File: elf2mac.cpp

package info (click to toggle)
objconv 2.54%2Bds-1
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 2,292 kB
  • sloc: cpp: 27,032; makefile: 4; sh: 2
file content (1098 lines) | stat: -rw-r--r-- 46,562 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
/****************************  elf2mac.cpp   *********************************
* Author:        Agner Fog
* Date created:  2007-01-10
* Last modified: 2012-05-05
* Project:       objconv
* Module:        elf2mac.cpp
* Description:
* Module for converting ELF file to Mach-O file
*
* Copyright 2007-2012 GNU General Public License http://www.gnu.org/licenses
*****************************************************************************/

#include "stdafx.h"

template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation, 
          class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt>
   CELF2MAC<ELFSTRUCTURES,MACSTRUCTURES>::CELF2MAC() {
   // Constructor
      memset(this, 0, sizeof(*this));                   // Reset everything
}

template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation, 
          class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt>
   void CELF2MAC<ELFSTRUCTURES,MACSTRUCTURES>::Convert() {
   // Do the conversion
   // Some compilers require this-> for accessing members of template base class,
   // according to the so-called two-phase lookup rule.

   // Call the subfunctions
   ToFile.SetFileType(FILETYPE_MACHO_LE);             // Set type of new file
   MakeFileHeader();                                  // Make file header
   MakeSectionsIndex();                               // Make sections index translation table
   FindUnusedSymbols();                               // Check if symbols used, remove unused symbols
   MakeSymbolTable();                                 // Make symbol table and string tables
   MakeSections();                                    // Make sections and relocation tables
   MakeBinaryFile();                                  // Put sections together
   *this << ToFile;                                   // Take over new file buffer
}


template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation,
          class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt>
void CELF2MAC<ELFSTRUCTURES,MACSTRUCTURES>::MakeFileHeader() {
   // Convert subfunction: Make file header and load segment command
   TMAC_header NewHeader;                             // new file header
   NewHeader.magic      = (this->WordSize == 32) ? MAC_MAGIC_32 : MAC_MAGIC_64; // Mach magic number identifier
   NewHeader.cputype    = (this->WordSize == 32) ? MAC_CPU_TYPE_I386 : MAC_CPU_TYPE_X86_64;
   NewHeader.cpusubtype = MAC_CPU_SUBTYPE_I386_ALL;
   NewHeader.filetype   = MAC_OBJECT;
   NewHeader.ncmds      = 3;                          // Three commands = segment, symbol table, dynsymtab
   NewHeader.sizeofcmds = 0;                          // Set this later
   NewHeader.flags      = 0;                          // No flags needed

   // put file header in OutFile
   ToFile.Push(&NewHeader, sizeof(NewHeader));
}


template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation,
          class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt>
void CELF2MAC<ELFSTRUCTURES,MACSTRUCTURES>::MakeSectionsIndex() {
   // Make sections index translation table and section offset table.

   // We must make these tables before the sections, because they are needed for the
   // symbol tables and relocation tables, and we must make the symbol tables before 
   // the relocation tables, and we must make the relocation tables together with the
   // sections. 
   uint32_t oldsec;                         // Section number in old file
   uint32_t newsec = 0;                     // Section number in new file
   NewSectIndex. SetNum(this->NSections); // Allocate size for section index table
   NewSectIndex. SetZero();               // Initialize
   NewSectOffset.SetNum(this->NSections); // Allocate buffer for section offset table
   NewSectOffset.SetZero();               // Initialize

   MInt NewVirtualAddress = 0;            // Virtual address of new section as specified in Mach-O file

   // First loop through old sections
   for (oldsec = 0; oldsec < this->NSections; oldsec++) {
      NewSectIndex[oldsec]  = 0;
      NewSectOffset[oldsec] = 0;

      // Get section name
      const char * sname = "";
      uint32_t namei = this->SectionHeaders[oldsec].sh_name;
      if (namei >= this->SecStringTableLen) {
         err.submit(2112);
      }
      else sname = this->SecStringTable + namei;

      if (cmd.DebugInfo == CMDL_DEBUG_STRIP) {
         // Check for debug section names
         if (strncmp(sname, ".note",    5) == 0
         ||  strncmp(sname, ".comment", 8) == 0
         ||  strncmp(sname, ".stab",    5) == 0
         ||  strncmp(sname, ".debug",   6) == 0) {
            // Remove this section
            this->SectionHeaders[oldsec].sh_type = SHT_REMOVE_ME;
            cmd.CountDebugRemoved();
            continue;
         }
      }

      if (cmd.ExeptionInfo == CMDL_EXCEPTION_STRIP) {
         // Check for exception section name
         if (strncmp(sname, ".eh_frame", 9) == 0) {
            // Remove this section
            this->SectionHeaders[oldsec].sh_type = SHT_REMOVE_ME;
            cmd.CountExceptionRemoved();
            continue;
         }
      }

      // Search for program data sections only
      if (this->SectionHeaders[oldsec].sh_type != SHT_PROGBITS 
      &&  this->SectionHeaders[oldsec].sh_type != SHT_NOBITS) {
         // Has no data. Ignore
         continue;
      }

      if (this->SectionHeaders[oldsec].sh_size == 0) {
         // Remove empty section
         // The linker has a bug with empty sections
         continue;
      }

      // Section index translation table
      NewSectIndex[oldsec] = newsec++;

      // Calculate virtual memory address of section. This address does not have 
      // much to do with the final address, but it is needed in relocation entries.

