File: disasm2.cpp

package info (click to toggle)
objconv 2.56%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,300 kB
  • sloc: cpp: 27,039; makefile: 4; sh: 2
file content (4342 lines) | stat: -rw-r--r-- 160,061 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
/****************************  disasm2.cpp   ********************************
* Author:        Agner Fog
* Date created:  2007-02-25
* Last modified: 2025-08-26
* Project:       objconv
* Module:        disasm2.cpp
* Description:
* Module for disassembler containing file output functions
*
* Changes that relate to assembly language syntax should be done in this file only.
*
* Copyright 2007-2025 GNU General Public License http://www.gnu.org/licenses
*****************************************************************************/
#include "stdafx.h"

/**********************  Warning and error texts   ***************************
These texts are inserted in disassembled code in case of warnings or errors.

The occurrence of an error makes the disassembler mark the code block between
the nearest known code labels as dubious. This means that the byte sequence
might be data in the code segment or the disassembler might be out of phase
with instruction boundaries. Dubious code will be shown both as code and as
data.

A warning will be shown as 'Note:' before the instruction it applies to.
This might indicate suboptimal coding or a possible cause for concern.

The criteria for distinguishing between warnings and errors is not the 
severity of consequences, but whether the condition is likely to be caused
by common programming errors or by data in the code segment.

Some of the warning messages are quite benign, e.g. an unnecessary prefix.
Other warning messages can have severe consequences, e.g. a function missing
a return statement.

Still other warnings are no case for concern, but a condition requiring 
attention. For example the message: "Multi-byte NOP. Replace with ALIGN",
might actually indicate a well optimized code. But it requires attention
because the assembler cannot re-create the multi-byte NOP if the code
is assembled again. The programmer needs to decide what level of alignment
is optimal and replace the NOP with an align statement.

*****************************************************************************/

// Define error texts. 
SIntTxt AsmErrorTexts[] = {
    {1,         "Instruction longer than 15 bytes"},
    {2,         "Lock prefix not allowed for this opcode"},
    {4,         "Illegal opcode"},
    {8,         "Illegal operands for this opcode"},
    {0x10,      "Instruction extends beyond end of code block"},
    {0x20,      "Prefix after REX prefix not allowed"},
    {0x40,      "This instruction is not allowed in 64 bit mode"},
    {0x80,      "Instruction out of phase with next label"},
    {0x100,     "Attempt to use R13 as base register without displacement"},
    {0x200,     "Register 8 - 15 only allowed in 64 bit mode (Ignored)."},
    {0x400,     "REX prefix not allowed on instruction with DREX byte"},
    {0x800,     "VEX has X bit but no SIB byte (Probably ignored)"},
    {0x1000,    "Relocation source does not match address or operand field"},
    {0x2000,    "Overlapping relocations"},
    {0x4000,    "This is unlikely to be code"}, // Consecutive bytes of 0 found
    {0x8000,    "VEX.L bit not allowed here"},
    {0x10000,   "VEX.mmmm bits out of range"},
    {0x80000,   "Internal error in opcode table in opcodes.cpp"}
};

// Warning texts 1: Warnings about conditions that could be intentional and suboptimal code
SIntTxt AsmWarningTexts1[] = {
    {1,          "Immediate operand could be made smaller by sign extension"},
    {2,          "Immediate operand could be made smaller by zero extension"},
    {4,          "Zero displacement could be omitted"},
    {8,          "Displacement could be made smaller by sign extension"},
    {0x10,       "SIB byte unnecessary here"},
    {0x20,       "A shorter instruction exists for register operand"},
    {0x40,       "Length-changing prefix causes delay on old Intel processors"},
    {0x80,       "Address size prefix should be avoided"},
    {0x100,      "Same prefix occurs more than once"},
    {0x200,      "Prefix valid but unnecessary"},
    {0x400,      "Prefix bit or byte has no meaning in this context"},
    {0x800,      "Contradicting prefixes"},
    {0x1000,     "Required prefix missing"},
    {0x2000,     "Address has scale factor but no index register"},
    {0x4000,     "Address is not rip-relative"},
    {0x8000,     "Absolute memory address without relocation"},
    {0x10000,    "Unusual relocation type for this operand"},
    {0x20000,    "Instruction pointer truncated by operand size prefix"},
    {0x40000,    "Stack pointer truncated by address size prefix"},
    {0x80000,    "Jump or call to data segment not allowed"},
    {0x100000,   "Undocumented opcode"},
    {0x200000,   "Unknown opcode reserved for future extensions"},
    {0x400000,   "Memory operand is misaligned. Performance penalty"},
    {0x800000,   "Alignment fault. Memory operand must be aligned"},
    {0x1000000,  "Multi-byte NOP. Replace with ALIGN"},
    {0x2000000,  "Bogus length-changing prefix causes delay on old Intel processors here"},
    {0x4000000,  "Non-default size for stack operation"},
    {0x8000000,  "Function does not end with ret or jmp"},
    {0x10000000, "No jump seems to point here"},
    {0x20000000, "Full 64-bit address"},
    {0x40000000, "VEX prefix bits not allowed here"}
};

// Warning texts 2: Warnings about possible misinterpretation; serious warnings
SIntTxt AsmWarningTexts2[] = {
    {1,          "Label out of phase with instruction. Possibly spurious"},
    {2,          "Planned future instruction, according to preliminary specification"},
    {4,          "This instruction has been planned but never implemented because plans were changed. Will not work"},
    {0x10,       "EVEX prefix not allowed for this instruction"},
    {0x20,       "MVEX prefix not allowed for this instruction"},
    {0x40,       "EVEX prefix option bits not allowed here"},
    {0x80,       "MVEX prefix option bits not allowed here"},
    {0x100,      "Mask register must be nonzero"},
    {0x200,      "Broadcasting to scalar not allowd"},
};


// Indication of relocation types in comments:
SIntTxt RelocationTypeNames[] = {
    {0x001,  "(d)" },                   // Direct address in flat address space
    {0x002,  "(rel)" },                 // Self-relative
    {0x004,  "(imgrel)" },              // Image-relative
    {0x008,  "(segrel)" },              // Segment-relative
    {0x010,  "(refpoint)" },            // Relative to arbitrary point (position-independent code in Mach-O)
    {0x021,  "(d)" },                   // Direct (adjust by image base)
    {0x041,  "(d)" },                   // Direct (make procecure linkage table entry)
    {0x081,  "(indirect)" },            // Gnu indirect function dispatcher (make procecure linkage table entry?)
    {0x100,  "(seg)" },                 // Segment address or descriptor
    {0x200,  "(sseg)" },                // Segment of symbol
    {0x400,  "(far)" },                 // Far segment:offset address
    {0x1001, "(GOT)" },                 // GOT entry
    {0x1002, "(GOT r)" },               // self-relative to GOT entry
    {0x2002, "(PLT r)" }                // self-relative to PLT entry
};

// Instruction set names
const char * InstructionSetNames[] = {
    "8086", "80186", "80286", "80386",               // 0 - 3
    "80486", "Pentium", "Pentium Pro", "MMX",        // 4 - 7
    "Pentium II", "", "", "",                        // 8 - B
    "", "", "", "",                                  // C - F
    "", "SSE", "SSE2", "SSE3",                       // 10 - 13
    "Supplementary SSE3", "SSE4.1", "SSE4.2", "AES", // 14 - 17
    "CLMUL", "AVX", "FMA3", "?",                     // 18 - 1B
    "AVX2", "BMI etc.", "?", "?",                    // 1C - 1F
    "AVX-512", "AVX512PF/ER/CD", "MPX,SHA,TBD", "AVX512IFMA/VBMI/VBMI2", // 20 - 23
    "Misc.extensions", "AVX512-FP16", "?", "?",      // 24 - 27
    "?", "?", "?", "?",                              // 28 - 2B
    "?", "?", "?", "?",                              // 2C - 2F
    "?", "?", "?", "?",                              // 30 - 33
    "?", "?", "?", "?",                              // 34 - 37
    "?", "?", "?", "?",                              // 38 - 3B
    "?", "?", "?", "?",                              // 3C - 3F
    "?", "?", "?", "?",                              // 40 - 43
    "?", "?", "?", "?",                              // 44 - 47
    "?", "?", "?", "?",                              // 48 - 4B
    "?", "?", "?", "?",                              // 4C - 4F
    "?", "?", "?", "?",                              // 50 - 53
    "?", "?", "?", "?",                              // 54 - 57
    "?", "?", "?", "?",                              // 58 - 5B
    "?", "?", "?", "?",                              // 5C - 5F
    "?", "?", "?", "?",                              // 60 - 63
    "?", "?", "?", "?",                              // 64 - 67
    "?", "?", "?", "?",                              // 68 - 6B
    "?", "?", "?", "?",                              // 6C - 6F
    "?", "?", "?", "?",                              // 70 - 73
    "?", "?", "?", "?",                              // 74 - 77
    "?", "?", "?", "?",                              // 78 - 7B
    "?", "?", "?", "?",                              // 7C - 7F
    "Knights Corner", "?", "?", "?",                 // 80 - 83
    "?", "?", "?", "?"                               // 84 - 87
};

const int InstructionSetNamesLen = TableSize(InstructionSetNames);


/**************************  class CDisassembler  *****************************
Most member functions of CDisassembler are defined in disasm1.cpp

Only the functions that produce output are defined here:
******************************************************************************/

void CDisassembler::WriteShortRegOperand(uint32_t Type) {
    // Write register operand from lower 3 bits of opcode byte to OutFile
    uint32_t rnum = Get<uint8_t>(s.OpcodeStart2) & 7;
    // Check REX.B prefix
    if (s.Prefixes[7] & 1) rnum |= 8;             // Add 8 if REX.B prefix
    // Write register name
    WriteRegisterName(rnum, Type);
}

void CDisassembler::WriteRegOperand(uint32_t Type) {
    // Write register operand from reg bits
    uint32_t Num = s.Reg;                           // Register number

