1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
#cython: language_level=3
'''
Created on 6 Nov. 2009
@author: coissac
'''
cdef class NWS(DynamicProgramming):
def __init__(self,match=4,mismatch=-6,opengap=-8,extgap=-2):
DynamicProgramming.__init__(self,opengap,extgap)
self._match=match
self._mismatch=mismatch
cdef double matchScore(self,int h, int v):
cdef double score
score = iupacPartialMatch(self.hSeq.sequence[h-1],self.vSeq.sequence[v-1])
return score * self._match + (1-score) * self._mismatch
cdef double doAlignment(self) except? 0:
cdef int i # vertical index
cdef int j # horizontal index
cdef int idx
cdef int jump
cdef int delta
cdef double score
cdef double scoremax
cdef int path
if self.needToCompute:
self.allocate()
self.reset()
for j in range(1,self._hlen()+1):
idx = self.index(j,0)
self.matrix.matrix[idx].score = self._opengap + (self._extgap * (j-1))
self.matrix.matrix[idx].path = j
for i in range(1,self._vlen()+1):
idx = self.index(0,i)
self.matrix.matrix[idx].score = self._opengap + (self._extgap * (i-1))
self.matrix.matrix[idx].path = -i
for i in range(1,self._vlen()+1):
for j in range(1,self._hlen()+1):
# 1 - came from diagonal
idx = self.index(j-1,i-1)
# print "computing cell : %d,%d --> %d/%d" % (j,i,self.index(j,i),self.matrix.msize),
scoremax = self.matrix.matrix[idx].score + \
self.matchScore(j,i)
path = 0
# print "so=%f sd=%f sm=%f" % (self.matrix.matrix[idx].score,self.matchScore(j,i),scoremax),
# 2 - open horizontal gap
idx = self.index(j-1,i)
score = self.matrix.matrix[idx].score + \
self._opengap
if score > scoremax :
scoremax = score
path = +1
# 3 - open vertical gap
idx = self.index(j,i-1)
score = self.matrix.matrix[idx].score + \
self._opengap
if score > scoremax :
scoremax = score
path = -1
# 4 - extend horizontal gap
jump = self.matrix.bestHJump[i]
if jump >= 0:
idx = self.index(jump,i)
delta = j-jump
score = self.matrix.matrix[idx].score + \
self._extgap * delta
if score > scoremax :
scoremax = score
path = delta+1
# 5 - extend vertical gap
jump = self.matrix.bestVJump[j]
if jump >= 0:
idx = self.index(j,jump)
delta = i-jump
score = self.matrix.matrix[idx].score + \
self._extgap * delta
if score > scoremax :
scoremax = score
path = -delta-1
idx = self.index(j,i)
self.matrix.matrix[idx].score = scoremax
self.matrix.matrix[idx].path = path
if path == -1:
self.matrix.bestVJump[j]=i
elif path == +1 :
self.matrix.bestHJump[i]=j
self.sequenceChanged=False
self.scoreChanged=False
idx = self.index(self._hlen(),self._vlen())
return self.matrix.matrix[idx].score
cdef void backtrack(self):
#cdef list path=[]
cdef int i
cdef int j
cdef int p
self.doAlignment()
i=self._vlen()
j=self._hlen()
self.path=allocatePath(i,j,self.path)
while (i or j):
p=self.matrix.matrix[self.index(j,i)].path
self.path.path[self.path.length]=p
self.path.length+=1
#path.append(p)
if p==0:
i-=1
j-=1
elif p < 0:
i+=p
else:
j-=p
#path.reverse()
#reversePath(self.path)
self.path.hStart=0
self.path.vStart=0
#return 0,0,path
property match:
def __get__(self):
return self._match
def __set__(self,match):
self._match=match
self.scoreChanged=True
property mismatch:
def __get__(self):
return self._mismatch
def __set__(self,mismatch):
self._mismatch=mismatch
self.scoreChanged=True
|