      // Alignment
      int NewAlign = FloorLog2((uint32_t)this->SectionHeaders[oldsec].sh_addralign);
      if (NewAlign > 12) NewAlign = 12;   // What is the limit for highest alignment?
      int AlignBy = 1 << NewAlign;

      // Align memory address
      NewVirtualAddress = (NewVirtualAddress + AlignBy - 1) & -(MInt)AlignBy;

      // Virtual memory address of new section
      NewSectOffset[oldsec] = NewVirtualAddress;

      // Increment memory address
      NewVirtualAddress += this->SectionHeaders[oldsec].sh_size;

      // Fix v. 2.14: Align end of memory address by 4
      NewVirtualAddress = (NewVirtualAddress + 3) & MInt(-4);
   }

   // Store number of sections in new file
   NumSectionsNew = newsec;

   // Calculate file offset of first raw data
   RawDataOffset = sizeof(TMAC_header) 
      + sizeof(TMAC_segment_command) 
      + NumSectionsNew * sizeof(TMAC_section)
      + sizeof(MAC_symtab_command) 
      + sizeof(MAC_dysymtab_command);

   // Align end of memory address by 4
   NewVirtualAddress = (NewVirtualAddress + 3) & MInt(-4);

   // Make segment command
   TMAC_segment_command NewSegment;
   memset(&NewSegment, 0, sizeof(NewSegment));
   NewSegment.cmd      = (this->WordSize == 32) ? MAC_LC_SEGMENT : MAC_LC_SEGMENT_64;
   NewSegment.cmdsize  = sizeof(TMAC_segment_command) + NumSectionsNew * sizeof(TMAC_section);
   NewSegment.fileoff  = RawDataOffset;
   NewSegment.nsects   = NumSectionsNew;
   NewSegment.maxprot  = NewSegment.initprot = 7; // 1=read, 2=write, 4=execute
   NewSegment.vmsize   = NewVirtualAddress;
   NewSegment.filesize = 0;                       // Changed later

   // put segment command in OutFile
   CommandOffset = ToFile.Push(&NewSegment, sizeof(NewSegment));
}


template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation,
          class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt>
void CELF2MAC<ELFSTRUCTURES,MACSTRUCTURES>::MakeSymbolTable() {
   // Convert subfunction: Symbol table and string tables
   uint32_t oldsec;                  // Section number in old file
   TELF_SectionHeader OldHeader;   // Old section header
   int FoundSymTab = 0;            // Found symbol table
   char * strtab;                    // Old symbol string table
   int8_t * symtab;                  // Old symbol table
   uint32_t symtabsize;              // Size of old symbol table
   int8_t * symtabend;               // End of old symbol table
   uint32_t entrysize;               // Size of each entry in old symbol table
   TELF_Symbol OldSym;             // Old symbol table record
   uint32_t OldSymI;                 // Symbol index in old symbol table
   const char * symname;           // Symbol name
   int NewSection = 0;             // New section index
   int NewType;                    // New symbol type
   int NewDesc;                    // New symbol reference type
   MInt Value;                     // Symbol value
   uint32_t Scope;                   // 0: Local, 1: Public, 2: External 

   // Loop through old sections to find symbol table
   for (oldsec = 0; oldsec < this->NSections; oldsec++) {

      // Search for program data sections only
      if (this->SectionHeaders[oldsec].sh_type == SHT_SYMTAB 
      ||  this->SectionHeaders[oldsec].sh_type == SHT_DYNSYM) {
         FoundSymTab++;

         // Copy symbol table header for convenience
         OldHeader = this->SectionHeaders[oldsec];

         // Find associated string table
         if (OldHeader.sh_link >= (uint32_t)(this->NSections)) {
            err.submit(2035); OldHeader.sh_link = 0;
         }
         strtab = (char*)this->Buf() + (uint32_t)this->SectionHeaders[OldHeader.sh_link].sh_offset;

         // Find old symbol table
         entrysize = (uint32_t)OldHeader.sh_entsize;
         if (entrysize < sizeof(TELF_Symbol)) {err.submit(2033); entrysize = sizeof(TELF_Symbol);}

         symtab = this->Buf() + (uint32_t)OldHeader.sh_offset;
         symtabsize = (uint32_t)OldHeader.sh_size;
         symtabend = symtab + symtabsize;

         if (NewSymTab[0].GetNumEntries() == 0) {
            // make empty symbol record for index 0
            NewSymTab[0].AddSymbol(0, "", 0, 0, 0, 0);
         }

         // Loop through old symbol table
         for (OldSymI = 0; symtab < symtabend; symtab += entrysize, OldSymI++) {

            if (OldSymI == 0) continue; // First symbol entry in ELF file is unused

            // Copy 32 bit symbol table entry or convert 64 bit entry
            OldSym = *(TELF_Symbol*)symtab;
 
            // Old symbol type
            int type = OldSym.st_type;

            // Old symbol storage class = binding
            int binding = OldSym.st_bind;

            // Get symbol name
            if (OldSym.st_name < this->SymbolStringTableSize) {
               symname = strtab + OldSym.st_name;
            }
            else {
               err.submit(2112); // String table corrupt
               continue;       // Ignore
            }
            if (symname == 0 || *symname == 0) {
               // Symbol has no name. Give it a name
               // Mac linker messes this up if the symbol doesn't have a unique name.
               char tempbuf[80];
               sprintf(tempbuf, "?unnamed%i", OldSymI);
               int os = UnnamedSymbolsTable.PushString(tempbuf);
               symname = (char*)UnnamedSymbolsTable.Buf() + os;
            }
            
            NewType = NewDesc = 0; // New symbol type

            // Value = address
            Value = OldSym.st_value;

