1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
|
/**************************** cof2elf.cpp ********************************
* Author: Agner Fog
* Date created: 2006-07-20
* Last modified: 2022-05-21
* Project: objconv
* Module: cof2elf.cpp
* Description:
* Module for converting PE/COFF file to ELF file
*
* Copyright 2006-2022 GNU General Public License http://www.gnu.org/licenses
*****************************************************************************/
#include "stdafx.h"
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
CCOF2ELF<ELFSTRUCTURES>::CCOF2ELF () {
// Constructor
memset(this, 0, sizeof(*this));
}
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CCOF2ELF<ELFSTRUCTURES>::Convert() {
// Do the conversion
NumSectionsNew = 5; // Number of sections generated so far
// Allocate variable size buffers
MaxSectionsNew = NumSectionsNew + 2 * NSections; // Max number of sections needed
NewSections.SetNum(MaxSectionsNew); // Allocate buffers for each section
NewSections.SetZero(); // Initialize
NewSectionHeaders.SetNum(MaxSectionsNew); // Allocate array for temporary section headers
NewSectionHeaders.SetZero(); // Initialize
NewSectIndex.SetNum(NSections); // Array for translating old section index (0-based) to new section index
NewSectIndex.SetZero(); // Initialize
NewSymbolIndex.SetNum(NumberOfSymbols); // Array of new symbol indices
NewSymbolIndex.SetZero(); // Initialize
// Call the subfunctions
ToFile.SetFileType(FILETYPE_ELF); // Set type of to file
MakeSegments(); // Make segment headers and code/data segments
MakeSymbolTable(); // Symbol table and string tables
MakeRelocationTables(); // Relocation tables
MakeBinaryFile(); // Putting sections together
*this << ToFile; // Take over new file buffer
}
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CCOF2ELF<ELFSTRUCTURES>::MakeSegments() {
// Convert subfunction: Make segment headers and code/data segments
TELF_SectionHeader NewSecHeader; // New section header
int oldsec; // Section index in old file
int newsec; // Section index in new file
uint32_t SecNameIndex; // Section name index into shstrtab
char const * SecName; // Name of new section
const int WordSize = sizeof(NewFileHeader.e_entry) * 8; // word size 32 or 64 bits
// Special segment names
static const char * SpecialSegmentNames[] = {
"Null", ".symtab", ".shstrtab", ".strtab", ".stabstr"
};
// Indexes to these are:
symtab = 1; // Symbol table section number
shstrtab = 2; // Section name string table section number
strtab = 3; // Object name string table section number
stabstr = 4; // Debug string table section number
// Number of special segments = number of names in SpecialSegmentNames:
const int NumSpecialSegments = sizeof(SpecialSegmentNames)/sizeof(SpecialSegmentNames[0]);
// Make first section header string table entry empty
NewSections[shstrtab].PushString("");
// Loop through special sections, except the first Null section:
for (newsec = 0; newsec < NumSpecialSegments; newsec++) {
// Put data into new section header:
// Initialize to zero
memset(&NewSecHeader, 0, sizeof(NewSecHeader));
if (newsec > 0) {
// Put name into section header string table
SecName = SpecialSegmentNames[newsec];
SecNameIndex = NewSections[shstrtab].PushString(SecName);
// Put name into new section header
NewSecHeader.sh_name = SecNameIndex;
}
// Put section header into temporary buffer
NewSectionHeaders[newsec] = NewSecHeader;
}
// Put type, flags, etc. into special segments:
NewSectionHeaders[symtab] .sh_type = SHT_SYMTAB;
NewSectionHeaders[symtab] .sh_entsize = sizeof(TELF_Symbol);
NewSectionHeaders[symtab] .sh_link = strtab;
NewSectionHeaders[shstrtab].sh_type = SHT_STRTAB;
NewSectionHeaders[shstrtab].sh_flags = SHF_STRINGS;
NewSectionHeaders[shstrtab].sh_addralign = 1;
NewSectionHeaders[strtab] .sh_type = SHT_STRTAB;
NewSectionHeaders[strtab] .sh_flags = SHF_STRINGS;