    // Write register name
    WriteRegisterName(Num, Type);
}

void CDisassembler::WriteRMOperand(uint32_t Type) {
    // Write memory or register operand from mod/rm bits of mod/reg/rm byte 
    // and possibly SIB byte or direct memory operand to OutFile.
    // Also used for writing direct memory operand

    if ((Type & 0xFF) == 0) {
        // No explicit operand
        return;
    }

    uint32_t Components = 0;                        // Count number of addends inside []
    int64_t  Addend = 0;                            // Inline displacement or addend
    int AddressingMode = 0;                       // 0: 16- or 32 bit addressing mode
    // 1: 64-bit pointer
    // 2: 32-bit absolute in 64-bit mode
    // 4: 64-bit rip-relative
    // 8: 64-bit absolute
    // Check if register or memory
    if (s.Mod == 3) {
        // Register operand
        WriteRegisterName(s.RM, Type);
        return;
    }

    // Find addend, if any
    switch (s.AddressFieldSize) {
    case 1:  // 1 byte displacement
        Addend = Get<int8_t>(s.AddressField);
        break;
    case 2:  // 2 bytes displacement
        Addend = Get<int16_t>(s.AddressField);
        break;
    case 4:  // 4 bytes displacement
        Addend = Get<int32_t>(s.AddressField);
        if ((s.MFlags & 0x100) && !s.AddressRelocation) {
            // rip-relative
            Addend += ImageBase + uint64_t(SectionAddress + IEnd);
        }
        break;
    case 8:  // 8 bytes address
        Addend = Get<int64_t>(s.AddressField);
        break;
    }
    // Get AddressingMode
    if (s.AddressSize > 32) {
        if (s.MFlags & 0x100) {
            AddressingMode = 4;                     // 64-bit rip-relative
        }
        else if (s.AddressFieldSize == 8) {
            AddressingMode = 8;                     // 64-bit absolute
        }
        else if (s.AddressRelocation || (s.BaseReg==0 && s.IndexReg==0)) {
            AddressingMode = 2;                     // 32-bit absolute in 64-bit mode
        }
        else {
            AddressingMode = 1;                     // 64-bit pointer
        }
    }

    // Make exception for LEA with no type
    if (Opcodei == 0x8D) {
        Type = 0;
    }
    // Write type override
    if ((s.OpcodeDef->InstructionFormat & 0x1F) == 0x1E) {    
        WriteOperandType(Type & 0xFF);    // has vsib address: write element type rather than vector type
    }
    else if (!(s.OpcodeDef->Options & 0x800)) {
        WriteOperandType(Type);           // write operand type
    }

    if (Syntax != SUBTYPE_MASM) {
        // Write "[" around memory operands, before segment
        OutFile.Put("[");
    }

    // Write segment prefix, if any
    if (s.Prefixes[0]) {
        OutFile.Put(RegisterNamesSeg[GetSegmentRegisterFromPrefix()]);
        OutFile.Put(":");
    }
    else if (!s.BaseReg && !s.IndexReg && (!s.AddressRelocation || (s.Warnings1 & 0x10000)) && Syntax != SUBTYPE_NASM) { 
        // No pointer register and no memory reference or wrong type of memory reference.
        // Write segment register to indicate that we have a memory operand
        OutFile.Put("DS:");
    }

    if (Syntax == SUBTYPE_MASM) {
        // Write "[" around memory operands, after segment
        OutFile.Put("[");
    }

    if (Syntax == SUBTYPE_NASM && (AddressingMode & 0x0E)) {
        // Specify absolute or relative addressing mode
        switch (AddressingMode) {
        case 2: OutFile.Put("abs ");  break;
        case 4: OutFile.Put("rel ");  break;
        case 8: OutFile.Put("abs qword ");  break;
        }
    }

    // Write relocation target, if any
    if (s.AddressRelocation) {
        // Write cross reference
        WriteRelocationTarget(s.AddressRelocation, 4 | (s.MFlags & 0x100), Addend);
        // Addend has been written, don't write it again
        Addend = 0;
        // Remember that something has been written
        Components++;
    }

    // Check address size for pointer registers
    //const char * * PointerRegisterNames;
    uint32_t RegisterType = 0;
    switch (s.AddressSize) {
    case 16:
        RegisterType = 2;  break;
    case 32:
        RegisterType = 3;  break;
    case 64:
        RegisterType = 4;  break;
    }

    // Write base register, if any
    if (s.BaseReg) {
        if (Components++) OutFile.Put("+");      // Put "+" if anything before
        WriteRegisterName(s.BaseReg - 1, RegisterType); 
    }

    // Write index register, if any
    if (s.IndexReg) {
        if (Components++) OutFile.Put("+");        // Put "+" if anything before
        if ((s.OpcodeDef->InstructionFormat & 0x1F) != 0x1E) {
            // normal index register
            WriteRegisterName(s.IndexReg - 1, RegisterType); 
        }
        else {
            // VSIB byte specifies vector index register
            WriteRegisterName(s.IndexReg - 1, Type & 0xF00); 
        }
        // Write scale factor, if any
        if (s.Scale) {
            OutFile.Put("*");
            OutFile.PutDecimal(1 << s.Scale);
        }
    }

    // Write +/- before addend
    if (Components && Addend) {
        // Displacement comes after base/index registers
        if (Addend >= 0 || s.AddressFieldSize == 8) {
            // Positive. Write +
            OutFile.Put("+");
        }
        else {
            // Negative. Write -
            OutFile.Put("-");
            Addend = -Addend;
        }
    }

    if (Addend || Components == 0) {
        // Find minimum number of digits needed
        uint32_t AddendSize = s.AddressFieldSize;
        if ((uint64_t)Addend < 0x100 && AddendSize > 1) AddendSize = 1;
        else if ((uint64_t)Addend < 0x10000 && AddendSize > 2) AddendSize = 2;

        // Write address or addend as hexadecimal
        OutFile.PutHex((uint64_t)Addend, 2);

        // Check if offset multiplier needed
        if (s.OffsetMultiplier && s.AddressFieldSize == 1 && Addend) {
            OutFile.Put("*");
            OutFile.PutHex(s.OffsetMultiplier, 2);
        }
    }

    if (Syntax == SUBTYPE_GASM && (AddressingMode == 4)) {
        // Need to specify rip-relative address
        OutFile.Put("+rip");
    }

    // End with "]"
    OutFile.Put("]");
}


void CDisassembler::WriteOperandType(uint32_t type) {
    switch (Syntax) {
    case SUBTYPE_MASM:
        WriteOperandTypeMASM(type);  break;
    case SUBTYPE_NASM:
        WriteOperandTypeNASM(type);  break;
    case SUBTYPE_GASM:
        WriteOperandTypeGASM(type);  break;
    }
}

void CDisassembler::WriteOperandTypeMASM(uint32_t type) {
    // Write type override before operand, e.g. "dword ", MASM syntax
    if (type & 0xF00) {
        type &= 0xF00;                             // Ignore element type for vectors
    }
    else {
        type &= 0xFF;                              // Use operand type only
    }

    switch (type) {
    case 1:  // 8 bits
        OutFile.Put("byte ");  break;
    case 2:  // 16 bits
        OutFile.Put("word ");  break;
    case 3:  // 32 bits
        OutFile.Put("dword ");  break;
    case 4:  // 64 bits
        OutFile.Put("qword ");  break;
    case 5:  // 80 bits
        if ((s.OpcodeDef->Destination & 0xFF) == 0xD) {
            // 64+16 bit far pointer. Not supported by MASM
            OutFile.Put("fword ");
            s.OpComment = "64+16 bit. Need REX.W prefix";
        }
        else { 
            OutFile.Put("tbyte ");}
        break;
    case 6: case 0x40: case 0x48: case 0:
        // Other size. Write nothing
        break;
    case 7: case 0x0D: // 48 bits or far
        OutFile.Put("fword ");  
        if ((s.OpcodeDef->Destination & 0xFF) == 0xD && WordSize == 64) {
            // All assemblers I have tried forget the REX.W prefix here. Make a notice
            s.OpComment = "32+16 bit. Possibly forgot REX.W prefix"; 
        }      
        break;
    case 0x4A: // 16 bits float
        OutFile.Put("word ");  break;
    case 0x43: // 32 bits float (x87)
    case 0x4B: // 32 bits float (SSE2)
        OutFile.Put("dword ");  break;
    case 0x44: // 64 bits float
    case 0x4C: // 64 bits float (SSE2)
        OutFile.Put("qword ");  break;
    case 0x45: // 80 bits float
        OutFile.Put("tbyte ");  break;
    case 0x84: case 0x85: // far call
        OutFile.Put("far ");  break;
    case 0x95: // 16 bits mask register
        OutFile.Put("word ");  break;
    case 0x300:  // MMX
        OutFile.Put("qword ");  break;
    case 0x400:  // XMM
        OutFile.Put("xmmword ");  break;
    case 0x500:  // YMM
        OutFile.Put("ymmword ");  break;
    case 0x600:  // ZMM
        OutFile.Put("zmmword ");  break;
    case 0x700:  // future 1024 bit
        OutFile.Put("?mmword ");  break;
    }
    if (type) OutFile.Put("ptr ");
}

void CDisassembler::WriteOperandTypeNASM(uint32_t type) {
    // Write type override before operand, e.g. "dword", NASM/YASM syntax
    if (type & 0xF00) {
        type &= 0xF00;                             // Ignore element type for vectors
    }
    else {
        type &= 0xFF;                              // Use operand type only
    }
    uint32_t Dest = s.OpcodeDef->Destination & 0xFF;// Destination operand
    if (Dest >= 0xB && Dest < 0x10) {
        // This is a pointer
        if (Dest < 0x0D) {
            OutFile.Put("near ");                   // Near indirect jump/call
        }
        else {
            // Far pointer
            if ((WordSize == 16 && type == 3) || (WordSize == 32 && type == 7)) {
                OutFile.Put("far ");
            }
            else {
                // Size currently not supported by NASM
                switch (type) {
                case 3: OutFile.Put("far ");
                    s.OpComment = "16+16 bit. Needs 66H prefix";
                    break;
                case 7: OutFile.Put("far ");  
                    s.OpComment = "32+16 bit. Possibly forgot REX.W prefix";
                    break;
                case 5: OutFile.Put("far ");  
                    s.OpComment = "64+16 bit. Needs REX.W prefix";
                    break;
                }
            }
        }
        return;
    }
    switch (type) {
    case 1:  // 8 bits
        OutFile.Put("byte ");  break;
    case 2:  // 16 bits
        OutFile.Put("word ");  break;
    case 3:  // 32 bits
        OutFile.Put("dword ");  break;
    case 4:  // 64 bits
        OutFile.Put("qword ");  break;
    case 5:  // 80 bits
        OutFile.Put("tbyte ");  break;
    case 7:  // 48 bits
        OutFile.Put("fword ");  break;
    case 0x4A: // 16 bits float
        OutFile.Put("word ");  break;
    case 0x43: // 32 bits float (x87)
    case 0x4B: // 32 bits float (SSE2)
        OutFile.Put("dword ");  break;
    case 0x44: // 64 bits float
    case 0x4C: // 64 bits float (SSE2)
        OutFile.Put("qword ");  break;
    case 0x45: // 80 bits float
        OutFile.Put("tbyte ");  break;
    case 0x84: case 0x85: // far call
        OutFile.Put("far ");  break;
    case 0x95: // 16 bits mask register
        OutFile.Put("word ");  break;
    case 0x300:  // MMX
        OutFile.Put("qword ");  break;
    case 0x400:  // XMM
        OutFile.Put("oword ");  break;
    case 0x500:  // YMM
        OutFile.Put("yword ");  break;
    case 0x600:  // ZMM
        OutFile.Put("zword ");  break;
    case 0x700:  // Future 128 bytes
        OutFile.Put("?word ");  break;
    default:; // Anything else: write nothing
    }
}

