1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
#cython: language_level=3
'''
Created on 6 Nov. 2009
@author: coissac
'''
cdef class FreeEndGap(NWS):
def __init__(self,match=4,mismatch=-6,opengap=-8,extgap=-2):
NWS.__init__(self,match,mismatch,opengap,extgap)
self.xsmax=0
self.xmax=0
cdef double doAlignment(self) except? 0:
cdef int i # vertical index
cdef int j # horizontal index
cdef int idx
cdef int idx0
cdef int idx1
cdef int jump
cdef int delta
cdef double score
cdef double scoremax
cdef int path
assert self.hSeq.length > self.vSeq.length, \
"Sequence B must be shorter than sequence A"
if self.needToCompute:
self.allocate()
self.reset()
self.xsmax=0
self.xmax=0
for j in range(1,self.hSeq.length+1):
idx = self.index(j,0)
self.matrix.matrix[idx].score = 0
self.matrix.matrix[idx].path = j
for i in range(1,self.vSeq.length+1):
idx = self.index(0,i)
self.matrix.matrix[idx].score = self._opengap + (self._extgap * (i-1))
self.matrix.matrix[idx].path = -i
idx0=self.index(-1,0)
idx1=self.index(0,1)
for i in range(1,self.vSeq.length+1):
idx0+=1
idx1+=1
for j in range(1,self.hSeq.length+1):
# 1 - came from diagonal
#idx = self.index(j-1,i-1)
idx = idx0
# print "computing cell : %d,%d --> %d/%d" % (j,i,self.index(j,i),self.matrix.msize),
scoremax = self.matrix.matrix[idx].score + \
self.matchScore(j,i)
path = 0
# print "so=%f sd=%f sm=%f" % (self.matrix.matrix[idx].score,self.matchScore(j,i),scoremax),
# 2 - open horizontal gap
# idx = self.index(j-1,i)
idx = idx1 - 1
score = self.matrix.matrix[idx].score+ \
self._opengap
if score > scoremax :
scoremax = score
path = +1
# 3 - open vertical gap
# idx = self.index(j,i-1)
idx = idx0 + 1
score = self.matrix.matrix[idx].score + \
self._opengap
if score > scoremax :
scoremax = score
path = -1
# 4 - extend horizontal gap
jump = self.matrix.bestHJump[i]
if jump >= 0:
idx = self.index(jump,i)
delta = j-jump
score = self.matrix.matrix[idx].score + \
self._extgap * delta
if score > scoremax :
scoremax = score
path = delta+1
# 5 - extend vertical gap
jump = self.matrix.bestVJump[j]
if jump >= 0:
idx = self.index(j,jump)
delta = i-jump
score = self.matrix.matrix[idx].score + \
self._extgap * delta
if score > scoremax :
scoremax = score
path = -delta-1
# idx = self.index(j,i)
idx = idx1
self.matrix.matrix[idx].score = scoremax
self.matrix.matrix[idx].path = path
if path == -1:
self.matrix.bestVJump[j]=i
elif path == +1 :
self.matrix.bestHJump[i]=j
if i==self.vSeq.length and scoremax > self.xsmax:
self.xsmax=scoremax
self.xmax=j
idx0+=1
idx1+=1
self.sequenceChanged=False
self.scoreChanged=False
return self.xsmax
cdef void backtrack(self):
#cdef list path=[]
cdef int i
cdef int j
cdef int p
self.doAlignment()
j=self.xmax
i=self.vSeq.length
self.path=allocatePath(i,j+1,self.path)
if self.xmax<self.hSeq.length:
self.path.path[self.path.length]=self.hSeq.length-self.xmax
self.path.length+=1
while (i or j):
p=self.matrix.matrix[self.index(j,i)].path
self.path.path[self.path.length]=p
self.path.length+=1
#path.append(p)
if p==0:
i-=1
j-=1
elif p < 0:
i+=p
else:
j-=p
#path.reverse()
#reversePath(self.path)
self.path.hStart=0
self.path.vStart=0
#return 0,0,path
|