NewSectionHeaders[strtab] .sh_addralign = 1;
NewSectionHeaders[stabstr] .sh_type = SHT_STRTAB;
NewSectionHeaders[stabstr] .sh_flags = SHF_STRINGS;
NewSectionHeaders[stabstr] .sh_addralign = 1;
if (newsec != NumSectionsNew) {
// Check my program for internal consistency
// If you get this error then change the value of NumSectionsNew in
// the constructor CCOF2ELF::CCOF2ELF to equal the number of entries in
// SpecialSegmentNames, including the Null segment
err.submit(9000);
}
// Loop through source file sections
for (oldsec = 0; oldsec < this->NSections; oldsec++) {
// Pointer to old section header
SCOFF_SectionHeader * SectionHeader = &this->SectionHeaders[oldsec];
// Get section name
SecName = this->GetSectionName(SectionHeader->Name);
if (strnicmp(SecName,"debug",5) == 0 || strnicmp(SecName+1,"debug",5) == 0) {
// This is a debug section
if (cmd.DebugInfo == CMDL_DEBUG_STRIP) {
// Remove debug info
NewSectIndex[oldsec] = COFF_SECTION_REMOVE_ME; // Remember that this section is removed
cmd.CountDebugRemoved();
continue;
}
else if (cmd.InputType != cmd.OutputType) {
err.submit(1029); // Warn that debug information is incompatible
}
}
if (strnicmp(SecName,".drectve",8) == 0 || (SectionHeader->Flags & (PE_SCN_LNK_INFO | PE_SCN_LNK_REMOVE))) {
// This is a directive section
if (cmd.ExeptionInfo) {
// Remove directive section
NewSectIndex[oldsec] = COFF_SECTION_REMOVE_ME; // Remember that this section is removed
cmd.CountExceptionRemoved();
continue;
}
}
if (strnicmp(SecName,".pdata", 6) == 0) {
// This section has exception information
if (cmd.ExeptionInfo == CMDL_EXCEPTION_STRIP) {
// Remove exception info
NewSectIndex[oldsec] = COFF_SECTION_REMOVE_ME; // Remember that this section is removed
cmd.CountExceptionRemoved();
continue;
}
else if (cmd.InputType != cmd.OutputType) {
err.submit(1030); // Warn that exception information is incompatible
}
}
if (strnicmp(SecName,".cormeta", 8) == 0) {
// This is a .NET Common Language Runtime section
err.submit(2014);
}
if (strnicmp(SecName,".rsrc", 5) == 0) {
// This section has Windows resource information
err.submit(1031);
}
// Store section index in index translation table (zero-based index)
NewSectIndex[oldsec] = newsec;
// Store section data
if (SectionHeader->SizeOfRawData > 0) {
NewSections[newsec].Push(Buf()+SectionHeader->PRawData, SectionHeader->SizeOfRawData);
}
// Put data into new section header:
// Initialize to zero
memset(&NewSecHeader, 0, sizeof(NewSecHeader));
// Section type
if (!(SectionHeader->Flags & PE_SCN_LNK_REMOVE)) {
NewSecHeader.sh_type = SHT_PROGBITS; // Program code or data
NewSecHeader.sh_flags |= SHF_ALLOC; // Occupies memory during execution
}
if (SectionHeader->Flags & PE_SCN_CNT_UNINIT_DATA) {
NewSecHeader.sh_type = SHT_NOBITS; // BSS
}
// Section flags
if (SectionHeader->Flags & PE_SCN_MEM_WRITE) {
NewSecHeader.sh_flags |= SHF_WRITE;
}
if (SectionHeader->Flags & PE_SCN_MEM_EXECUTE) {
NewSecHeader.sh_flags |= SHF_EXECINSTR;
}
// Check for special sections
if (strcmp(SecName, COFF_CONSTRUCTOR_NAME)==0) {
// Constructors segment
SecName = ELF_CONSTRUCTOR_NAME;
NewSecHeader.sh_flags = SHF_WRITE | SHF_ALLOC;
}
// Put name into section header string table
SecNameIndex = NewSections[shstrtab].PushString(SecName);
// Put name into new section header
NewSecHeader.sh_name = SecNameIndex;
// Section virtual memory address
NewSecHeader.sh_addr = SectionHeader->VirtualAddress;
// Section size in memory
NewSecHeader.sh_size = SectionHeader->VirtualSize;
// Section alignment
if (SectionHeader->Flags & PE_SCN_ALIGN_MASK) {
NewSecHeader.sh_addralign = uint32_t(1 << (((SectionHeader->Flags & PE_SCN_ALIGN_MASK) / PE_SCN_ALIGN_1) - 1));
}
// Put section header into temporary buffer
NewSectionHeaders[newsec] = NewSecHeader;
// Increment section number
newsec++;
if (SectionHeader->NRelocations > 0) {
// Source section has relocations.