void CDisassembler::WriteOperandTypeGASM(uint32_t type) {
    // Write type override before operand, e.g. "dword ", GAS syntax
    if (type & 0xF00) {
        type &= 0xF00;                             // Ignore element type for vectors
    }
    else {
        type &= 0xFF;                              // Use operand type only
    }

    switch (type) {
    case 1:  // 8 bits
        OutFile.Put("byte ");  break;
    case 2:  // 16 bits
        OutFile.Put("word ");  break;
    case 3:  // 32 bits
        OutFile.Put("dword ");  break;
    case 4:  // 64 bits
        OutFile.Put("qword ");  break;
    case 5:  // 80 bits
        if ((s.OpcodeDef->Destination & 0xFF) == 0xD) {
            // 64+16 bit far pointer. Not supported by Gas
            OutFile.Put("fword ");
            s.OpComment = "64+16 bit. Needs REX.W prefix";
        }
        else { 
            OutFile.Put("tbyte ");}
        break;
    case 6: case 0x40: case 0x48: case 0:
        // Other size. Write nothing
        break;
    case 7:    // 48 bits
        OutFile.Put("fword ");  
        if ((s.OpcodeDef->Destination & 0xFF) == 0xD && WordSize == 64) {
            // All assemblers I have tried forget the REX.W prefix here. Make a notice
            s.OpComment = "32+16 bit. Possibly forgot REX.W prefix"; 
        }      
        break;
    case 0x4A: // 16 bits float
        OutFile.Put("word ");  break;
    case 0x43: // 32 bits float (x87)
    case 0x4B: // 32 bits float (SSE2)
        OutFile.Put("dword ");  break;
    case 0x44: // 64 bits float
    case 0x4C: // 64 bits float (SSE2)
        OutFile.Put("qword ");  break;
    case 0x45: // 80 bits float
        OutFile.Put("tbyte ");  break;
    case 0x84: case 0x85: // far call
        OutFile.Put("far ");  break;
    case 0x95: // 16 bits mask register
        OutFile.Put("word ");  break;
    case 0x300:  // MMX
        OutFile.Put("qword ");  break;
    case 0x400:  // XMM
        OutFile.Put("xmmword ");  break;
    case 0x500:  // YMM
        OutFile.Put("ymmword ");  break;
    case 0x600:  // ZMM
        OutFile.Put("zmmword ");  break;
    case 0x700:  // future 1024 bit
        OutFile.Put("?mmword ");  break;
    }
}


void CDisassembler::WriteDREXOperand(uint32_t Type) {
    // Write register operand from dest bits of DREX byte (AMD only)
    uint32_t Num = s.Vreg >> 4;                    // Register number
    // Write register name
    WriteRegisterName(Num, Type);
}

void CDisassembler::WriteVEXOperand(uint32_t Type, int i) {
    // Write register operand from VEX.vvvv bits or immediate bits
    uint32_t Num;                                   // Register number
    switch (i) {
    case 0:  // Use VEX.vvvv bits
        Num = s.Vreg & 0x1F;  break;
    case 1:  // Use immediate bits 4-7
        Num = Get<uint8_t>(s.ImmediateField) >> 4;  break;
    case 2:  // Use immediate bits 0-3 (Unused. For possible future use)
        Num = Get<uint8_t>(s.ImmediateField) & 0x0F;  break;
    default:
        Num = 0;
    }
    // Write register name
    WriteRegisterName(Num, Type);
}


void CDisassembler::WriteOperandAttributeEVEX(int i, int isMem) {
    // Write operand attributes and instruction attributes from EVEX z, LL, b and aaa bits
    // i = operand number (0 = destination, 1 = first source, 2 = second source, 
    // 98 = after last SIMD operand, 99 = after last operand)
    // isMem: true if memory operand, false if register operand
    uint32_t swiz = s.OpcodeDef->EVEX;   // indicates meaning of EVEX attribute bits

    if ((swiz & 0x30) && (i == 0 || (s.OpcodeDef->Destination == 0 && i == 1))) {  // first operand
        // write mask
        if (s.Kreg || (swiz & 0xC0)) {
            OutFile.Put(" {k");
            OutFile.PutDecimal(s.Kreg);
            OutFile.Put("}");
            if ((swiz & 0x20) && (s.Esss & 8)) {
                // zeroing
                OutFile.Put("{z}");
            }
        }
    }
    if (swiz & 0x07) {
        // broadcast, rounding or sae allowed
        if (isMem && i < 8) {
            // memory operand
            if ((swiz & 0x01) && (s.Esss & 1)) {            
                // write memory broadcast
                // calculate broadcast factor
                uint32_t op = s.Operands[i];  // operand
                uint32_t elementsize = GetDataElementSize(op); // element size
                uint32_t opv = s.Operands[0];  // any vector operand
                if (!(opv & 0xF00)) opv = s.Operands[1]; // first operand is not a vector, use next
                uint32_t vectorsize  = GetDataItemSize(opv); // vector size
                if (vectorsize > elementsize) { // avoid broadcasting to scalar
                    if (elementsize) { // avoid division by zero
                        OutFile.Put(" {1to");
                        OutFile.PutDecimal(vectorsize/elementsize);
                        OutFile.Put("}");
                    }
                    else {
                        OutFile.Put("{unknown broadcast}");
                    }
                }
            }
        }
        if (i == 98 && s.Mod == 3) {   // after last SIMD operand. no memory operand
            // NASM has rounding mode and sae decoration after last SIMD operand with a comma.
            // No spec. for other assemblers available yet (2014). 
            // use i == 99 if it should be placed after last operand.
            // Perhaps the comma should be removed for other assemblers?
            if ((swiz & 0x4) && (s.Esss & 1)) {
                // write rounding mode
                uint32_t rounding = (s.Esss >> 1) & 3;
                OutFile.Put(", {");
                OutFile.Put(EVEXRoundingNames[rounding]);
                OutFile.Put("}");
            }
            else if ((swiz & 0x2) && (s.Esss & 1)) {
                // no rounding mode. write sae
                OutFile.Put(", {");
                OutFile.Put(EVEXRoundingNames[4]);
                OutFile.Put("}");
            }
        }
    }
}


void CDisassembler::WriteOperandAttributeMVEX(int i, int isMem) {
    // Write operand attributes and instruction attributes from MVEX sss, e and kkk bits.
    // i = operand number (0 = destination, 1 = first source, 2 = second source, 99 = after last operand)
    // isMem: true if memory operand, false if register operand
    uint32_t swiz = s.OpcodeDef->MVEX;   // indicates meaning of MVEX attribute bits
    const int R_sae_syntax = 0;   // syntax alternatives for rounding mode + sae
                                  // 0: {rn-sae}, 1: {rn}{sae}
    const char * text = 0;        // temporary text pointer

    if ((swiz & 0x1000) && (i == 0 || (s.OpcodeDef->Destination == 0 && i == 1))) {  // first operand
        // write mask
        if (s.Kreg || (swiz & 0x2000)) {
            OutFile.Put(" {k");
            OutFile.PutDecimal(s.Kreg);
            OutFile.Put("}");
        }
    }
    if (swiz & 0x1F) {
        // swizzle allowed    
        if (isMem && i < 90) {
            // write memory broadcast/up/down conversion
            text = s.SwizRecord->name;
            if (text && *text) {
                OutFile.Put(" {");  OutFile.Put(text);  OutFile.Put("}");
            }
        }
        //if (i == 2 || ((s.OpcodeDef->Source2 & 0xF0F00) == 0 && i == 1)) {
        if (i == 98) {   // after last SIMD operand
            // last register or memory operand
            if (s.Mod == 3 && !((swiz & 0x700) && (s.Esss & 8))) { // skip alternative meaning of sss field for register operand when E=1
                // write register swizzle
                text = s.SwizRecord->name;
                if (text && *text) {
                    OutFile.Put(" {");  OutFile.Put(text);  OutFile.Put("}");
                }
            }
        }
        if (i == 99) {   // after last operand
            if (s.Mod == 3 && (swiz & 0x300) && (s.Esss & 8)) {            
                // alternative meaning of sss field for register operand when E=1
                switch (swiz & 0x300) {
                case 0x100:  // rounding mode and not sae
                    text = SwizRoundTables[0][0][s.Esss & 3].name;
                    break;
                case 0x200:  // suppress all exceptions
                    if ((s.Esss & 4) && !(swiz & 0x800)) text = "sae";
                    break;
                case 0x300:  // rounding mode and sae
                    text = SwizRoundTables[0][R_sae_syntax][s.Esss & 7].name;
                    break;
                }
            }
            if (text && *text) {
                OutFile.Put(", {");  OutFile.Put(text);  OutFile.Put("}");
            }
        }
    }
    if (isMem && (s.Esss & 8) && !(swiz & 0x800)) {
        // cache eviction hint after memory operand
        OutFile.Put(" {eh}");
    }
}

void CDisassembler::WriteRegisterName(uint32_t Value, uint32_t Type) {
    // Write name of register to OutFile
    if (Type & 0xF00) {
        // vector register
        Type &= 0xF00;
    }
    else {
        // Other register
        Type &= 0xFF;                              // Remove irrelevant bits
    }

