1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
#!/usr/bin/python3
'''
:py:mod:`obiaddtaxids`: adds *taxids* to sequence records using an ecopcr database
==================================================================================
.. codeauthor:: Celine Mercier <celine.mercier@metabarcoding.org>
The :py:mod:`obiaddtaxids` command annotates sequence records with a *taxid* based on
a taxon scientific name stored in the sequence record header.
Taxonomic information linking a *taxid* to a taxon scientific name is stored in a
database formatted as an ecoPCR database (see :doc:`obitaxonomy <obitaxonomy>`) or
a NCBI taxdump (see NCBI ftp site).
The way to extract the taxon scientific name from the sequence record header can be
specified by two options:
- By default, the sequence identifier is used. Underscore characters (``_``) are substituted
by spaces before looking for the taxon scientific name into the taxonomic
database.
- If the input file is an ``OBITools`` extended :doc:`fasta <../fasta>` format, the ``-k`` option
specifies the attribute containing the taxon scientific name.
- If the input file is a :doc:`fasta <../fasta>` file imported from the UNITE or from the SILVA web sites,
the ``-f`` option allows specifying this source and parsing correctly the associated
taxonomic information.
For each sequence record, :py:mod:`obiaddtaxids` tries to match the extracted taxon scientific name
with those stored in the taxonomic database.
- If a match is found, the sequence record is annotated with the corresponding *taxid*.
Otherwise,
- If the ``-g`` option is set and the taxon name is composed of two words and only the
first one is found in the taxonomic database at the 'genus' rank, :py:mod:`obiaddtaxids`
considers that it found the genus associated with this sequence record and it stores this
sequence record in the file specified by the ``-g`` option.
- If the ``-u`` option is set and no taxonomic information is retrieved from the
scientific taxon name, the sequence record is stored in the file specified by the
``-u`` option.
*Example*
.. code-block:: bash
> obiaddtaxids -k species_name -g genus_identified.fasta \\
-u unidentified.fasta -d my_ecopcr_database \\
my_sequences.fasta > identified.fasta
Tries to match the value associated with the ``species_name`` key of each sequence record
from the ``my_sequences.fasta`` file with a taxon name from the ecoPCR database ``my_ecopcr_database``.
- If there is an exact match, the sequence record is stored in the ``identified.fasta`` file.
- If not and the ``species_name`` value is composed of two words, :py:mod:`obiaddtaxids`
considers the first word as a genus name and tries to find it into the taxonomic database.
- If a genus is found, the sequence record is stored in the ``genus_identified.fasta``
file.
- Otherwise the sequence record is stored in the ``unidentified.fasta`` file.
'''
import re
from obitools.fasta import fastaIterator,formatFasta
from obitools.options import getOptionManager
from obitools.options.taxonomyfilter import addTaxonomyDBOptions
from obitools.options.taxonomyfilter import loadTaxonomyDatabase
from obitools.format.genericparser import genericEntryIteratorGenerator
from obitools import NucSequence
def addObiaddtaxidsOptions(optionManager):
optionManager.add_option('-g','--genus_found',
action="store", dest="genus_found",
metavar="<FILENAME>",
type="string",
default=None,
help="(not with UNITE databases) file used to store sequences with the genus found.")
optionManager.add_option('-u','--unidentified',
action="store", dest="unidentified",
metavar="<FILENAME>",
type="string",
default=None,
help="file used to store completely unidentified sequences.")
optionManager.add_option('-s','--dirty',
action='store', dest="dirty",
metavar="<FILENAME>",
type="str",
default=None,
help="(not with UNITE databases) if chosen, ALL the words in the name used to identify the sequences will be searched"
" when neither the exact name nor the genus have been found."
" Only use if the sequences in your database are badly named with useless words or numbers"
" in the name etc."
" The sequences identified this way will be written in <FILENAME>.")
optionManager.add_option('-f','--format',
action="store", dest="db_type",
metavar="<FORMAT>",
type="string",
default='raw',
help="type of the database with the taxa to be added. Possibilities : 'raw', 'UNITE_FULL', 'UNITE_GENERAL' or 'SILVA'."
"The UNITE_FULL format is the one used for the 'Full UNITE+INSD dataset', and the UNITE_GENERAL format is the "
"one used for the 'General FASTA release'."