// Make a relocation section in destination file
// Put data into relocation section header:
// Initialize to zero
memset(&NewSecHeader, 0, sizeof(NewSecHeader));
// Name for relocation section = ".rel" or ".rela" + name of section
const int MAXSECTIONNAMELENGTH = 256;
char RelocationSectionName[MAXSECTIONNAMELENGTH] = ".rel";
if (WordSize == 64) strcat(RelocationSectionName, "a"); // 32-bit: .rel, 64-bit: .rela
strncat(RelocationSectionName, SecName, MAXSECTIONNAMELENGTH-5);
RelocationSectionName[MAXSECTIONNAMELENGTH-1] = 0;
// Put name into section header string table
uint32_t SecNameIndex = NewSections[shstrtab].PushString(RelocationSectionName);
// Put name into new section header
NewSecHeader.sh_name = SecNameIndex;
// Section type
NewSecHeader.sh_type = (WordSize == 32) ? SHT_REL : SHT_RELA; // Relocation section
// Put section header into temporary buffer
NewSectionHeaders[newsec] = NewSecHeader;
// Increment section number
newsec++;
}
}
// Number of sections generated
NumSectionsNew = newsec;
}
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CCOF2ELF<ELFSTRUCTURES>::MakeSymbolTable() {
// Convert subfunction: Make symbol table and string tables
int isym; // current symbol table entry
int numaux; // Number of auxiliary entries in source record
int OldSectionIndex; // Index into old section table. 1-based
int NewSectionIndex; // Index into new section table. 0-based
//const int WordSize = sizeof(NewFileHeader.e_entry) * 8; // word size 32 or 64 bits
TELF_Symbol sym; // Temporary symbol table record
const char * name1; // Name of section or main record
// Pointer to old symbol table
union {
SCOFF_SymTableEntry * p; // Symtab entry pointer
int8_t * b; // Used for increment
} OldSymtab;
// Make the first record empty
NewSections[symtab].Push(0, sizeof(TELF_Symbol));
// Make first string table entries empty
NewSections[strtab] .PushString("");
NewSections[stabstr].PushString("");
// Loop twice through source symbol table to get local symbols first, global symbols last
// Loop 1: Look for local symbols only
OldSymtab.p = SymbolTable; // Pointer to source symbol table
for (isym = 0; isym < this->NumberOfSymbols; isym += numaux+1, OldSymtab.b += SIZE_SCOFF_SymTableEntry*(numaux+1)) {
if (OldSymtab.b >= Buf() + DataSize) {
err.submit(2040);
break;
}
// Number of auxiliary records belonging to same symbol
numaux = OldSymtab.p->s.NumAuxSymbols; if (numaux < 0) numaux = 0;
if (OldSymtab.p->s.StorageClass != COFF_CLASS_EXTERNAL && OldSymtab.p->s.StorageClass != COFF_CLASS_WEAK_EXTERNAL) {
// Symbol is local
// Reset destination entry
memset(&sym, 0, sizeof(sym));
// Binding
sym.st_bind = STB_LOCAL;
// Get first aux record if numaux > 0
//SCOFF_SymTableEntryAux * sa = (SCOFF_SymTableEntryAux *)(OldSymtab.b + SIZE_SCOFF_SymTableEntry);
// Symbol name
name1 = this->GetSymbolName(OldSymtab.p->s.Name);
// Symbol value
sym.st_value = OldSymtab.p->s.Value;
// Get section
OldSectionIndex = OldSymtab.p->s.SectionNumber; // 1-based index into old section table
NewSectionIndex = 0; // 0-based index into old section table
if (OldSectionIndex > 0 && OldSectionIndex <= this->NSections) {
// Subtract 1 from OldSectionIndex because NewSectIndex[] is zero-based while OldSectionIndex is 1-based
// Get new section index from translation table
NewSectionIndex = NewSectIndex[OldSectionIndex-1];
}
if (NewSectionIndex == COFF_SECTION_REMOVE_ME) {
continue; // Section has been removed. Remove symbol too
}
sym.st_shndx = (uint16_t)NewSectionIndex;
// Check symbol type
if (OldSymtab.p->s.StorageClass == COFF_CLASS_FILE) {
// This is a filename record
if (numaux > 0 && numaux < 20) {
// Get filename from subsequent Aux records.