    // Check fixed registers (do not depend on Value)
    switch (Type) {
    case 0xA1:  // al
        Type = 1;  Value = 0;
        break;

    case 0xA2:  // ax
        Type = 2;  Value = 0;
        break;

    case 0xA3:  // eax
        Type = 3;  Value = 0;
        break;

    case 0xA4:  // rax
        Type = 4;  Value = 0;
        break;

    case 0xAE:  // xmm0
        Type = 0x400;  Value = 0;
        break;

    case 0xAF:  // st(0)
        Type = 0x40;  Value = 0;
        break;

    case 0xB2:  // dx
        Type = 2;  Value = 2;
        break;

    case 0xB3:  // cl
        Type = 1;  Value = 1;
        break;
    }

    // Get register number limit
    uint32_t RegNumLimit = 7;    // largest register number
    if (WordSize >= 64) {
        RegNumLimit = 15;
        if ((s.Prefixes[6] & 0x40) && (Type & 0xF40)) {
            // EVEX or MVEX prefix and vector
            RegNumLimit = 31;
        }
    }

    switch (Type) {
    case 0x91:     // segment register
        RegNumLimit = 5;
        break;
    case 0x300:  // mmx
    case 0x40:   // st register         
    case 0x95:   // k mask register
        RegNumLimit = 7;
        break;
    case 0x98:   // bounds register
        RegNumLimit = 3;
        break;
    }
    if (Value > RegNumLimit) {
        // register number out of range
        OutFile.Put("unknown register ");
        switch (Type) {
        case 1:
            OutFile.Put("(8 bit) ");  break;
        case 2:
            OutFile.Put("(16 bit) ");  break;
        case 3:
            OutFile.Put("(32 bit) ");  break;
        case 4:
            OutFile.Put("(64 bit) ");  break;
        case 0x40:   // st register
            OutFile.Put("st");  break;
        case 0x91:  // Segment register
            OutFile.Put("seg");  break;
        case 0x92:  // Control register
            OutFile.Put("cr");  break;
        case 0x95:  // k mask register
            OutFile.Put("k");  break;
        case 0x300:  // mmx register
            OutFile.Put("mm");  break;
        case 0x400:  // xmm register
            OutFile.Put("xmm");  break;
        case 0x500:  // ymm register
            OutFile.Put("ymm");  break;
        case 0x600:  // zmm register
            OutFile.Put("zmm");  break;
        case 0x700:  // future 1024 bit register
            OutFile.Put("?mm");  break;
        }
        OutFile.PutDecimal(Value);
    }
    else {
        // Write register name depending on type
        switch (Type) {
        case 1:  // 8 bit register. Depends on any REX prefix
            OutFile.Put(s.Prefixes[7] ? RegisterNames8x[Value] : RegisterNames8[Value & 7]);
            break;

        case 2:  // 16 bit register
            OutFile.Put(RegisterNames16[Value]);
            break;

        case 3:  // 32 bit register
            OutFile.Put(RegisterNames32[Value]);
            break;

        case 4:  // 64 bit register
            OutFile.Put(RegisterNames64[Value]);
            break;

        case 0x300:  // mmx register
            OutFile.Put("mm");
            OutFile.PutDecimal(Value);
            break;

        case 0x400:  // xmm register (packed integer or float)
        case 0x48: case 0x4B: case 0x4C: // xmm register (scalar float)
            OutFile.Put("xmm");
            OutFile.PutDecimal(Value);
            break;

        case 0x500:  // ymm register (packed)
            OutFile.Put("ymm");
            OutFile.PutDecimal(Value);
            break;

        case 0x600:  // zmm register (packed)
            OutFile.Put("zmm");
            OutFile.PutDecimal(Value);
            break;

        case 0x700:  // future 1024 bit register
            OutFile.Put("?mm");
            OutFile.PutDecimal(Value);
            break;

        case 0x40:  // st register
            if (Syntax == SUBTYPE_NASM) {
                // NASM, YASM and GAS-AT&T use st0
                OutFile.Put("st");
                OutFile.PutDecimal(Value);
            }
            else {
                // MASM and GAS-Intel use st(0), 
                OutFile.Put("st(");
                OutFile.PutDecimal(Value);
                OutFile.Put(")");
            }
            break;

        case 0x91:  // Segment register
            OutFile.Put(RegisterNamesSeg[Value & 7]);
            break;

        case 0x92:  // Control register
            OutFile.Put(RegisterNamesCR[Value]);
            break;

        case 0x93:  // Debug register
            OutFile.Put("dr");
            OutFile.PutDecimal(Value);
            break;

        case 0x94:  // Test register (obsolete)
            OutFile.Put("tr");
            OutFile.PutDecimal(Value);
            break;

        case 0x95:  // k mask register
            OutFile.Put("k");
            OutFile.PutDecimal(Value);
            break;

        case 0x98:  // bounds register
            OutFile.Put("bnd");
            OutFile.PutDecimal(Value);
            break;

        case 0xB1:  // 1
            OutFile.Put("1");
            break;

        default:    // Unexpected
            OutFile.Put("UNKNOWN REGISTER TYPE ");
            OutFile.PutDecimal(Value);
            break;
        }
    }
}


void CDisassembler::WriteImmediateOperand(uint32_t Type) {
    // Write immediate operand or direct jump/call address
    int    WriteFormat;                 // 0: unsigned, 1: signed, 2: hexadecimal
    int    Components = 0;              // Number of components in immediate operand       
    uint32_t OSize;                       // Operand size
    uint32_t FieldPointer;                // Pointer to field containing value
    uint32_t FieldSize;                   // Size of field containing value
    int64_t  Value = 0;                   // Value of immediate operand

    // Check if far
    if ((Type & 0xFE) == 0x84) {
        // Write far 
        WriteOperandType(Type);
    }

    // Check if type override needed
    if ((s.OpcodeDef->AllowedPrefixes & 2) && s.Prefixes[4] == 0x66
        && (Opcodei == 0x68 || Opcodei == 0x6A)) {
            // Push immediate with non-default operand size needs type override
            WriteOperandType(s.OperandSize == 16 ? 2 : 3);
    }

    FieldPointer = s.ImmediateField;
    FieldSize    = s.ImmediateFieldSize;

    if (Syntax == SUBTYPE_NASM && (Type & 0x0F) == 4 && FieldSize == 8) {
        // Write type override to make sure we get 8 bytes address in case there is a relocation here
        WriteOperandType(4);
    }

    if (Type & 0x200000) {
        if (FieldSize > 1) {
            // Uses second part of field. Single byte only
            FieldPointer += FieldSize-1;
            FieldSize = 1;
        }
        else {
            // Uses half a byte
            FieldSize = 0;
        }
    }

    // Get inline value
    switch (FieldSize) {
    case 0:  // 4 bits
        Value = Get<uint8_t>(FieldPointer) & 0x0F;
        break;

    case 1:  // 8 bits
        Value = Get<int8_t>(FieldPointer);  
        break;

    case 2:  // 16 bits
        Value = Get<int16_t>(FieldPointer);  break;

    case 6:  // 48 bits
        Value  = Get<int32_t>(FieldPointer);  
        Value += (uint64_t)Get<uint16_t>(FieldPointer + 4) << 32;  
        break;

    case 4:  // 32 bits
        Value = Get<int32_t>(FieldPointer);  break;

    case 8:  // 64 bits
        Value = Get<int64_t>(FieldPointer);  break;

    case 3:  // 16+8 bits ("Enter" instruction)
        if ((Type & 0xFF) == 0x12) {
            // First 16 bits
            FieldSize = 2; Value = Get<int16_t>(FieldPointer);  break;
        }
        // else continue in default case to get error message

    default:  // Other sizes should not occur
        err.submit(3000);  Value = -1;
    }

    // Check if relocation
    if (s.ImmediateRelocation) {
        // Write relocation target name
        uint32_t Context = 2;
        if ((Type & 0xFC) == 0x80) Context = 8;     // Near jump/call destination
        if ((Type & 0xFC) == 0x84) Context = 0x10;  // Far jump/call destination

        // Write cross reference
        WriteRelocationTarget(s.ImmediateRelocation, Context, Value);

        // Remember that Value has been written
        Value = 0;
        Components++;
    }
    // Check if AAM or AAD
    if (Value == 10 && (Opcodei & 0xFE) == 0xD4) {
        // Don't write operand for AAM or AAD if = 10
        return;
    }

    // Write as unsigned, signed or hexadecimal:
    if ((Type & 0xF0) == 0x30 || (Type & 0xF0) == 0x80) {
        // Hexadecimal
        WriteFormat = 2;
    }
    else if (s.ImmediateFieldSize == 8) {
        // 64 bit constant
        if (Value == (int32_t)Value) {
            // Signed
            WriteFormat = 1;
        }
        else {
            // Hexadecimal
            WriteFormat = 2;
        }
    }
    else if ((Type & 0xF0) == 0x20) {
        // Signed
        WriteFormat = 1;
    }
    else {
        // Unsigned
        WriteFormat = 0;
    }

    if ((Type & 0xFC) == 0x80 && !s.ImmediateRelocation) {
        // Self-relative jump or call without relocation. Adjust immediate value
        Value += IEnd;                             // Get absolute address of target

        // Look for symbol at target address
        uint32_t ISymbol = Symbols.FindByAddress(Section, (uint32_t)Value);
        if (ISymbol && (Symbols[ISymbol].Name || CodeMode == 1)) {
            // Symbol found. Write its name
            OutFile.Put(Symbols.GetName(ISymbol));
            // No offset to write
            return;
        }
        // Target address has no name
        Type |= 0x4000;                            // Write target as hexadecimal
    }

    // Operand size
    if ((s.Operands[0] & 0xFFF) <= 0xA && s.Operands[0] != 0 || (s.Operands[0] & 0xF0) == 0xA0) {
        // Destination is general purpose register
        OSize = s.OperandSize;
        if ((s.Operands[0] & 0x0F) < 3) {
            OSize = (s.Operands[0] & 0x0F) << 3;
        }
    }
    else {
        // Constant probably unrelated to destination size
        OSize = 8;
    }
    // Check if destination is 8 bit operand
    //if ((s.Operands[0] & 0xFF) == 1 || (s.Operands[0] & 0xFF) == 0xA1) OSize = 8;