            // Section
            if (OldSym.st_shndx == SHN_UNDEF) {
               NewSection = 0; // External
            }
            else if ((int16_t)(OldSym.st_shndx) == SHN_ABS) {
               NewType |= MAC_N_ABS; // Absolute symbol
               NewDesc |= MAC_N_NO_DEAD_STRIP;
               NewSection = 0; 
            }
            else if ((int16_t)(OldSym.st_shndx) == SHN_COMMON) {
               NewType |= MAC_N_ABS; // Common symbol. Translate to abs and make warning
               NewDesc |= MAC_N_NO_DEAD_STRIP;
               NewSection = 0; 
               err.submit(1053, symname); // Warning. Common symbol
            }            
            else if (OldSym.st_shndx >= this->NSections) {
               err.submit(2036, OldSym.st_shndx); // Special/unknown section index or out of range
            }
            else {
               // Normal section index. 
               // Look up in section index translation table and add 1 because it is 1-based
               NewSection = NewSectIndex[OldSym.st_shndx] + 1;
               // Value must be absolute address. Add section address
               Value += NewSectOffset[OldSym.st_shndx];
            }

            // Convert binding/storage class
            switch (binding) {
            case STB_LOCAL:   // Local
               Scope = S_LOCAL;
               if (!(NewType & MAC_N_ABS)) NewType |= MAC_N_SECT;
               break;

            case STB_GLOBAL:
               if (NewSection || (NewType & MAC_N_ABS)) {
                  // Public
                  Scope = S_PUBLIC;
                  NewType |= MAC_N_EXT;
                  if (!(NewType & MAC_N_ABS)) NewType |= MAC_N_SECT;
               }
               else {
                  // External
                  Scope = S_EXTERNAL;
                  NewType |= MAC_N_EXT;
               }
               NewDesc |= MAC_REF_FLAG_UNDEFINED_NON_LAZY;
               break;

            case STB_WEAK:
               if (NewSection) {
                  // Weak public
                  Scope = S_PUBLIC;
                  NewType |= MAC_N_EXT | MAC_N_SECT;
                  NewDesc |= MAC_N_WEAK_DEF;
                  if (this->WordSize == 32) {
                     err.submit(1051, symname);  // Weak public only allowed in coalesced section of MachO-32
                  }
               }
               else {
                  // Weak external
                  Scope = S_EXTERNAL;
                  NewType |= MAC_N_EXT;
                  NewDesc |= MAC_N_WEAK_REF;
               }
               break;

            default:
               Scope = S_LOCAL;
               err.submit(2037, binding); // Other. Not supported
            }

            // Make record depending on type
            switch (type) {
            case STT_OBJECT: case STT_NOTYPE:
               // Data object
               break;

            case STT_GNU_IFUNC:
               err.submit(1063); // Warning: Gnu indirect function cannot be converted
               // continue in next case:

            case STT_FUNC:
               // Function
               break;

            case STT_FILE: 
               // File name record. Ignore
               continue;

            case STT_SECTION:
               // Section name record. (Has no name)
               break;

            case STT_COMMON:
            default:
               err.submit(2038, type); // Symbol type not supported
               continue;
            }

            // Discard unused symbols
            if (Scope != S_PUBLIC && !OldSymbolUsed[OldSymI]) continue;

            // Store new symbol record in the appropriate table
            if (Scope > 2) err.submit(9000);

            NewSymTab[Scope].AddSymbol(OldSymI, symname, NewType, NewDesc, NewSection, Value);

            // Store scope in OldSymbolScope
            if (OldSymI < NumOldSymbols) {
               OldSymbolScope[OldSymI] = Scope;
            }
         } // End OldSymI loop
      }
   } // End search for symbol table
   if (FoundSymTab == 0) err.submit(2034); // Symbol table not found
   if (FoundSymTab  > 1) err.submit(1032); // More than one symbol table found
}


template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation,
          class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt>
void CELF2MAC<ELFSTRUCTURES,MACSTRUCTURES>::Elf2MacRelocations(Elf32_Shdr & OldRelHeader, MAC_section_32 & NewHeader, uint32_t NewRawDataOffset, uint32_t oldsec) {
   // Convert 32-bit relocations from ELF to MAC
   // (This function has two template instances, only the 32-bit instance is used)

   Elf32_Rela OldRelocation;  // Old relocation table entry
   MAC_scattered_relocation_info scat; // Scattered relocation entry
   memset(&scat, 0, sizeof(scat));

   // Get pointer to old relocation table
   int8_t * reltab = this->Buf() + OldRelHeader.sh_offset;
   int8_t * reltabend = reltab + OldRelHeader.sh_size;

   // Get entry size
   uint32_t entrysize = (uint32_t)OldRelHeader.sh_entsize;
   uint32_t expectedentrysize = (OldRelHeader.sh_type == SHT_REL) ? sizeof(Elf32_Rel) : sizeof(Elf32_Rela);
   if (entrysize < expectedentrysize) {err.submit(2033); entrysize = expectedentrysize;}

   // File pointer to relocations
   NewHeader.reloff = NewRelocationTab.GetNumEntries()*sizeof(MAC_relocation_info);  // Offset to first relocation table added later

   // Loop through relocation table entries
   for (; reltab < reltabend; reltab += entrysize) {

      // Copy relocation entry with or without addend
      OldRelocation.r_addend = 0;
      memcpy(&OldRelocation, reltab, entrysize);

      // Find inline addend
      uint32_t InlinePosition = (uint32_t)(NewRawDataOffset + OldRelocation.r_offset);

      // Check that address is valid
      if (InlinePosition >= this->GetDataSize()) {
         // Address is invalid
         err.submit(2032);  break;
      }

      // Pointer to inline addend
      int32_t * piaddend = (int32_t*)(NewRawData.Buf() + InlinePosition);

      // Add old addend if any
      *piaddend += (int32_t)OldRelocation.r_addend;