// Remove path from filename because the path makes no sense on a different platform.
const char * filename = GetShortFileName(OldSymtab.p);
// Put file name into string table and debug string table
sym.st_name = NewSections[strtab].PushString(filename);
NewSections[stabstr].PushString(filename);
}
// Attributes for filename record
sym.st_shndx = (uint16_t)SHN_ABS;
sym.st_type = STT_FILE;
sym.st_bind = STB_LOCAL;
sym.st_value = 0;
}
else if (numaux && OldSymtab.p->s.StorageClass == COFF_CLASS_STATIC
&& OldSymtab.p->s.Value == 0 && OldSymtab.p->s.Type != 0x20) {
// This is a section definition record
sym.st_name = 0; name1 = 0;
sym.st_type = STT_SECTION;
sym.st_bind = STB_LOCAL;
sym.st_value = 0;
// aux record contains length and number of relocations. Ignore aux record
}
else if (OldSymtab.p->s.SectionNumber < 0) {
// This is an absolute or debug symbol
sym.st_type = STT_NOTYPE;
sym.st_shndx = (uint16_t)SHN_ABS;
}
else if (OldSymtab.p->s.Type == 0 && OldSymtab.p->s.StorageClass == COFF_CLASS_FUNCTION) {
// This is a .bf, .lf, or .ef record following a function record
// Contains line number information etc. Ignore this record
continue;
}
else if (OldSymtab.p->s.SectionNumber <= 0) {
// Unknown
sym.st_type = STT_NOTYPE;
}
else {
// This is a local data definition record
sym.st_type = STT_OBJECT;
// The size is not specified in COFF record,
// so we may give it an arbitrary size:
// sym.size = 4;
}
// Put symbol name into string table if we have not already done so
if (sym.st_name == 0 && name1) {
sym.st_name = NewSections[strtab].PushString(name1);
}
// Put record into new symbol table
NewSections[symtab].Push(&sym, sizeof(sym));
// Insert into symbol translation table
NewSymbolIndex[isym] = NewSections[symtab].GetLastIndex();
} // End if not external
} // End loop 1
// Finished with local symbols
// Make index to first global symbol
NewSectionHeaders[symtab].sh_info = NewSections[symtab].GetLastIndex() + 1;
// Loop 2: Look for global symbols only
OldSymtab.p = SymbolTable; // Pointer to source symbol table
for (isym = 0; isym < NumberOfSymbols; isym += numaux+1, OldSymtab.b += SIZE_SCOFF_SymTableEntry*(numaux+1)) {
// Number of auxiliary records belonging to same symbol
numaux = OldSymtab.p->s.NumAuxSymbols; if (numaux < 0) numaux = 0;
if (OldSymtab.p->s.StorageClass == COFF_CLASS_EXTERNAL || OldSymtab.p->s.StorageClass == COFF_CLASS_WEAK_EXTERNAL) {
// Symbol is global (public or external)
// Reset destination entry
memset(&sym, 0, sizeof(sym));
// Binding
sym.st_bind = STB_GLOBAL;
if (OldSymtab.p->s.StorageClass == COFF_CLASS_WEAK_EXTERNAL) sym.st_bind = STB_WEAK;
// Get first aux record if numaux > 0
SCOFF_SymTableEntry * sa = (SCOFF_SymTableEntry*)(OldSymtab.b + SIZE_SCOFF_SymTableEntry);
// Symbol name
name1 = GetSymbolName(OldSymtab.p->s.Name);
// Symbol value
sym.st_value = OldSymtab.p->s.Value;
// Get section
OldSectionIndex = OldSymtab.p->s.SectionNumber; // 1-based index into old section table
NewSectionIndex = 0; // 0-based index into old section table
if (OldSectionIndex > 0 && OldSectionIndex <= NSections) {
// Subtract 1 from OldSectionIndex because NewSectIndex[] is zero-based while OldSectionIndex is 1-based
// Get new section index from translation table
NewSectionIndex = NewSectIndex[OldSectionIndex-1];
}
if (NewSectionIndex == COFF_SECTION_REMOVE_ME) {
continue; // Section has been removed. Remove symbol too
}