    // Check if sign extended
    if (OSize > s.ImmediateFieldSize * 8) {
        if (WriteFormat == 2  && Value >= 0) {
            // Hexadecimal sign extended
            // Does not need full length
            OSize = s.ImmediateFieldSize * 8;
        }
        else if (WriteFormat == 0) {
            // Unsigned and sign extended, change to signed
            WriteFormat = 1;
        }
    }

    if (Components) {
        // There was a relocated name
        if (Value) {
            // Addend to relocation is not zero
            if (Value > 0 || WriteFormat != 1) {
                OutFile.Put("+");                  // Put "+" between name and addend
            }
            else {
                OutFile.Put("-");                  // Put "-" between name and addend
                Value = - Value;                  // Change sign to avoid another "-"
            }
        }
        else {
            // No addend to relocated name
            return;
        }
    }
    // Write value
    if (WriteFormat == 2) {
        // Write with hexadecimal number appropriate size
        switch (OSize) {
        case 8:  // 8 bits
            OutFile.PutHex((uint8_t)Value, 1);  break;
        case 16:  // 16 bits
            if ((Type & 0xFC) == 0x84) {
                // Segment of far call
                OutFile.PutHex((uint16_t)(Value >> 16), 1);
                OutFile.Put(':');
            }
            OutFile.PutHex((uint16_t)Value, 2);  break;
        case 32:  // 32 bits
        default:  // Should not occur
            if ((Type & 0xFC) == 0x84) {
                // Segment of far call
                OutFile.PutHex((uint16_t)(Value >> 32), 1);
                OutFile.Put(':');
            }
            OutFile.PutHex((uint32_t)Value, 2);  break;
        case 64:  // 64 bits
            OutFile.PutHex((uint64_t)Value, 2);  break;
        }
    }
    else {
        // Write as signed or unsigned decimal
        if (WriteFormat == 0) { // unsigned
            switch (OSize) {
            case 8:  // 8 bits
                Value &= 0x00FF;  break;
            case 16:  // 16 bits
                Value &= 0xFFFF;  break;
            }
        }
        OutFile.PutDecimal((int32_t)Value, WriteFormat);  // Write value. Signed or usigned decimal
    }
}


void CDisassembler::WriteOtherOperand(uint32_t Type) {
    // Write other type of operand
    const char * * OpRegisterNames;               // Pointer to list of register names
    uint32_t RegI = 0;                              // Index into list of register names

    switch (Type & 0x8FF) {
    case 0xA1:  // AL
        OpRegisterNames = RegisterNames8;
        break;
    case 0xA2:  // AX
        OpRegisterNames = RegisterNames16;
        break;
    case 0xA3:  // EAX
        OpRegisterNames = RegisterNames32;
        break;
    case 0xA4:  // RAX
        OpRegisterNames = RegisterNames64;
        break;
    case 0xAE:  // xmm0
        OutFile.Put("xmm0");
        return;
    case 0xAF:  // ST(0)
        OutFile.Put("st(0)");
        return;
    case 0xB1:  // 1
        OutFile.Put("1");
        return;
    case 0xB2:  // DX
        OpRegisterNames = RegisterNames16;
        RegI = 2;
        break;
    case 0xB3: // CL
        OpRegisterNames = RegisterNames8;
        RegI = 1;
        break;
    default:
        OutFile.Put("unknown operand");
        err.submit(3000);
        return;
    }
    // Write register name
    OutFile.Put(OpRegisterNames[RegI]);
}


void CDisassembler::WriteErrorsAndWarnings() {
    // Write errors, warnings and comments, if any
    uint32_t n;                                     // Error bit
    if (s.Errors) {
        // There are errors
        // Loop through all bits in s.Errors
        for (n = 1; n; n <<= 1) {
            if (s.Errors & n) {
                if (OutFile.GetColumn()) OutFile.NewLine(); 
                OutFile.Put(CommentSeparator);       // Write "\n; "
                OutFile.Put("Error: ");              // Write "Error: "
                OutFile.Put(Lookup(AsmErrorTexts,n));// Write error text
                OutFile.NewLine(); 
            }
        }
    }

    if (s.Warnings1) {
        // There are warnings 1
        // Loop through all bits in s.Warnings1
        for (n = 1; n; n <<= 1) {
            if (s.Warnings1 & n) {
                if (OutFile.GetColumn()) OutFile.NewLine(); 
                OutFile.Put(CommentSeparator);       // Write "; "
                OutFile.Put("Note: ");               // Write "Note: "
                OutFile.Put(Lookup(AsmWarningTexts1, n));// Write warning text
                OutFile.NewLine(); 
            }
        }
    }
    if (s.Warnings2) {
        // There are warnings 2
        // Loop through all bits in s.Warnings2
        for (n = 1; n; n <<= 1) {
            if (s.Warnings2 & n) {
                if (OutFile.GetColumn()) OutFile.NewLine(); 
                OutFile.Put(CommentSeparator);            // Write "; "
                OutFile.Put("Warning: ");                 // Write "Warning: "
                OutFile.Put(Lookup(AsmWarningTexts2, n)); // Write warning text
                OutFile.NewLine(); 
            }
        }
        if (s.Warnings2 & 1) {
            // Write spurious label
            uint32_t sym1 = Symbols.FindByAddress(Section, LabelEnd);
            if (sym1) {
                const char * name = Symbols.GetName(sym1);
                OutFile.Put(CommentSeparator);
                OutFile.Put(name);
                OutFile.Put("; Misplaced symbol at address ");
                OutFile.PutHex(Symbols[sym1].Offset);
                OutFile.NewLine();
            }
        }
    }

    if (s.OpcodeDef && (s.OpcodeDef->AllowedPrefixes & 8) && !s.Warnings1) {
        if (s.Prefixes[0]) {
            // Branch hint prefix. Write comment
            OutFile.Put(CommentSeparator);             // Write "; "
            switch (s.Prefixes[0]) {
            case 0x2E:
                OutFile.Put("Branch hint prefix for Pentium 4: Predict no jump");   
                break;
            case 0x3E:
                OutFile.Put("Branch hint prefix for Pentium 4: Predict jump");   
                break;
            case 0x64:
                OutFile.Put("Branch hint prefix for Pentium 4: Predict alternate");   
                break;
            default:
                OutFile.Put("Note: Unrecognized branch hint prefix");   
            }
            OutFile.NewLine(); 
        }
    }
}

void CDisassembler::WriteSymbolName(uint32_t symi) {
    // Write symbol name. symi = new symbol index
    OutFile.Put(Symbols.GetName(symi));
}

void CDisassembler::WriteSectionName(int32_t SegIndex) {
    // Write name of section, segment or group from section index
    const char * Name = 0;
    // Check for special index values
    switch (SegIndex) {
    case ASM_SEGMENT_UNKNOWN:   // Unknown segment. Typical for external symbols
        Name = "Unknown";  break;
    case ASM_SEGMENT_ABSOLUTE:  // No segment. Used for absolute symbols
        Name = "Absolute";  break;
    case ASM_SEGMENT_FLAT:      // Flat segment group
        Name = "flat";  break;
    case ASM_SEGMENT_NOTHING:   // No segment
        Name = "Nothing";  break;
    case ASM_SEGMENT_ERROR:     // Segment register assumed to error
        Name = "Error";  break;
    case ASM_SEGMENT_IMGREL:    // Segment unknown. Offset relative to image base or file base
        Name = "ImageBased";  break;
    default:                    // > 0 means normal segment index
        if ((uint32_t)SegIndex >= Sections.GetNumEntries()) {
            // Out of range
            Name = "IndexOutOfRange";
       }
       else {
           // Get index into NameBuffer
           uint32_t NameIndex = Sections[SegIndex].Name;
           // Check if valid
           if (NameIndex == 0 || NameIndex >= NameBuffer.GetDataSize()) {
               Name = "ErrorNameMissing";
           }
           else {
               // Normal valid name of segment, section or group
               Name = (char*)NameBuffer.Buf() + NameIndex;
           }
       }
       break;
    }
    if (Syntax == SUBTYPE_NASM && Name[0] == '_') {
        // Change leading underscore to dot
        OutFile.Put('.');
        OutFile.Put(Name+1); // Write rest of name
    }
    else {
        // Write name
        OutFile.Put(Name);
    }
}

void CDisassembler::WriteDataItems() {
    // Write data items to output file

    int LineState;  // 0: Start of new line, write label
    // 1: Label written if any, write data directive
    // 2: Data directive written, write data
    // 3: First data item written, write comma and more data
    // 4: Last data item written, write comment
    // 5: Comment written if any, start new line
    uint32_t Pos = IBegin;                          // Current position
    uint32_t LinePos = IBegin;                      // Position for beginning of output line
    uint32_t BytesPerLine;                          // Number of bytes to write per line
    uint32_t LineEnd;                               // Data position for end of line
    uint32_t DataEnd;                               // End of data
    uint32_t ElementSize, OldElementSize;           // Size of each data element
    uint32_t RelOffset;                             // Offset of relocation
    uint32_t irel, Oldirel;                         // Relocation index
    int64_t  Value;                                 // Inline value or addend
    const char * Symname;                         // Symbol name
    int    SeparateLine;                          // Label is on separate line

    SARelocation Rel;                             // Dummy relocation record

    // Check if size is valid
    if (DataSize == 0) DataSize = 1;
    if (DataSize > 32) DataSize = 32;  

    // Expected end position
    if (CodeMode & 3) {
        // Writing data for dubious code. Make same length as code instruction
        DataEnd = IEnd;
    }
    else {
        // Regular data. End at next label
        DataEnd = LabelEnd;
        if (DataEnd > FunctionEnd) DataEnd = FunctionEnd;
        if (DataEnd <= Pos) DataEnd = Pos + DataSize;
        if (DataEnd > Sections[Section].InitSize && Pos < Sections[Section].InitSize) {
            DataEnd = Sections[Section].InitSize;
        }
    }

    // Size of each data element
    ElementSize = DataSize;

    // Check if packed type
    if (DataType & 0xF00) {
        // This is a packed vector type. Get element size
        ElementSize = GetDataElementSize(DataType);
    }

    // Avoid sizes that are not powers of 2
    if (ElementSize == 6 || ElementSize == 10) ElementSize = 2;