      // Define relocation parameters
      uint32_t  r_address = 0;      // section-relative offset to relocation source
      uint32_t  r_symbolnum = 0;    // symbol index if r_extern == 1 or section ordinal if r_extern == 0
      // uint32_t  r_value = 0;        // value of relocation target
      // int     r_scattered = 0;    // use scattered relocation
      int     r_pcrel = 0;        // self relative
      int     r_length = 2;       // size of source: 0=byte, 1=2 bytes, 2=4 bytes, 3=8 bytes
      int     r_extern = 0;       // public or external
      int     r_type = 0;         // if not 0, machine specific relocation type
      int     Scope = 0;          // Symbol scope: 0 = local, 1 = public, 2 = external

      // source offset
      r_address = (uint32_t)OldRelocation.r_offset;

      // target scope
      if (OldRelocation.r_sym < NumOldSymbols) {
         Scope = OldSymbolScope[OldRelocation.r_sym];
      }

      // Get r_extern: 0 = local target referenced by address,
      //               1 = external symbol referenced by symbol table index
      switch (Scope) {
      case S_LOCAL:  // Local target must be referenced by address
         r_extern = 0;  break;

      case S_PUBLIC:  // Public target is optionally referenced by index or by address
         r_extern = 0;
         // r_extern = 1; is not allowed!
         break;

      case S_EXTERNAL:  // External target is always referenced by index
         r_extern = 1;  break;
      }

      // Get zero-based index into NewSymTab[Scope]
      int newindex = NewSymTab[Scope].TranslateIndex(OldRelocation.r_sym);
      if (newindex < 0) {
         // Symbol not found or wrong type
         err.submit(2031); 
         break;
      }
      if (r_extern) {
         // r_symbolnum is zero based index into combined symbol tables.
         // Add number of entries in preceding NewSymTab tables to index 
         // into NewSymTab[Scope]
         r_symbolnum = newindex + NumSymbols[Scope];
      }
      else {
         // r_extern = 0. r_symbolnum = target section
         r_symbolnum = NewSymTab[Scope][newindex].n_sect;

         // Absolute address of target stored inline in source
         *piaddend  += (uint32_t)NewSymTab[Scope][newindex].n_value;
      }

      // Get relocation type and fix addend
      switch(OldRelocation.r_type) {
      case R_386_NONE:    // Ignored
         continue;

      case R_386_IRELATIVE:
         err.submit(1063); // Warning: Gnu indirect function cannot be converted
         // continue in next case?:
      case R_386_32:       // 32-bit absolute virtual address
         r_type  = MAC32_RELOC_VANILLA;  
         break;

      case R_386_PC32:   // 32-bit self-relative
         r_type  = MAC32_RELOC_VANILLA;  
         r_pcrel = 1;
         // Mach-O 32 bit format requires that self-relative addresses must have
         // self-relative values already before relocation. Therefore
         // the source address is subtracted.
         // (The PC reference point is the end of the source = start
         // of source + 4, but ELF files have the same offset so no further
         // correction is needed when converting from ELF file).

         // !! ToDo: Self-relative relocations plus offset to local symbol in a different section 
         // sometimes causes problems in Mac linker, perhaps because it fails to determine 
         // correctly which section the target is in. Use a relocation with a reference point
         // instead. This probably occurs only in assembler-coded self-relative 32-bit code.
         // (Use asmlib A_strtoupper and A_strcspn as test cases - they fail if dummy data
         // at the end of .data section is removed)
         *piaddend -= r_address + (uint32_t)NewHeader.addr;
         break;

      case R_UNSUPPORTED_IMAGEREL:  // 32-bit image-relative
         // This occurs only when converting from COFF (via ELF)
         // Needs scattered relocation entry
         scat.r_address   = r_address;
         scat.r_length    = 2;
         scat.r_pcrel     = 0;
         scat.r_scattered = 1;
         scat.r_type      = MAC32_RELOC_SECTDIFF;
         scat.r_value     = r_symbolnum;
         // Store first entry of scattered pair
         NewRelocationTab.Push(&scat, sizeof(scat));
         NewHeader.nreloc++;
         // Make subtractor record for image base
         scat.r_type      = MAC32_RELOC_PAIR;
         scat.r_value     = GetImagebaseSymbol();
         // Store second entry of scattered pair
         NewRelocationTab.Push(&scat, sizeof(scat));
         NewHeader.nreloc++;
         continue;

      case R_386_GOT32: case R_386_GLOB_DAT: case R_386_GOTOFF: case R_386_GOTPC:
         // Global offset table
         err.submit(2042);     // cannot convert position-independent code
         err.ClearError(2042); // report this error only once
         r_type = 0;
         break;

      case R_386_PLT32: case R_386_JMP_SLOT: 
         // procedure linkage table
         err.submit(2043);     // cannot convert import table
         err.ClearError(2043); // report this error only once
         r_type = 0;
         break;

      default:      // Unknown or unsupported relocation method
         err.submit(2030, OldRelocation.r_type); 
         r_type = 0;  break;
      }

      if (!r_pcrel) {
         // Warn for position dependent code. 
         // This warning is currently turned off in error.cpp.
         err.submit(1050, this->SymbolName(OldRelocation.r_sym)); 
         // Write this error only once
         err.ClearError(1050);
      }

      // Make relocation entry
      MAC_relocation_info rel;
      memset(&rel, 0, sizeof(rel));

      // Make non-scattered relocation entry
      rel.r_address   = r_address; 
      rel.r_symbolnum = r_symbolnum; 
      rel.r_pcrel     = r_pcrel; 
      rel.r_length    = r_length; 
      rel.r_extern    = r_extern; 
      rel.r_type      = r_type; 