if ((int16_t)OldSectionIndex == COFF_SECTION_ABSOLUTE) {
NewSectionIndex = SHN_ABS;
}
sym.st_shndx = (uint16_t)NewSectionIndex;
// Check symbol type
if (OldSymtab.p->s.SectionNumber < 0) {
// This is an absolute or debug symbol
sym.st_type = STT_NOTYPE;
}
else if (OldSymtab.p->s.Type == COFF_TYPE_FUNCTION && OldSymtab.p->s.SectionNumber > 0) {
// This is a function definition record
sym.st_type = STT_FUNC;
if (numaux) {
// Get size from aux record
sym.st_size = sa->func.TotalSize;
}
if (sym.st_size == 0) {
// The size is not specified in the COFF file.
// We may give it an arbitrary size:
// sym.size = 1;
}
}
else if (OldSymtab.p->s.SectionNumber <= 0) {
// This is an external symbol
sym.st_type = STT_NOTYPE;
}
else {
// This is a data definition record
sym.st_type = STT_OBJECT;
// Symbol must have a size. The size is not specified in COFF record,
// so we just give it an arbitrary size
sym.st_size = 4;
}
// Put symbol name into string table if we have not already done so
if (sym.st_name == 0 && name1) {
sym.st_name = NewSections[strtab].PushString(name1);
}
// Put record into new symbol table
NewSections[symtab].Push(&sym, sizeof(sym));
// Insert into symbol translation table
NewSymbolIndex[isym] = NewSections[symtab].GetLastIndex();
} // End if external
} // End loop 2
}
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CCOF2ELF<ELFSTRUCTURES>::MakeRelocationTables() {
// Convert subfunction: Relocation tables
int32_t oldsec; // Relocated section number in source file
int32_t newsec; // Relocated section number in destination file
int32_t newsecr; // Relocation table section number in destination file
TELF_SectionHeader * NewRelTableSecHeader; // Section header for new relocation table
char TempText[32]; // Temporary text buffer
const int WordSize = sizeof(NewFileHeader.e_entry) * 8; // word size 32 or 64 bits
// Loop through source file sections
for (oldsec = 0; oldsec < NSections; oldsec++) {
// New section index
newsec = NewSectIndex[oldsec];
if (newsec == COFF_SECTION_REMOVE_ME) {
continue; // This is a debug or exception handler section which has been removed
}
// Pointer to old section header
SCOFF_SectionHeader * SectionHeader = &this->SectionHeaders[oldsec];
if (SectionHeader->NRelocations > 0) {
// This section has relocations
// Finc new relocation table section
newsecr = newsec + 1;
// Check that we have allocated a relocation section
if (oldsec+1 < this->NSections && NewSectIndex[oldsec+1] == newsecr) err.submit(9000);
if (newsecr >= NumSectionsNew) err.submit(9000);
// New relocation table section header
NewRelTableSecHeader = &NewSectionHeaders[newsecr];
// Insert header info
NewRelTableSecHeader->sh_type = (WordSize == 32) ? SHT_REL : SHT_RELA;
NewRelTableSecHeader->sh_flags = 0;
NewRelTableSecHeader->sh_addralign = WordSize / 8; // Alignment
NewRelTableSecHeader->sh_link = symtab; // Point to symbol table
NewRelTableSecHeader->sh_info = newsec; // Point to relocated section
// Entry size:
NewRelTableSecHeader->sh_entsize = (WordSize == 32) ? sizeof(Elf32_Rel) : sizeof(Elf64_Rela);
// Pointer to old relocation entry
union {
SCOFF_Relocation * p; // pointer to record
int8_t * b; // used for address calculation and incrementing
} OldReloc;
// Loop through relocations
OldReloc.b = Buf() + SectionHeader->PRelocations;
for (int i = 0; i < SectionHeader->NRelocations; i++, OldReloc.b += SIZE_SCOFF_Relocation) {
// Make new relocation entry and set to zero