" Default : raw.")
optionManager.add_option('-k','--key-name',
action="store", dest="tagname",
metavar="<KEYNAME>",
type="string",
default='',
help="name of the key attribute containing the taxon name in databases of 'raw' type. Default : the taxon name is the id "
"of the sequence. The taxon name MUST have '_' between the words of the name when it's the id, and "
"CAN be of this form when it's in a field.")
optionManager.add_option('-a','--restricting_ancestor',
action="store", dest="res_anc",
type="str",
metavar="<ANCESTOR>",
default='',
help="can be a word or a taxid (number). Enables to restrict the search of taxids under a "
"specified ancestor. If it's a word, it's the field containing the ancestor's taxid "
"in each sequence's header (can be different for each sequence). If it's a number, "
"it's the taxid of the ancestor (in which case it's the same for all the sequences)")
def numberInStr(s) :
containsNumber = False
for c in s :
if c.isdigit() :
containsNumber = True
return containsNumber
def UNITEIterator_FULL(f):
fastaEntryIterator = genericEntryIteratorGenerator(startEntry='>')
for entry in fastaEntryIterator(f) :
all = entry.split('\n')
header = all[0]
fields = header.split('|')
seq_id = fields[0][1:]
seq = all[1]
s = NucSequence(seq_id, seq)
path = fields[1]
species_name_loc = path.index('s__')
species_name_loc+=3
s['species_name'] = path[species_name_loc:]
genus_name_loc = path.index('g__')
genus_name_loc+=3
s['genus_name'] = path[genus_name_loc:species_name_loc-4]
path = re.sub('[a-z]__', '', path)
s['path'] = path.replace(';', ',')
yield s
def UNITEIterator_GENERAL(f):
fastaEntryIterator = genericEntryIteratorGenerator(startEntry='>')
for entry in fastaEntryIterator(f) :
all = entry.split('\n')
header = all[0]
fields = header.split('|')
seq_id = fields[0][1:]
seq = all[1]
s = NucSequence(seq_id, seq)
s['species_name'] = seq_id.replace("_", " ")
path = fields[4]
path = re.sub('[a-z]__', '', path)
path = path.replace(';', ',')
s['path'] = path.replace(',,', ',')
yield s
def SILVAIterator(f, tax):
fastaEntryIterator = genericEntryIteratorGenerator(startEntry='>')
for entry in fastaEntryIterator(f) :
all = entry.split('\n')
header = all[0]
fields = header.split(' | ')
id = fields[0][1:]
seq = all[1]
s = NucSequence(id, seq)
if (
'(' in fields[1]
and len(fields[1].split('(')[1][:-1]) > 2
and ')' not in fields[1].split('(')[1][:-1]
and not numberInStr(fields[1].split('(')[1][:-1])
) :
species_name = fields[1].split('(')[0][:-1]
other_name = fields[1].split('(')[1][:-1]
ancestor = None
notAnAncestor = False
if (len(other_name.split(' ')) == 1 and other_name[0].isupper()):
try:
ancestor = tax.findTaxonByName(other_name)
except KeyError :
notAnAncestor = True
if (ancestor == None and notAnAncestor == False):
s['common_name'] = other_name
s['original_silva_name'] = fields[1]
s['species_name'] = species_name
elif (ancestor != None and notAnAncestor == False) :
s['ancestor_name'] = other_name
s['ancestor'] = ancestor[0]
s['original_silva_name'] = fields[1]
s['species_name'] = species_name
elif notAnAncestor == True :
s['species_name'] = fields[1]
else :
s['species_name'] = fields[1]
yield s
def dirtyLookForSimilarNames(name, tax, ancestor):
similar_name = ''
taxid = None
try :
t = tax.findTaxonByName(name)
taxid = t[0]
similar_name = t[3]
except KeyError :
taxid = None
if ancestor != None and not tax.isAncestor(ancestor, taxid) :
taxid = None
return similar_name, taxid
def getGenusTaxid(tax, species_name, ancestor):
genus_sp = species_name.split(' ')
genus_taxid = getTaxid(tax, genus_sp[0], ancestor)
if tax.getRank(genus_taxid) != 'genus' :
raise KeyError()
return genus_taxid
def getTaxid(tax, name, ancestor):
taxid = tax.findTaxonByName(name)[0][0]
if ancestor != None and not tax.isAncestor(ancestor, taxid) :
raise KeyError()
return taxid
def get_species_name(s, options) :
species_name = None