    // Set maximum element size to 8
    if (ElementSize > 8)  ElementSize = 8;

    // Set minimum element size to 1
    if (ElementSize < 1)  ElementSize = 1;

    if (Pos + ElementSize > DataEnd) {
        // Make sure we end at DataEnd
        ElementSize = 1;  BytesPerLine = 8;
        LineEnd = DataEnd;
    }

    // Set number of bytes per line
    BytesPerLine = (DataSize == 10) ? 10 : 8;

    if (!(CodeMode & 3)) {
        // Begin new line for each data item (except in code segment)
        OutFile.NewLine();
    }
    LineState = 0; irel = 0;

    // Check if alignment required
    if (DataSize >= 16 && (DataType & 0xC00) && (DataType & 0xFF) != 0x51 
        && (FlagPrevious & 0x100) < (DataSize << 4) && !(IBegin & (DataSize-1))) {
            // Write align directive
            WriteAlign(DataSize);
            // Remember that data is aligned
            FlagPrevious |= (DataSize << 4);
    }

    // Get symbol name for label
    uint32_t sym;                                   // Current symbol index
    uint32_t sym1, sym2 = 0;                        // First and last symbol at current address

    sym1 = Symbols.FindByAddress(Section, Pos, &sym2);

    // Loop for one or more symbols at this address
    for (sym = sym1; sym <= sym2; sym++) {

        if (sym && Symbols[sym].Scope && !(Symbols[sym].Scope & 0x100) && !(Symbols[sym].Type & 0x80000000)) {

            // Prepare for writing symbol label
            Symname = Symbols.GetName(sym);         // Symbol name
            // Check if label needs a separate line
            SeparateLine = (ElementSize != DataSize 
                || Symbols[sym].Size != DataSize 
                || strlen(Symname) > AsmTab1
                || sym < sym2 
                // || (Sections[Section].Type & 0xFF) == 3
                || ((Symbols[sym].Type+1) & 0xFE) == 0x0C);

            // Write symbol label
            switch (Syntax) {
            case SUBTYPE_MASM:
                WriteDataLabelMASM(Symname, sym, SeparateLine);  break;
            case SUBTYPE_NASM:
                WriteDataLabelNASM(Symname, sym, SeparateLine);  break;
            case SUBTYPE_GASM:
                WriteDataLabelGASM(Symname, sym, SeparateLine);  break;
            }
            LineState = 1;                          // Label written
            if (SeparateLine) {
                LineState = 0;
            }
        }
    }

    if ((Sections[Section].Type & 0xFF) == 3 || Pos >= Sections[Section].InitSize) {
        // This is an unitialized data (BSS) section
        // Data repeat count
        uint32_t DataCount = (DataEnd - Pos) / ElementSize;
        if (DataCount) {
            OutFile.Tabulate(AsmTab1);
            // Write data directives
            switch (Syntax) {
            case SUBTYPE_MASM:
                WriteUninitDataItemsMASM(ElementSize, DataCount);  break;
            case SUBTYPE_NASM:
                WriteUninitDataItemsNASM(ElementSize, DataCount);  break;
            case SUBTYPE_GASM:
                WriteUninitDataItemsGASM(ElementSize, DataCount);  break;
            }
            // Write comment
            WriteDataComment(ElementSize, Pos, Pos, 0);
            OutFile.NewLine();
            LineState = 0;
        }
        // Update data position
        Pos += DataCount * ElementSize;

        if (Pos < DataEnd) {
            // Some odd data remain. Write as bytes
            DataCount = DataEnd - Pos;
            ElementSize = 1;
            OutFile.Tabulate(AsmTab1);
            switch (Syntax) {
            case SUBTYPE_MASM:
                WriteUninitDataItemsMASM(ElementSize, DataCount);  break;
            case SUBTYPE_NASM:
                WriteUninitDataItemsNASM(ElementSize, DataCount);  break;
            case SUBTYPE_GASM:
                WriteUninitDataItemsGASM(ElementSize, DataCount);  break;
            }
            // Write comment
            WriteDataComment(ElementSize, Pos, Pos, 0);
            OutFile.NewLine();
            Pos = DataEnd;
            LineState = 0;
        }
    }
    else {
        // Not a BSS section
        // Label has been written, write data

        // Loop for one or more elements
        LinePos = Pos;
        while (Pos < DataEnd) {

            // Find end of line position
            LineEnd = LinePos + BytesPerLine;

            // Remember element size and relocation
            OldElementSize = ElementSize;
            Oldirel = irel;

            // Check if relocation
            Rel.Section = Section;
            Rel.Offset  = Pos;
            uint32_t irel = Relocations.FindFirst(Rel);
            if (irel >= Relocations.GetNumEntries() || Relocations[irel].Section != (int32_t)Section) {
                // No relevant relocation
                irel = 0;
            }
            if (irel) {
                // A relocation is found
                // Check relocation source
                RelOffset = Relocations[irel].Offset;
                if (RelOffset == Pos) {
                    // Relocation source is here
                    // Make sure the size fits and begin new line
                    ElementSize = Relocations[irel].Size;  BytesPerLine = 8;
                    if (ElementSize < 1) ElementSize = WordSize / 8;
                    if (ElementSize < 1) ElementSize = 4;
                    LineEnd = Pos + ElementSize;
                    if (LineState > 2) LineState = 4; // Make sure we begin at new line
                }
                else if (RelOffset < Pos + ElementSize) {
                    // Relocation source begins before end of element with current ElementSize
                    // Change ElementSize to make sure a new element begins at relocation source
                    ElementSize = 1;  BytesPerLine = 8;
                    LineEnd = RelOffset;
                    if (LineState > 2) LineState = 4; // Make sure we begin at new line
                    irel = 0;
                }
                else {
                    // Relocation is after this element
                    irel = 0;
                }
                // Check for overlapping relocations
                if (irel && irel+1 < Relocations.GetNumEntries() 
                    && Relocations[irel+1].Section == (int32_t)Section
                    && Relocations[irel+1].Offset < RelOffset + ElementSize) {
                        // Overlapping relocations
                        s.Errors |= 0x2000;
                        WriteErrorsAndWarnings();
                        LineEnd = Relocations[irel+1].Offset;
                        if (LineState > 2) LineState = 4; // Make sure we begin at new line
                }
                // Drop alignment
                FlagPrevious &= ~0xF00;
            }
            if (irel == 0) {
                // No relocation here
                // Check if DataEnd would be exceeded
                if (Pos + ElementSize > DataEnd) {
                    // Make sure we end at DataEnd unless there is a relocation source here
                    ElementSize = 1;  BytesPerLine = 8;
                    LineEnd = DataEnd;
                    if (LineState > 2) LineState = 4; // Make sure we begin at new line
                    FlagPrevious &= ~0xF00;           // Drop alignment
                }
            }
            // Check if new line needed
            if (LineState == 4) {
                // Finish this line
                if (!(CodeMode & 3)) {
                    WriteDataComment(OldElementSize, LinePos, Pos, Oldirel);
                }
                // Start new line
                OutFile.NewLine();
                LineState = 0;
                LinePos = Pos;
                continue;
            }

            // Tabulate
            OutFile.Tabulate(AsmTab1);

            if (LineState < 2) {
                // Write data definition directive for appropriate size
                switch (Syntax) {
                case SUBTYPE_MASM:
                    WriteDataDirectiveMASM(ElementSize);  break;
                case SUBTYPE_NASM:
                    WriteDataDirectiveNASM(ElementSize);  break;
                case SUBTYPE_GASM:
                    WriteDataDirectiveGASM(ElementSize);  break;
                }
                LineState = 2;
            }
            else if (LineState == 3) {
                // Not the first element, write comma
                OutFile.Put(", ");
            }
            // Get inline value
            switch (ElementSize) {
            case 1:  Value = Get<int8_t>(Pos);  break;
            case 2:  Value = Get<int16_t>(Pos);  break;
            case 4:  Value = Get<int32_t>(Pos);  break;
            case 6:  Value = Get<uint32_t>(Pos) + ((uint64_t)Get<uint16_t>(Pos+4) << 32); break;
            case 8:  Value = Get<int64_t>(Pos);  break;
            case 10: Value = Get<int64_t>(Pos); break;
            default: Value = 0; // should not occur
            }
            if (irel) {
                // There is a relocation here. Write the name etc.
                WriteRelocationTarget(irel, 1, Value);
            }
            else {
                // Write value
                switch (ElementSize) {
                case 1:
                    OutFile.PutHex((uint8_t)Value, 1);  
                    break;
                case 2:
                    OutFile.PutHex((uint16_t)Value, 1);  
                    break;
                case 4:
                    OutFile.PutHex((uint32_t)Value, 1);  
                    break;
                case 6:
                    OutFile.PutHex((uint16_t)(Value >> 32), 1);  
                    OutFile.Put(":");
                    OutFile.PutHex((uint32_t)Value, 1);  
                    break;
                case 8:
                    OutFile.PutHex((uint64_t)Value, 1);  
                    break;
                case 10:
                    OutFile.Put("??");
                    break;
                }
            }
            LineState = 3;
            // Increment position
            Pos += ElementSize;

            // Check if end of line
            if (Pos >= LineEnd || Pos >= DataEnd) LineState = 4;

            if (LineState == 4) {
                // End of line
                if (!(CodeMode & 3)) {
                    // Write comment
                    WriteDataComment(ElementSize, LinePos, Pos, irel);
                }
                OutFile.NewLine();
                LinePos = Pos;
                LineState = 0;
            }
        }
    }

    // Indicate end
    if (IEnd < Pos) IEnd = Pos;
    if (IEnd > LabelEnd) IEnd = LabelEnd;
    if (IEnd > FunctionEnd && FunctionEnd) IEnd = FunctionEnd;