      // Store relocation entry
      NewRelocationTab.Push(&rel, sizeof(rel));
      NewHeader.nreloc++;

      // Remember that symbol is used
      // if (SymbolsUsed && OldRelocation.r_type && NewRelocation.r_symbolnum < ?) {
      // SymbolsUsed[NewRelocation.r_symbolnum]++;}

   } // End of relocations loop
}

template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation,
          class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt>
void CELF2MAC<ELFSTRUCTURES,MACSTRUCTURES>::Elf2MacRelocations(Elf64_Shdr & OldRelHeader, MAC_section_64 & NewHeader, uint32_t NewRawDataOffset, uint32_t oldsec) {
   // Convert 64-bit relocations from ELF to MAC
   // (This function has two template instances, only the 64-bit instance is used)

   // Make relocation entry for dummy subtractor
   MAC_relocation_info relsub;
   memset(&relsub, 0, sizeof(relsub));

   Elf64_Rela OldRelocation;  // Old relocation table entry

   // Get pointer to old relocation table
   int8_t * reltab = this->Buf() + OldRelHeader.sh_offset;
   int8_t * reltabend = reltab + OldRelHeader.sh_size;

   // Get entry size
   uint32_t entrysize = (uint32_t)OldRelHeader.sh_entsize;
   uint32_t expectedentrysize = (OldRelHeader.sh_type == SHT_REL) ? sizeof(Elf64_Rel) : sizeof(Elf64_Rela);
   if (entrysize < expectedentrysize) {err.submit(2033); entrysize = expectedentrysize;}

   // File pointer to relocations
   NewHeader.reloff = NewRelocationTab.GetNumEntries()*sizeof(MAC_relocation_info);  // Offset to first relocation table added later

   // Loop through relocation table entries
   for (; reltab < reltabend; reltab += entrysize) {

      // Copy relocation entry with or without addend
      OldRelocation.r_addend = 0;
      memcpy(&OldRelocation, reltab, entrysize);

      // Find inline addend
      uint32_t InlinePosition = (uint32_t)(NewRawDataOffset + OldRelocation.r_offset);

      // Check that address is valid
      if (InlinePosition >= this->GetDataSize()) {
         // Address is invalid
         err.submit(2032);
         break;
      }

      // Pointer to inline addend
      int32_t * piaddend = (int32_t*)(NewRawData.Buf() + InlinePosition);

      // Add old addend if any
      *piaddend += (uint32_t)OldRelocation.r_addend;

      // Define relocation parameters
      uint32_t  r_address = 0;      // section-relative offset to relocation source
      uint32_t  r_symbolnum = 0;    // symbol index if r_extern == 1 or section ordinal if r_extern == 0
      // uint32_t  r_value = 0;        // value of relocation target
      // int     r_scattered = 0;    // scattered relocations not used in 64 bit
      int     r_pcrel = 0;        // self relative
      int     r_length = 2;       // size of source: 0=byte, 1=2 bytes, 2=4 bytes, 3=8 bytes
      int     r_extern = 0;       // public or external
      int     r_type = 0;         // if not 0, machine specific relocation type
      int     Scope = 0;          // Symbol scope: 0 = local, 1 = public, 2 = external

      // source offset
      r_address = (uint32_t)OldRelocation.r_offset;

      // target scope
      if (OldRelocation.r_sym < NumOldSymbols) {
         Scope = OldSymbolScope[OldRelocation.r_sym];
      }

      // Get r_extern: 0 = local target referenced by address,
      //               1 = public or external symbol referenced by symbol table index
      switch (Scope) {
      case S_LOCAL:   // Local target
         // r_extern = 0;  // Local target must be referenced by address
         // Note: the description in reloc.h says that local targets are addressed
         // relative to any preceding public target. If there is no preceding label
         // then referenced by address in the segment. However, the Gnu compiler
         // uses reference to a local symbol and sets r_extern = 1 to indicate that
         // it refers to a symbol record, not to an address. I have chosen to use the
         // latter method because it is simpler, though undocumented.
         r_extern = 1;
         break;

      case S_PUBLIC:  // Public target is optionally referenced by index or by address
         r_extern = 1;
         break;

      case S_EXTERNAL:  // External target is always referenced by index
         r_extern = 1;  
         break;
      }

      // Get zero-based index into NewSymTab[Scope]
      int newindex = NewSymTab[Scope].TranslateIndex(OldRelocation.r_sym);
      if (newindex < 0) {
         // Symbol not found or wrong type
         err.submit(2031); 
         break;
      }

      // r_symbolnum is zero based index into combined symbol tables.
      // Add number of entries in preceding NewSymTab tables to index 
      // into NewSymTab[Scope]
      r_symbolnum = newindex + NumSymbols[Scope];

      // Get relocation type and fix addend, 64 bit
      switch(OldRelocation.r_type) {
      case R_X86_64_NONE:    // Ignored
         continue;

      case R_X86_64_64:      
         // 64-bit absolute virtual address
         r_type  = MAC64_RELOC_UNSIGNED;  r_length = 3;
         break;

      case R_X86_64_IRELATIVE:
         err.submit(1063); // Warning: Gnu indirect function cannot be converted
         // continue in next case?:
      case R_X86_64_32: case R_X86_64_32S: {
         // 32-bit absolute virtual address
         // Note: The linker doesn't accept a 32-bit absolute address
         // Make address relative to the image base, and add the value of the image base to compensate
         if (cmd.ImageBase == 0) {
            // Default image base if not specified
            cmd.ImageBase = 0x400000;
         }

         // Make subtractor relocation entry for image base
         relsub.r_address   = r_address;
         relsub.r_symbolnum = GetImagebaseSymbol();
         relsub.r_length    = 2; 
         relsub.r_extern    = 1; 
         relsub.r_type      = MAC64_RELOC_SUBTRACTOR; 

