutorial. If you decided to run the last steps and use the
files you have produced, you'll have to use ``db_v05.fasta`` instead of
``db_v05_r117.fasta`` and ``embl_last`` instead of ``embl_r117``
Assign each sequence to a taxon
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Once the reference database is built, taxonomic assignment can be carried out using
the :doc:`ecotag <scripts/ecotag>` command.
.. code-block:: bash
> ecotag -d embl_r117 -R db_v05_r117.fasta wolf.ali.assigned.uniq.c10.l80.clean.fasta > \
wolf.ali.assigned.uniq.c10.l80.clean.tag.fasta
The :doc:`ecotag <scripts/ecotag>` adds several `key=value` attributes in the sequence
record header, among them:
- best_match=ACCESSION where ACCESSION is the id of hte sequence in the reference database
that best aligns to the query sequence;
- best_identity=FLOAT where FLOAT*100 is the percentage of identity between the best match
sequence and the query sequence;
- taxid=TAXID where TAXID is the final assignation of the sequence by
:doc:`ecotag <scripts/ecotag>`
- scientific_name=NAME where NAME is the scientific name of the assigned taxid.
The first sequence record of ``wolf.ali.assigned.uniq.c10.l80.clean.tag.fasta`` is:
.. code-block:: bash
>HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP
species_name=Capreolus capreolus; family=9850; scientific_name=Capreolus
capreolus; rank=species; taxid=9858; best_identity={'db_v05_r117': 1.0};
scientific_name_by_db={'db_v05_r117': 'Capreolus capreolus'};
obiclean_samplecount=2; species=9858; merged_sample={'29a_F260619': 4697,
'15a_F730814': 7638}; obiclean_count={'29a_F260619': 5438, '15a_F730814': 8642};
obiclean_singletoncount=0; obiclean_cluster={'29a_F260619':
'HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP',
'15a_F730814':
'HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP'};
species_list={'db_v05_r117': ['Capreolus capreolus']}; obiclean_internalcount=0;
match_count={'db_v05_r117': 1}; obiclean_head=True; taxid_by_db={'db_v05_r117':
9858}; family_name=Cervidae; genus_name=Capreolus;
obiclean_status={'29a_F260619': 'h', '15a_F730814': 'h'}; obiclean_headcount=2;
count=12335; id_status={'db_v05_r117': True}; best_match={'db_v05_r117':
'AJ885202'}; order_name=None; rank_by_db={'db_v05_r117': 'species'}; genus=9857;
order=None;
ttagccctaaacacaagtaattaatataacaaaattattcgccagagtactaccggcaat
agcttaaaactcaaaggacttggcggtgctttataccctt
Generate the final result table
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some unuseful attributes can be removed at this stage.
.. code-block:: bash
> obiannotate --delete-tag=scientific_name_by_db --delete-tag=obiclean_samplecount \
--delete-tag=obiclean_count --delete-tag=obiclean_singletoncount \
--delete-tag=obiclean_cluster --delete-tag=obiclean_internalcount \
--delete-tag=obiclean_head --delete-tag=taxid_by_db --delete-tag=obiclean_headcount \
--delete-tag=id_status --delete-tag=rank_by_db --delete-tag=order_name \
--delete-tag=order wolf.ali.assigned.uniq.c10.l80.clean.tag.fasta > \
wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.fasta
The first sequence record of ``wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.fasta`` is
then:
.. code-block:: bash
>HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP
match_count={'db_v05_r117': 1}; count=12335; species_name=Capreolus capreolus;
best_match={'db_v05_r117': 'AJ885202'}; family=9850; family_name=Cervidae;
scientific_name=Capreolus capreolus; taxid=9858; rank=species;
obiclean_status={'29a_F260619': 'h', '15a_F730814': 'h'};
best_identity={'db_v05_r117': 1.0}; merged_sample={'29a_F260619': 4697,
'15a_F730814': 7638}; genus_name=Capreolus; genus=9857; species=9858;
species_list={'db_v05_r117': ['Capreolus capreolus']};
ttagccctaaacacaagtaattaatataacaaaattattcgccagagtactaccggcaat
agcttaaaactcaaaggacttggcggtgctttataccctt
The sequences can be sorted by decreasing order of `count`.
.. code-block:: bash
> obisort -k count -r wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.fasta > \
wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.sort.fasta
The first sequence record of ``wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.sort.fasta`` is then:
.. code-block:: bash
>HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP count=12335;
match_count={'db_v05_r117': 1}; species_name=Capreolus capreolus;
best_match={'db_v05_r117': 'AJ885202'}; family=9850; family_name=Cervidae;
scientific_name=Capreolus capreolus; taxid=9858; rank=species;
obiclean_status={'29a_F260619': 'h', '15a_F730814': 'h'};
best_identity={'db_v05_r117': 1.0}; merged_sample={'29a_F260619': 4697,
'15a_F730814': 7638}; genus_name=Capreolus; genus=9857; species=9858;
species_list={'db_v05_r117': ['Capreolus capreolus']};
ttagccctaaacacaagtaattaatataacaaaattattcgccagagtactaccggcaat
agcttaaaactcaaaggacttggcggtgctttataccctt
Finally, a tab-delimited file that can be open by excel or R is generated.
.. code-block:: bash
> obitab -o wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.sort.fasta > \
wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.sort.tab
This file contains 26 sequences. You can deduce the diet of each sample:
- 13a_F730603: Cervus elaphus
- 15a_F730814: Capreolus capreolus
- 26a_F040644: Marmota sp. (according to the location, it is Marmota marmota)
- 29a_F260619: Capreolus capreolus
Note that we also obtained a few wolf sequences although a wolf-blocking oligonucleotide
was used.
References
----------
- Shehzad W, Riaz T, Nawaz MA, Miquel C, Poillot C, Shah SA, Pompanon F, Coissac E,
Taberlet P (2012) Carnivore diet analysis based on next generation sequencing:
application to the leopard cat (Prionailurus bengalensis) in Pakistan. Molecular
Ecology, 21, 1951-1965.
- Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E (2011) ecoPrimers:
inference of new DNA barcode markers from whole genome sequence analysis. Nucleic
Acids Research, 39, e145.
- Seguritan V, Rohwer F. (2001) FastGroup: a program to dereplicate libraries of
16S rDNA sequences. BMC Bioinformatics. 2001;2:9. Epub 2001 Oct 16.
Contact
-------
For any suggestion or improvement, please contact :
- eric.coissac@metabarcoding.org
- frederic.boyer@metabarcoding.org
|