    // Reset FlagPrevious if not aligned
    if (DataSize < 16 || (DataType & 0xFF) == 0x28) FlagPrevious = 0;
}


void CDisassembler::WriteDataLabelMASM(const char * name, uint32_t sym, int line) {
    // Write label before data item, MASM syntax
    // name = name of data item(s)
    // sym  = symbol index
    // line = 1 if label is on separate line, 0 if data follows on same line
    // Write name
    OutFile.Put(name);
    // At least one space
    OutFile.Put(" ");
    // Tabulate
    OutFile.Tabulate(AsmTab1);

    if (line) {
        // Write label and type on seperate line
        // Get size
        uint32_t Symsize = Symbols[sym].Size;
        if (Symsize == 0) Symsize = DataSize;
        OutFile.Put("label ");
        // Write type
        switch(Symsize) {
        case 1: default:
            OutFile.Put("byte");  break;
        case 2:
            OutFile.Put("word");  break;
        case 4:
            OutFile.Put("dword");  break;
        case 6:
            OutFile.Put("fword");  break;
        case 8:
            OutFile.Put("qword");  break;
        case 10:
            OutFile.Put("tbyte");  break;
        case 16:
            OutFile.Put("xmmword");  break;
        case 32:
            OutFile.Put("ymmword");  break;
        }
        // Check if jump table or call table
        if (((Symbols[sym].Type+1) & 0xFE) == 0x0C) {
            OutFile.Tabulate(AsmTab3);
            OutFile.Put(CommentSeparator);
            if (Symbols[sym].DLLName) {
                // DLL import
                OutFile.Put("import from ");
                OutFile.Put(Symbols.GetDLLName(sym));
            }
            else if (Symbols[sym].Type & 1) {
                OutFile.Put("switch/case jump table");
            }
            else {
                OutFile.Put("virtual table or function pointer");
            }
        }
        // New line
        OutFile.NewLine();
    }
}

void CDisassembler::WriteDataLabelNASM(const char * name, uint32_t sym, int line) {
    // Write label before data item, NASM syntax
    // name = name of data item(s)
    // sym  = symbol index
    // line = 1 if label is on separate line, 0 if data follows on same line
    // Write name and colon
    OutFile.Put(name);
    OutFile.Put(": ");
    // Tabulate
    OutFile.Tabulate(AsmTab1);

    if (line) {
        // Write label on seperate line
        // Write comment
        OutFile.Tabulate(AsmTab3);
        OutFile.Put(CommentSeparator);
        // Check if jump table or call table
        if (((Symbols[sym].Type+1) & 0xFE) == 0x0C) {
            if (Symbols[sym].DLLName) {
                // DLL import
                OutFile.Put("import from ");
                OutFile.Put(Symbols.GetDLLName(sym));
            }
            else if (Symbols[sym].Type & 1) {
                OutFile.Put("switch/case jump table");
            }
            else {
                OutFile.Put("virtual table or function pointer");
            }
        }
        else {
            // Write size
            uint32_t Symsize = Symbols[sym].Size;
            if (Symsize == 0) Symsize = DataSize;
            switch(Symsize) {
            case 1: default:
                OutFile.Put("byte");  break;
            case 2:
                OutFile.Put("word");  break;
            case 4:
                OutFile.Put("dword");  break;
            case 6:
                OutFile.Put("fword");  break;
            case 8:
                OutFile.Put("qword");  break;
            case 10:
                OutFile.Put("tbyte");  break;
            case 16:
                OutFile.Put("oword");  break;
            case 32:
                OutFile.Put("yword");  break;
            case 64:
                OutFile.Put("zword");  break;
            }
        }
        // New line
        OutFile.NewLine();
    }
}

void CDisassembler::WriteDataLabelGASM(const char * name, uint32_t sym, int line) {
    // Write label before data item, GAS syntax
    // name = name of data item(s)
    // sym  = symbol index
    // line = 1 if label is on separate line, 0 if data follows on same line
    // Write name and colon
    OutFile.Put(name);
    OutFile.Put(": ");
    // Tabulate
    OutFile.Tabulate(AsmTab1);

    if (line) {
        // Write label on seperate line
        // Write comment
        OutFile.Tabulate(AsmTab3);
        OutFile.Put(CommentSeparator);
        // Check if jump table or call table
        if (((Symbols[sym].Type+1) & 0xFE) == 0x0C) {
            if (Symbols[sym].DLLName) {
                // DLL import
                OutFile.Put("import from ");
                OutFile.Put(Symbols.GetDLLName(sym));
            }
            else if (Symbols[sym].Type & 1) {
                OutFile.Put("switch/case jump table");
            }
            else {
                OutFile.Put("virtual table or function pointer");
            }
        }
        else {
            // Write size
            uint32_t Symsize = Symbols[sym].Size;
            if (Symsize == 0) Symsize = DataSize;
            switch(Symsize) {
            case 1: default:
                OutFile.Put("byte");  break;
            case 2:
                OutFile.Put("word");  break;
            case 4:
                OutFile.Put("int");  break;
            case 6:
                OutFile.Put("farword");  break;
            case 8:
                OutFile.Put("qword");  break;
            case 10:
                OutFile.Put("tfloat");  break;
            case 16:
                OutFile.Put("xmmword");  break;
            case 32:
                OutFile.Put("ymmword");  break;
            }
        }
        // New line
        OutFile.NewLine();
    }
}

void CDisassembler::WriteUninitDataItemsMASM(uint32_t size, uint32_t count) {
    // Write uninitialized (BSS) data, MASM syntax
    // size = size of each data element
    // count = number of data elements on each line

    // Write data definition directive for appropriate size
    switch (size) {
    case 1:
        OutFile.Put("db ");  break;
    case 2:
        OutFile.Put("dw ");  break;
    case 4:
        OutFile.Put("dd ");  break;
    case 6:
        OutFile.Put("df ");  break;
    case 8:
        OutFile.Put("dq ");  break;
    case 10:
        OutFile.Put("dt ");  break;
    }
    OutFile.Tabulate(AsmTab2);
    if (count > 1) {
        // Write duplication operator
        OutFile.PutDecimal(count);
        OutFile.Put(" dup (?)");
    }
    else {
        // DataCount == 1
        OutFile.Put("?");
    }
}

void CDisassembler::WriteUninitDataItemsNASM(uint32_t size, uint32_t count) {
    // Write uninitialized (BSS) data, NASM syntax
    // Write data definition directive for appropriate size
    switch (size) {
    case 1:
        OutFile.Put("resb ");  break;
    case 2:
        OutFile.Put("resw ");  break;
    case 4:
        OutFile.Put("resd ");  break;
    case 6:
        OutFile.Put("resw ");  count *= 3;  break;
    case 8:
        OutFile.Put("resq ");  break;
    case 10:
        OutFile.Put("rest ");  break;
    }
    OutFile.Tabulate(AsmTab2);
    OutFile.PutDecimal(count);
}

void CDisassembler::WriteUninitDataItemsGASM(uint32_t size, uint32_t count) {
    // Write uninitialized (BSS) data, GAS  syntax
    OutFile.Put(".zero");
    OutFile.Tabulate(AsmTab2);
    if (count != 1) {
        OutFile.PutDecimal(count);  OutFile.Put(" * ");
    }
    OutFile.PutDecimal(size);
}

void CDisassembler::WriteDataDirectiveMASM(uint32_t size) {
    // Write DB, etc., MASM syntax
    // Write data definition directive for appropriate size
    switch (size) {
    case 1:  OutFile.Put("db ");  break;
    case 2:  OutFile.Put("dw ");  break;
    case 4:  OutFile.Put("dd ");  break;
    case 6:  OutFile.Put("df ");  break;
    case 8:  OutFile.Put("dq ");  break;
    case 10: OutFile.Put("dt ");  break;
    case 16: OutFile.Put("xmmword ");  break;
    case 32: OutFile.Put("ymmword ");  break;
    default: OutFile.Put("Error ");  break;
    }
}

void CDisassembler::WriteDataDirectiveNASM(uint32_t size) {
    // Write DB, etc., NASM syntax
    // Write data definition directive for appropriate size
    switch (size) {
    case 1:  OutFile.Put("db ");  break;
    case 2:  OutFile.Put("dw ");  break;
    case 4:  OutFile.Put("dd ");  break;
    case 6:  OutFile.Put("df ");  break;
    case 8:  OutFile.Put("dq ");  break;
    case 10: OutFile.Put("dt ");  break;
    case 16: OutFile.Put("ddq ");  break;
    default: OutFile.Put("Error ");  break;
    }
}

void CDisassembler::WriteDataDirectiveGASM(uint32_t size) {
    // Write DB, etc., GAS syntax
    // Write data definition directive for appropriate size
    switch (size) {
    case 1:  OutFile.Put(".byte  ");  break;
    case 2:  OutFile.Put(".short ");  break;
    case 4:  OutFile.Put(".int   ");  break;
    case 8:  OutFile.Put(".quad  ");  break;
    case 10: OutFile.Put(".tfloat ");  break;
    default: OutFile.Put("Error ");  break;
    }
}


void CDisassembler::WriteDataComment(uint32_t ElementSize, uint32_t LinePos, uint32_t Pos, uint32_t irel) {
    // Write comment after data item
    uint32_t pos1;                            // Position of data for comment
    uint32_t RelType = 0;                     // Relocation type
    char TextBuffer[64];                    // Buffer for writing floating point number

    OutFile.Tabulate(AsmTab3);              // Tabulate to comment field
    OutFile.Put(CommentSeparator);          // Start comment

    // Write address
    if (SectionEnd + SectionAddress + (uint32_t)ImageBase > 0xFFFF) {
        // Write 32 bit address
        OutFile.PutHex(LinePos + SectionAddress + (uint32_t)ImageBase);
    }
    else {
        // Write 16 bit address
        OutFile.PutHex((uint16_t)(LinePos + SectionAddress));
    }

    if ((Sections[Section].Type & 0xFF) == 3 || Pos > Sections[Section].InitSize) {
        // Unitialized data. Write no data
        return;
    }

    if (irel && irel < Relocations.GetNumEntries() && Relocations[irel].Offset == LinePos) {
        // Value is relocated, get relocation type
        RelType = Relocations[irel].Type;
    }

    // Space after address
    OutFile.Put(" _ ");