         NewRelocationTab.Push(&relsub, sizeof(relsub));
         NewHeader.nreloc++;
         // Add image base to compensate for subtracted image base
         *piaddend += cmd.ImageBase;
         
         // Now we can add the address we really want:
         r_type  = MAC64_RELOC_UNSIGNED;  
         r_length = 2;
         
         // Warn that image base must be set to the specified value
         char ImageBaseHex[32];
         sprintf(ImageBaseHex, "%X", cmd.ImageBase); // write value as hexadecimal
         err.submit(1300, ImageBaseHex);  err.ClearError(1300);
         break;}       
 
      case R_X86_64_PC32:   // 32-bit self-relative
         r_type  = MAC64_RELOC_BRANCH;
         // MAC64_RELOC_SIGNED does the same, but the linker complains if external symbol
         r_length = 2;  
         r_pcrel = 1;
         // Difference between EIP-relative and self-relative relocation = size of address field
         // Adjust inline addend for different relocation method:
         *piaddend += 4;
         break;

      case R_UNSUPPORTED_IMAGEREL:  // 32-bit image-relative
         // This occurs only when converting from COFF (via ELF)
         // Make subtractor relocation entry for image base
         relsub.r_address   = r_address;
         relsub.r_symbolnum = GetImagebaseSymbol();
         relsub.r_length    = 2; 
         relsub.r_extern    = 1; 
         relsub.r_type      = MAC64_RELOC_SUBTRACTOR; 

         NewRelocationTab.Push(&relsub, sizeof(relsub));
         NewHeader.nreloc++;
         
         // Second record adds the target address
         r_type  = MAC64_RELOC_UNSIGNED;  
         r_length = 2;
         break;

      case R_X86_64_GLOB_DAT: case R_X86_64_GOTPCREL:
         // Create 64-bit GOT entry??
         r_type  = MAC64_RELOC_GOT;  r_length = 2;
         break;         

      case R_X86_64_GOT32:
         // 32-bit GOT entry
         err.submit(2042);     // cannot convert 32-bit GOT
         err.ClearError(2042); // report this error only once
         r_type = 0;
         break;

      case R_X86_64_PLT32: case R_X86_64_JUMP_SLOT: 
         // procedure linkage table
         err.submit(2043);     // cannot convert import table
         err.ClearError(2043); // report this error only once
         r_type = 0;
         break;

      case R_X86_64_COPY: case R_X86_64_RELATIVE:
      default:      // Unknown or unsupported relocation method
         err.submit(2030, OldRelocation.r_type); 
         r_type = 0;  break;
      }

      // Make relocation entry
      MAC_relocation_info rel;
      memset(&rel, 0, sizeof(rel));

      // Make non-scattered relocation entry
      rel.r_address   = r_address; 
      rel.r_symbolnum = r_symbolnum; 
      rel.r_pcrel     = r_pcrel; 
      rel.r_length    = r_length; 
      rel.r_extern    = r_extern; 
      rel.r_type      = r_type; 

      // Store relocation entry
      NewRelocationTab.Push(&rel, sizeof(rel));
      NewHeader.nreloc++;

      // Remember that symbol is used
      // if (SymbolsUsed && OldRelocation.r_type && NewRelocation.r_symbolnum < ?) {
      // SymbolsUsed[NewRelocation.r_symbolnum]++;}

   } // End of relocations loop
}

template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation,
          class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt>
void CELF2MAC<ELFSTRUCTURES,MACSTRUCTURES>::MakeSections() {
   // Convert subfunction: Make sections and relocation tables
   uint32_t oldsec;                  // Section number in old file
   uint32_t relsec;                  // Relocation section in old file
   TMAC_section NewHeader;         // New section header
   TELF_SectionHeader OldHeader;   // Old section header
   TELF_SectionHeader OldRelHeader;// Old relocation section header
   uint32_t NewVirtualAddress = 0;   // Virtual address of new section
   uint32_t NewRawDataOffset = 0;    // Offset into NewRawData of section. 
   // NewRawDataOffset is different from NewVirtualAddress if alignment of sections in 
   // the object file is different from alignment of sections in memory

   // Count cumulative number of symbols in each scope
   NumSymbols[0] = 0;
   NumSymbols[1] = NumSymbols[0] + NewSymTab[0].GetNumEntries();
   NumSymbols[2] = NumSymbols[1] + NewSymTab[1].GetNumEntries();
   NumSymbols[3] = NumSymbols[2] + NewSymTab[2].GetNumEntries();
   if (NumSymbols[3] >= 0x1000000) err.submit(2051); // Too many symbols, max = 2^24

   NewSectHeadOffset = ToFile.GetDataSize();

   // Second loop through old sections
   for (oldsec = 0; oldsec < this->NSections; oldsec++) {

      // Copy old header for convenience
      OldHeader = this->SectionHeaders[oldsec];

      if (OldHeader.sh_size == 0) {
         // Remove empty section
         // The linker has a bug with empty sections
         continue;
      }

      // Search for program data sections only
      if (OldHeader.sh_type == SHT_PROGBITS || OldHeader.sh_type == SHT_NOBITS) {

         // Reset new section header
         memset(&NewHeader, 0, sizeof(NewHeader));

         // Section name
         const char * sname = "";
         uint32_t namei = OldHeader.sh_name;
         if (namei >= this->SecStringTableLen) err.submit(2112);
         else sname = this->SecStringTable + namei;