if options.tagname == '' or options.tagname in s :
if options.tagname == '' :
species_name = s.id
else :
species_name = s[options.tagname]
if "_" in species_name :
species_name = species_name.replace('_', ' ')
if len(species_name.split(' ')) == 2 and (species_name.split(' ')[1] == 'sp' or species_name.split(' ')[1] == 'sp.' or species_name.split(' ')[1] == 'unknown') :
species_name = species_name.split(' ')[0]
if options.tagname == '' :
s['species_name'] = species_name
return species_name
def getVaguelySimilarNames(species_name, tax, restricting_ancestor) :
kindOfFound = False
uselessWords = ['sp', 'sp.', 'fungus', 'fungal', 'unknown', 'strain', 'associated', 'uncultured']
for word in species_name.split(' ') :
if word not in uselessWords :
similar_name, taxid = dirtyLookForSimilarNames(word, tax, restricting_ancestor)
if taxid != None :
if len(similar_name) > len(s['species_name']) or kindOfFound == False :
s['species_name'] = similar_name
kindOfFound = True
return kindOfFound
def openFiles(options) :
if options.unidentified is not None:
options.unidentified=open(options.unidentified,'w')
if options.genus_found is not None:
options.genus_found=open(options.genus_found,'w')
if options.dirty is not None:
options.dirty = open(options.dirty, 'w')
################################################################################################
if __name__=='__main__':
optionParser = getOptionManager([addObiaddtaxidsOptions, addTaxonomyDBOptions], progdoc=__doc__)
(options,entries) = optionParser()
tax=loadTaxonomyDatabase(options)
if options.db_type == 'raw' :
entryIterator = fastaIterator
entries = entryIterator(entries)
elif options.db_type == 'UNITE_FULL' :
entryIterator = UNITEIterator_FULL
entries = entryIterator(entries)
elif options.db_type == 'UNITE_GENERAL' :
entryIterator = UNITEIterator_GENERAL
entries = entryIterator(entries)
elif options.db_type == 'SILVA' :
entryIterator = SILVAIterator
entries = entryIterator(entries, tax)
options.tagname = 'species_name'
openFiles(options)
if (options.db_type == 'raw') or (options.db_type == 'SILVA') :
if options.res_anc == '' :
restricting_ancestor = None
elif options.res_anc.isdigit() :
restricting_ancestor = int(options.res_anc)
for s in entries:
if options.res_anc != '' and not options.res_anc.isdigit():
restricting_ancestor = int(s[options.res_anc])
species_name = get_species_name(s, options)
if species_name != None :
try:
taxid = getTaxid(tax, species_name, restricting_ancestor)
s['taxid'] = taxid
print(formatFasta(s))
except KeyError:
genusFound = False
if options.genus_found is not None and len(species_name.split(' ')) >= 2 :
try:
genusTaxid = getGenusTaxid(tax, species_name, restricting_ancestor)
s['genus_taxid'] = genusTaxid
print(formatFasta(s), file=options.genus_found)
genusFound = True
except KeyError :
pass
kindOfFound = False
if options.dirty is not None and not genusFound :
kindOfFound = getVaguelySimilarNames(species_name, tax, restricting_ancestor)
if kindOfFound == True :
print(formatFasta(s), file=options.dirty)
if options.unidentified is not None and not genusFound and not kindOfFound :
print(formatFasta(s), file=options.unidentified)
elif ((options.db_type =='UNITE_FULL') or (options.db_type =='UNITE_GENERAL')) :
restricting_ancestor = tax.findTaxonByName('Fungi')[0][0]
for s in entries :
try :
species_name = s['species_name']
taxid = getTaxid(tax, species_name, restricting_ancestor)
s['taxid'] = taxid
s['rank'] = tax.getRank(taxid)
print(formatFasta(s))
except KeyError:
genusFound = False
if options.genus_found is not None :
try:
genusTaxid = getGenusTaxid(tax, species_name, restricting_ancestor)
s['genus_taxid'] = genusTaxid
print(formatFasta(s), file=options.genus_found)
genusFound = True
except KeyError:
pass
if options.unidentified is not None and not genusFound :
print(formatFasta(s), file=options.unidentified)
|