TELF_Relocation NewRelocEntry;
memset(&NewRelocEntry, 0, sizeof(NewRelocEntry));
// Section offset of relocated address
NewRelocEntry.r_offset = OldReloc.p->VirtualAddress;
// Target symbol
uint32_t TargetSymbol = OldReloc.p->SymbolTableIndex;
if (TargetSymbol >= (uint32_t)NumberOfSymbols) {
err.submit(2031); // Symbol not in table
}
else { // Translate symbol number
NewRelocEntry.r_sym = NewSymbolIndex[TargetSymbol];
}
if (WordSize == 32) {
// Interpret 32-bit COFF relocation types
switch (OldReloc.p->Type) {
case COFF32_RELOC_ABS: // Ignored
NewRelocEntry.r_type = R_386_NONE; break;
case COFF32_RELOC_TOKEN: // .NET common language runtime token
err.submit(2014); // Error message
// Continue in next case and insert absolute address as token:
case COFF32_RELOC_DIR32: // 32-bit absolute virtual address
NewRelocEntry.r_type = R_386_32; break;
case COFF32_RELOC_IMGREL: // 32-bit image relative address
// Image-relative relocation not supported in ELF
if (cmd.OutputType == FILETYPE_MACHO_LE) {
// Intermediate during conversion to MachO
NewRelocEntry.r_type = R_UNSUPPORTED_IMAGEREL;
break;
}
// Work-around unsupported image-relative relocation
// Convert to absolute
NewRelocEntry.r_type = R_386_32; // Absolute relocation
if (cmd.ImageBase == 0) {
// Default image base for 32-bit Linux
cmd.ImageBase = 0x8048000; // 0x400000 ?
}
NewRelocEntry.r_addend -= cmd.ImageBase;
// Warn that image base must be set to the specified value
sprintf(TempText, "%X", cmd.ImageBase); // write value as hexadecimal
err.submit(1301, TempText); err.ClearError(1301);
break;
case COFF32_RELOC_REL32: // 32-bit self-relative
NewRelocEntry.r_type = R_386_PC32;
// Difference between EIP-relative and self-relative relocation = size of address field
NewRelocEntry.r_addend = -4; break;
/* !! error if self-relative relocation with offset
!! test data that fails = testpic32.obj */
case COFF32_RELOC_SECTION: // 16-bit section index in file
case COFF32_RELOC_SECREL: // 32-bit section-relative
case COFF32_RELOC_SECREL7: // 8-bit section-relative
// These fixup types are not supported in ELF files
if (cmd.DebugInfo != CMDL_DEBUG_STRIP) {
// Issue warning. Ignore if stripping debug info
err.submit(1010);
}
break;
default:
err.submit(2030, OldReloc.p->Type); break; // Error: Unknown relocation type (%i) ignored
}
}
else {
// Interpret 64-bit COFF relocation types
switch (OldReloc.p->Type) {
case COFF64_RELOC_ABS: // Ignored
NewRelocEntry.r_type = R_X86_64_NONE; break;
case COFF64_RELOC_TOKEN: // .NET common language runtime token
err.submit(2014); // Error message
// Continue in next case and insert absolute address as token:
case COFF64_RELOC_ABS64: // 64 bit absolute virtual address
NewRelocEntry.r_type = R_X86_64_64; break;
case COFF64_RELOC_PPC_TOKEN:
err.submit(2014); // Error message
// Continue in next case and insert absolute address as token:
case COFF64_RELOC_ABS32: // 32 bit absolute address
NewRelocEntry.r_type = R_X86_64_32S; break;
case COFF64_RELOC_IMGREL: // 32 bit image-relative
// Image-relative relocation not supported in ELF
if (cmd.OutputType == FILETYPE_MACHO_LE) {
// Intermediate during conversion to MachO
NewRelocEntry.r_type = R_UNSUPPORTED_IMAGEREL;
break;
}
// Work-around unsupported image-relative relocation
// Convert to absolute
NewRelocEntry.r_type = R_X86_64_32S; // Absolute 32-bit relocation
if (cmd.ImageBase == 0) {
// Default image base for 64-bit Linux