         // Translate section name and truncate to 16 characters
         if (!stricmp(sname,".text") || !stricmp(sname,"_text")) {
            strcpy(NewHeader.sectname, "__text");
            strcpy(NewHeader.segname,  "__TEXT");
         }
         else if (!stricmp(sname,".data") || !stricmp(sname,"_data")) {
            strcpy(NewHeader.sectname, "__data");
            strcpy(NewHeader.segname,  "__DATA");
         }
         else if (!strnicmp(sname+1,"bss", 3)) {
            strcpy(NewHeader.sectname, "__bss");
            strcpy(NewHeader.segname,  "__DATA");
         }
         else if (!strnicmp(sname+1,"const", 5) || !strnicmp(sname+1,"rodata", 6)) {
            strcpy(NewHeader.sectname, "__const");
            strcpy(NewHeader.segname,  "__DATA");
         }
         else if (!strnicmp(sname, ELF_CONSTRUCTOR_NAME, 5)) {
            // Constructors
            strcpy(NewHeader.sectname, MAC_CONSTRUCTOR_NAME);
            strcpy(NewHeader.segname,  "__DATA");
            NewHeader.flags = MAC_S_MOD_INIT_FUNC_POINTERS;
         }
         else if (OldHeader.sh_flags & SHF_EXECINSTR) {
            // Other code section
            if (strlen(NewHeader.sectname) > 16) err.submit(1040, NewHeader.sectname); // Warning: name truncated
            strncpy(NewHeader.sectname, sname, 16);
            strcpy(NewHeader.segname,  "__TEXT");
         }
         else {
            // Other data section. Truncate name to 16 characters
            if (strlen(NewHeader.sectname) > 16) err.submit(1040, NewHeader.sectname); // Warning: name truncated
            strncpy(NewHeader.sectname, sname, 16);
            strcpy(NewHeader.segname,  "__DATA");
         }
         if (NewHeader.sectname[0] == '.') {
            // Make sure name begins with '_'
            NewHeader.sectname[0] = '_';
         }

         // Raw data
         NewHeader.size = OldHeader.sh_size;  // section size in file

         // File  to raw data for section
         NewHeader.offset = NewRawData.GetDataSize() + RawDataOffset;

         if (OldHeader.sh_size && OldHeader.sh_type != SHT_NOBITS) { // Not for .bss segment
            // Copy raw data
            NewRawDataOffset = NewRawData.Push(this->Buf()+(uint32_t)OldHeader.sh_offset, (uint32_t)OldHeader.sh_size); 
            NewRawData.Align(4);
         }

         // Section flags
         if (OldHeader.sh_flags & SHF_EXECINSTR) {
            NewHeader.flags |= MAC_S_ATTR_PURE_INSTRUCTIONS | MAC_S_ATTR_SOME_INSTRUCTIONS;
         }
         else if (OldHeader.sh_type == SHT_NOBITS) {
            NewHeader.flags |= MAC_S_ZEROFILL;              // .bss segment
         }

         // Alignment
         NewHeader.align = FloorLog2((uint32_t)OldHeader.sh_addralign);
         if (NewHeader.align > 12) NewHeader.align = 12;   // What is the limit for highest alignment?
         int AlignBy = 1 << NewHeader.align;

         // Align memory address
         NewVirtualAddress = (NewVirtualAddress + AlignBy - 1) & -AlignBy;

         // Virtual memory address of new section 
         NewHeader.addr = NewVirtualAddress; 
         NewVirtualAddress += (uint32_t)OldHeader.sh_size;

         // Find relocation table for this section by searching through all sections
         for (relsec = 1; relsec < this->NSections; relsec++) {

            // Get section header
            OldRelHeader = this->SectionHeaders[relsec];            
            
            // Check if this is a relocations section referring to oldsec
            if ((OldRelHeader.sh_type == SHT_REL || OldRelHeader.sh_type == SHT_RELA) // if section is relocation
            && OldRelHeader.sh_info == oldsec) { // and if section refers to current section
               Elf2MacRelocations(OldRelHeader, NewHeader, NewRawDataOffset, oldsec);
            }
         } // End of search for relocation table

         // Align raw data for next section
         NewRawData.Align(4);

         // Fix v. 2.14: adjust NewVirtualAddress to match above alignment
         NewVirtualAddress = (NewVirtualAddress + 3) & MInt(-4);

         // Store section header in file
         ToFile.Push(&NewHeader, sizeof(NewHeader));

      } // End of if section has program data

   } // End of loop through old sections

} // End of function MakeSections


template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation,
          class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt>
void CELF2MAC<ELFSTRUCTURES,MACSTRUCTURES>::FindUnusedSymbols() {
   // Check if symbols used, remove unused symbols

   // Allocate table OldSymbolScope and OldSymbolUsed
   NumOldSymbols = this->SymbolTableEntries;
   if (NumOldSymbols > 0 && NumOldSymbols < 0x1000000) {
      OldSymbolScope.SetNum(NumOldSymbols);
      OldSymbolScope.SetZero();
      OldSymbolUsed.SetNum(NumOldSymbols);
      OldSymbolUsed.SetZero();
   }

   // Loop through section headers
   for (uint32_t sc = 0; sc < this->NSections; sc++) {
      uint32_t entrysize = uint32_t(this->SectionHeaders[sc].sh_entsize);
      // printf("\n%2i Name: %-18s ", sc, SecStringTable + sheader.sh_name);

      if ((this->SectionHeaders[sc].sh_type==SHT_REL || this->SectionHeaders[sc].sh_type==SHT_RELA)) {
         // Relocation list
         int8_t * reltab = this->Buf() + uint32_t(this->SectionHeaders[sc].sh_offset);
         int8_t * reltabend = reltab + uint32_t(this->SectionHeaders[sc].sh_size);
         uint32_t expectedentrysize = this->SectionHeaders[sc].sh_type == SHT_RELA ? 
            sizeof(TELF_Relocation) :              // Elf32_Rela, Elf64_Rela
            sizeof(TELF_Relocation) - this->WordSize/8;  // Elf32_Rel,  Elf64_Rel
         if (entrysize < expectedentrysize) {err.submit(2033); entrysize = expectedentrysize;}