cmd.ImageBase = 0x400000;
}
NewRelocEntry.r_addend -= cmd.ImageBase;
// Warn that image base must be set to the specified value
sprintf(TempText, "%X", cmd.ImageBase); // write value as hexadecimal
err.submit(1301, TempText); err.ClearError(1301);
break;
case COFF64_RELOC_REL32: // 32 bit, RIP-relative
case COFF64_RELOC_REL32_1: // 32 bit, relative to RIP - 1. For instruction with immediate byte operand
case COFF64_RELOC_REL32_2: // 32 bit, relative to RIP - 2. For instruction with immediate word operand
case COFF64_RELOC_REL32_3: // 32 bit, relative to RIP - 3. (useless)
case COFF64_RELOC_REL32_4: // 32 bit, relative to RIP - 4. For instruction with immediate dword operand
case COFF64_RELOC_REL32_5: // 32 bit, relative to RIP - 5. (useless)
NewRelocEntry.r_type = R_X86_64_PC32;
// Note:
// The microprocessor calculates RIP-relative addresses
// relative to the value of the instruction pointer AFTER
// the instruction. This is equal to the address of the
// relocated field plus the size of the relocated field
// itself plus the size of any immediate operand coming
// after the relocated field.
// The COFF format makes the correction for this offset in
// the linker by using a differet relocation type for
// immediate operand size = 0, 1, 2 or 4.
// The ELF format makes the same correction by an explicit
// addend, which is -4, -5, -6 or -8, respectively.
// The difference between RIP-relative and self-relative
// relocation is equal to the size of the address field plus
// the size of any immediate operand:
NewRelocEntry.r_addend = -(4 + OldReloc.p->Type - COFF64_RELOC_REL32);
break;
case COFF64_RELOC_SECTION: // 16-bit section index in file
case COFF64_RELOC_SECREL: // 32-bit section-relative
case COFF64_RELOC_SECREL7: // 8-bit section-relative
// These fixup types are not supported in ELF files
if (cmd.DebugInfo != CMDL_DEBUG_STRIP) {
// Issue warning. Ignore if stripping debug info
err.submit(1010);
}
break;
default:
err.submit(2030, OldReloc.p->Type); break; // Error: Unknown relocation type (%i) ignored
}
}
// Find inline addend
int32_t * paddend = 0;
if (OldReloc.p->VirtualAddress + 4 > NewSections[newsec].GetDataSize()
|| NewSectionHeaders[newsec].sh_type == SHT_NOBITS) {
// Address of relocation is invalid
err.submit(2032);
}
else {
// Make pointer to inline addend
paddend = (int32_t*)(NewSections[newsec].Buf()
+ NewSectionHeaders[newsec].sh_offset + OldReloc.p->VirtualAddress);
}
// Put relocation record into table
if (WordSize == 32) {
if (NewRelocEntry.r_addend != 0) {
// Use inline addends in 32 bit ELF (SHT_REL)
// Put addend inline
if (paddend) *paddend += uint32_t(NewRelocEntry.r_addend);
NewRelocEntry.r_addend = 0;
}
// Save 32-bit relocation record Elf32_Rel, not Elf32_Rela
if (NewRelocEntry.r_addend) err.submit(9000);
NewSections[newsecr].Push(&NewRelocEntry, sizeof(Elf32_Rel));
}
else {
// 64 bit
/*
if (*paddend != 0) {
// Use explicit addend in 64 bit ELF (SHT_RELA)
// Explicit addend may cause link error if it appears to point outside section
NewRelocEntry.r_addend += *paddend;
*paddend = 0;
}*/
// Save 64-bit relocation record. Must be Elf64_Rela
NewSections[newsecr].Push(&NewRelocEntry, sizeof(Elf64_Rela));
}
}
}
}
}
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CCOF2ELF<ELFSTRUCTURES>::MakeBinaryFile() {
// Convert subfunction: Make section headers and file header,
// and combine everything into a single memory buffer.
int32_t newsec; // Section index
uint32_t SecOffset; // Section offset in file
uint32_t SecSize; // Section size in file
uint32_t SectionHeaderOffset; // File offset to section headers
// Set file type in ToFile
ToFile.SetFileType(FILETYPE_ELF);
// Make space for file header in ToFile, but don't fill data into it yet
ToFile.Push(0, sizeof(TELF_Header));
// Loop through new section buffers
for (newsec = 0; newsec < NumSectionsNew; newsec++) {
// Size of section
SecSize = NewSections[newsec].GetDataSize();
// Put section into ToFile
SecOffset = ToFile.Push(NewSections[newsec].Buf(), SecSize);
// Put size and offset into section header
NewSectionHeaders[newsec].sh_offset = SecOffset;
NewSectionHeaders[newsec].sh_size = SecSize;
// Align before next entry
ToFile.Align(16);
}
// Start offset of section headers
SectionHeaderOffset = ToFile.GetDataSize();
// Loop through new section headers
for (newsec = 0; newsec < NumSectionsNew; newsec++) {
// Put section header into ToFile
ToFile.Push(&NewSectionHeaders[newsec], sizeof(TELF_SectionHeader));
}
// Make file header
TELF_Header FileHeader;
memset(&FileHeader, 0, sizeof(FileHeader)); // Initialize to 0
// Put file type magic number in
strcpy((char*)(FileHeader.e_ident), ELFMAG);
// File class
FileHeader.e_ident[EI_CLASS] = (WordSize == 32) ? ELFCLASS32 : ELFCLASS64;
// Data Endian-ness
FileHeader.e_ident[EI_DATA] = ELFDATA2LSB;
// ELF version
FileHeader.e_ident[EI_VERSION] = EV_CURRENT;
// ABI
FileHeader.e_ident[EI_OSABI] = ELFOSABI_SYSV;
// ABI version
FileHeader.e_ident[EI_ABIVERSION] = 0;
// File type
FileHeader.e_type = ET_REL;
// Machine architecture
FileHeader.e_machine = (WordSize == 32) ? EM_386 : EM_X86_64;
// Version
FileHeader.e_version = EV_CURRENT;
// Flags
FileHeader.e_flags = 0;
// Section header table offset
FileHeader.e_shoff = SectionHeaderOffset;
// File header size
FileHeader.e_ehsize = sizeof(TELF_Header);
// Section header size
FileHeader.e_shentsize = sizeof(TELF_SectionHeader);
// Number of section headers
FileHeader.e_shnum = (uint16_t)NumSectionsNew;
// Section header string table index
FileHeader.e_shstrndx = (uint16_t)shstrtab;
// Put file header into beginning of ToFile where we made space for it
memcpy(ToFile.Buf(), &FileHeader, sizeof(FileHeader));
}
// Make template instances for 32 and 64 bits
template class CCOF2ELF<ELF32STRUCTURES>;
template class CCOF2ELF<ELF64STRUCTURES>;
|