         // Loop through entries
         for (; reltab < reltabend; reltab += entrysize) {
            int isymbol = ((TELF_Relocation*)reltab)->r_sym;
            // printf("\n>SymbolUsed: %i, Name: %s",isymbol,SymbolName(isymbol)); 
            // Remember symbol used
            OldSymbolUsed[isymbol]++;
         }
      }
   }
}

template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation,
          class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt>
void CELF2MAC<ELFSTRUCTURES,MACSTRUCTURES>::MakeBinaryFile() {
   // Convert subfunction: Putting sections together
   // File header, segment command and section headers have been inserted.
   int i;

   // Update segment header for segment size in file
   ((TMAC_segment_command*)(ToFile.Buf()+CommandOffset))->filesize = NewRawData.GetDataSize();

   // Make symbol table command
   MAC_symtab_command symtab;
   memset(&symtab, 0, sizeof(symtab));
   symtab.cmd = MAC_LC_SYMTAB;
   symtab.cmdsize = sizeof(symtab);
   // symoff, nsyms, stroff, strsize inserted later
   // Store symtab command
   NewSymtabOffset = ToFile.Push(&symtab, sizeof(symtab));

   // Make MAC_dysymtab_command command
   MAC_dysymtab_command dysymtab;
   memset(&dysymtab, 0, sizeof(dysymtab));
   dysymtab.cmd        = MAC_LC_DYSYMTAB;
   dysymtab.cmdsize    = sizeof(dysymtab);
   dysymtab.ilocalsym  = 0;                            // index to local symbols
   dysymtab.nlocalsym  = NewSymTab[0].GetNumEntries(); // number of local symbols 
   dysymtab.iextdefsym = dysymtab.nlocalsym;           // index to externally defined symbols
   dysymtab.nextdefsym = NewSymTab[1].GetNumEntries(); // number of externally defined symbols 
   dysymtab.iundefsym  = dysymtab.iextdefsym + dysymtab.nextdefsym;	// index to public symbols
   dysymtab.nundefsym  = NewSymTab[2].GetNumEntries(); // number of public symbols
   // Store MAC_dysymtab_command command
   ToFile.Push(&dysymtab, sizeof(dysymtab));

   // Store section data
   uint32_t Current = ToFile.Push(NewRawData.Buf(), NewRawData.GetDataSize());
   if (Current != RawDataOffset) err.submit(9000);

   ToFile.Align(4);

   // Store relocation tables
   uint32_t Reltabs = ToFile.Push(NewRelocationTab.Buf(), NewRelocationTab.GetDataSize());

   // Initialize new string table. First string is empty
   NewStringTable.Push(0, 1);

   // Store symbol tables and make string table
   // Tables are not sorted alphabetically yet. This will be done subsequently
   // by CMAC2MAC
   uint32_t Symtabs = ToFile.GetDataSize();
   uint32_t NumSyms = 0;
   for (i = 0; i < 3; i++) {
      NumSyms += NewSymTab[i].GetNumEntries();
      NewSymTab[i].StoreList(&ToFile, &NewStringTable);
   }

   // Store string table
   uint32_t StringTab = ToFile.Push(NewStringTable.Buf(), NewStringTable.GetDataSize());

   // Set missing values in file header
   ((TMAC_header*)ToFile.Buf())->sizeofcmds = RawDataOffset - sizeof(TMAC_header);

   // Adjust relocation offsets in section headers
   TMAC_section* sectp = (TMAC_section*)(ToFile.Buf() + NewSectHeadOffset);
   for (i = 0; i < NumSectionsNew; i++, sectp++) {
      sectp->reloff += Reltabs;
   }

   // Set missing symoff, nsyms, stroff, strsize in symtab command
   MAC_symtab_command * symtabp = (MAC_symtab_command*)(ToFile.Buf() + NewSymtabOffset);
   symtabp->symoff  = Symtabs;
   symtabp->nsyms   = NumSyms;
   symtabp->stroff  = StringTab;
   symtabp->strsize = NewStringTable.GetDataSize();
}

template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation,
          class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt>
int CELF2MAC<ELFSTRUCTURES,MACSTRUCTURES>::GetImagebaseSymbol() {
   // Get symbol table index of __mh_execute_header = image base
   // Create this symbol table entry if it doesn't exist

   const char * ImageBaseName = "__mh_execute_header";
   static int ImagebaseSymbol = -1;

   if (ImagebaseSymbol >= 0) {
      // Found previously
      return ImagebaseSymbol;
   }
   // Search for name among external symbols
   int index2 = NewSymTab[2].Search(ImageBaseName);
   if (index2 >= 0) {
      // found 
      ImagebaseSymbol = index2 + NumSymbols[2];
      return ImagebaseSymbol;
   }
   // Not found. Create symbol
   NewSymTab[2].AddSymbol(NumOldSymbols, ImageBaseName, MAC_N_EXT, 0, 0, 0);
   ImagebaseSymbol = NewSymTab[2].TranslateIndex(NumOldSymbols) + NumSymbols[2];
   NumSymbols[3]++;
   return ImagebaseSymbol;
}


// Make template instances for 32 and 64 bits
template class CELF2MAC<ELF32STRUCTURES,MAC32STRUCTURES>;
template class CELF2MAC<ELF64STRUCTURES,MAC64STRUCTURES>;