    // Comment type depends on ElementSize and DataType
    switch (ElementSize) {
    case 1:
        // Bytes. Write ASCII characters
        for (pos1 = LinePos; pos1 < Pos; pos1++) {
            // Get character
            int8_t c = Get<int8_t>(pos1);
            // Avoid non-printable characters
            if (c < ' ' || c == 0x7F) c = '.';
            // Print ASCII character
            OutFile.Put(c);
        }
        break;
    case 2:
        // Words. Write as decimal
        for (pos1 = LinePos; pos1 < Pos; pos1 += 2) {
            if (RelType) {
                OutFile.PutHex(Get<uint16_t>(pos1), 1); // Write as hexadecimal
            }
            else {
                OutFile.PutDecimal(Get<int16_t>(pos1), 1);// Write as signed decimal
            }
            OutFile.Put(' ');
        }
        break;
    case 4:
        // Dwords      
        for (pos1 = LinePos; pos1 < Pos; pos1 += 4) {
            if ((DataType & 0x47) == 0x43) {
                // Write as float
                sprintf(TextBuffer, "%.8G", Get<float>(pos1));
                OutFile.Put(TextBuffer);
                // Make sure the number has a . or E to indicate a floating point number
                if (!strchr(TextBuffer,'.') && !strchr(TextBuffer,'E')) OutFile.Put(".0");
            }
            else if (((DataType + 1) & 0xFF) == 0x0C || RelType) {
                // jump/call address or offset. Write as hexadecimal
                OutFile.PutHex(Get<uint32_t>(pos1));
            }
            else {
                // Other. Write as decimal
                OutFile.PutDecimal(Get<int32_t>(pos1), 1);
            }
            OutFile.Put(' ');
        }
        break;                 
    case 8:
        // Qwords
        for (pos1 = LinePos; pos1 < Pos; pos1 += 8) {
            if ((DataType & 0x47) == 0x44) {
                // Write as double
                sprintf(TextBuffer, "%.16G", Get<double>(pos1));
                OutFile.Put(TextBuffer);
                // Make sure the number has a . or E to indicate a floating point number
                if (!strchr(TextBuffer,'.') && !strchr(TextBuffer,'E')) OutFile.Put(".0");
            }
            else {
                // Write as hexadecimal
                OutFile.PutHex(Get<uint64_t>(pos1));
            }
            OutFile.Put(' ');
        }
        break;
    case 10:
        // tbyte. Many compilers do not support long doubles in sprintf. Write as bytes
        for (pos1 = LinePos; pos1 < Pos; pos1++) {
            OutFile.PutHex(Get<uint8_t>(pos1), 1);
        }
        break;
    }
    if (RelType) {
        // Indicate relocation type
        OutFile.Put(Lookup(RelocationTypeNames, RelType));
    }
}


void CDisassembler::WriteRelocationTarget(uint32_t irel, uint32_t Context, int64_t Addend) {
    // Write cross reference, including addend, but not including segment override and []
    // irel = index into Relocations
    // Context:
    // 1      = Data definition
    // 2      = Immediate data field in instruction
    // 4      = Data address in instruction
    // 8      = Near jump/call destination
    // 0x10   = Far  jump/call destination
    // 0x100  = Self-relative address expected
    // Addend:  inline addend
    // Implicit parameters:
    // IBegin:  value of '$' operator
    // IEnd:    reference point for self-relative addressing
    // BaseReg, IndexReg

    uint32_t RefFrame;                    // Target segment
    int32_t  Addend2 = 0;                 // Difference between '$' and reference point

    // Get relocation type
    uint32_t RelType = Relocations[irel].Type;

    if (RelType & 0x60) {
        // Inline addend is already relocated. 
        // Ignore addend and treat as direct relocation
        RelType = 1;
        Addend = 0;
    }

    // Get relocation size
    uint32_t RelSize = Relocations[irel].Size;

    // Get relocation addend
    Addend += Relocations[irel].Addend;

    // Get relocation target
    uint32_t Target = Relocations[irel].TargetOldIndex;

    // Is offset operand needed?
    if (Syntax != SUBTYPE_NASM && (
        ((RelType & 0xB) && (Context & 2)) 
        || ((RelType & 8) && (Context & 0x108)))) {
            // offset operator needed to convert memory operand to immediate address
            OutFile.Put("offset ");
    }

    // Is seg operand needed?
    if (RelType & 0x200) {
        // seg operator needed to convert memory operand to its segment
        OutFile.Put("seg ");
    }

    // Is explicit segment or frame needed?
    if ((RelType & 0x408) && (Context & 0x11B)) {
        // Write name of segment/group frame
        RefFrame = Relocations[irel].RefOldIndex;
        if (!RefFrame) {
            // No frame. Use segment of symbol
            RefFrame = Symbols[Symbols.Old2NewIndex(Target)].Section;
        }
        if (RefFrame && RefFrame < Sections.GetNumEntries()) {
            // Write segment or group name
            const char * SecName = (char*)NameBuffer.Buf()+Sections[RefFrame].Name;
            OutFile.Put(SecName);
            OutFile.Put(":");
        }
    }

    // Is imagerel operator needed?
    if (RelType & 4) {
        // imagerel operator needed to get image-relative address
        OutFile.Put("imagerel(");
    }

    // Adjust addend
    // Adjust offset if self-relative relocation expected and found
    if ((RelType & 2) && (Context & 0x108)) {
        // Self-relative relocation expected and found
        // Adjust by size of address field and immediate field
        Addend += IEnd - Relocations[irel].Offset;
    }
    // Subtract self-reference if unexpected self-relative relocation
    if ((RelType & 2) && !(Context & 0x108)) {
        // Self-relative relocation found but not expected
        // Fix difference between '$' and reference point
        Addend2 = Relocations[irel].Offset - IBegin;
        Addend -= Addend2;
    }
    // Add self-reference if self-relative relocation expected but not found
    if (!(RelType & 2) && (Context & 0x108)) {
        // Self-relative relocation expected but not found
        // Fix difference between '$' and reference point
        Addend += IEnd - IBegin;
    }

    if (RelType & 0x100) {
        // Target is a segment
        RefFrame = Symbols[Symbols.Old2NewIndex(Target)].Section;
        if (RefFrame && RefFrame < Sections.GetNumEntries()) {
            const char * SecName = (char*)NameBuffer.Buf()+Sections[RefFrame].Name;
            OutFile.Put(SecName);
        }
        else {
            OutFile.Put("undefined segment");
        }
    }
    else {
        // Target is a symbol

        // Find target symbol
        uint32_t TargetSym = Symbols.Old2NewIndex(Target);

        // Check if Target is appropriate
        if (((Symbols[TargetSym].Type & 0x80000000) || (int32_t)Addend)
            && !(CodeMode == 1 && s.BaseReg)) {
                // Symbol is a start-of-section entry in symbol table, or has an addend
                // Look for a more appropriate symbol, except if code with base register
                uint32_t sym, sym1, sym2 = 0;
                sym1 = Symbols.FindByAddress(Symbols[TargetSym].Section, Symbols[TargetSym].Offset + (int32_t)Addend, &sym2);
                for (sym = sym1; sym && sym <= sym2; sym++) {
                    if (Symbols[sym].Scope && !(Symbols[sym].Type & 0x80000000)) {
                        // Found a better symbol name for target address
                        TargetSym = sym;
                        Addend = Addend2;
                    }
                }
        }
        // Write name of target symbol
        OutFile.Put(Symbols.GetName(TargetSym));

        if (Syntax == SUBTYPE_GASM && (
            RelType == 0x41 || RelType == 0x81 || RelType == 0x2002)) {
                // make PLT entry
                OutFile.Put("@PLT");
        }
    }

    // End parenthesis if we started one
    if (RelType & 4) {
        OutFile.Put(")");
    }

    // Subtract reference point, if any
    if (RelType & 0x10) {
        OutFile.Put("-");
        // Write name of segment/group frame
        uint32_t RefPoint = Relocations[irel].RefOldIndex;
        if (RefPoint) {
            // Reference point name valid
            OutFile.Put(Symbols.GetNameO(RefPoint));
        }
        else {
            OutFile.Put("Reference_Point_Missing");
        }
    }

    // Subtract self-reference if unexpected self-relative relocation
    if ((RelType & 2) && !(Context & 0x108)) {
        // Self-relative relocation found but not expected
        OutFile.Put("-"); OutFile.Put(HereOperator);
    }

    // Add self-reference if self-relative relocation expected but not found
    if (!(RelType & 2) && (Context & 0x108)) {
        // Self-relative relocation expected but not found
        OutFile.Put("+"); OutFile.Put(HereOperator);
    }

    // Write addend, if not zero
    if (Addend) {
        if (Addend < 0) {
            // Negative, write "-"
            OutFile.Put("-");
            Addend = -Addend;
        }
        else {
            // Positive, write "+"
            OutFile.Put("+");
        }

        // Write value as hexadecimal
        switch (RelSize) {
        case 1:
            OutFile.PutHex((uint8_t)Addend, 1);
            break;
        case 2:
            OutFile.PutHex((uint16_t)Addend, 2);
            break;
        case 4:
            OutFile.PutHex((uint32_t)Addend, 2);
            break;
        case 6:
            OutFile.PutHex((uint16_t)(Addend >> 32), 1);
            OutFile.Put(":");
            OutFile.PutHex((uint32_t)Addend, 1);
            break;
        case 8:
            OutFile.PutHex((uint64_t)Addend, 2);
            break;
        default:
            OutFile.Put("??"); // Should not occur
            break;
        }
    }
}


int CDisassembler::WriteFillers() {
    // Check if code is a series of NOPs or other fillers. 
    // If so then write it as filler and return 1.
    // If not, then return 0.

    // Check if code is filler
    if (!(OpcodeOptions & 0x40)) {
        // This instruction can not be used as filler
        return 0;
    }
    uint32_t FillerType;                            // Type of filler
    const char * FillerName = s.OpcodeDef->Name;  // Name of filler
    uint32_t IFillerBegin = IBegin;                 // Start of filling space
    uint32_t IFillerEnd;                            // End of filling space

    // check for CC = int 3 breakpoint, 3C00 = 90 NOP, 11F = multibyte NOP
    if (Opcodei == 0xCC || (Opcodei & 0xFFFE) == 0x3C00 || Opcodei == 0x11F) {
        // Instruction is a NOP or int 3 breakpoint
        FillerType = Opcodei;
    }
    else if (s.Warnings1 & 0x1000000) {
        // Instruction is a LEA, MOV, etc. with same source and destination
        // used as a multi-byte NOP
        FillerType = 0xFFFFFFFF;
    }
    else {
        // This instruction does something. Not a filler
        return 0;
    }
    // Save beginning position
    IFillerEnd = IEnd = IBegin;

    // Loop through instructions to find all consecutive fillers
    while (NextInstruction2()) {

        // Parse instruction
        ParseInstruction();

        // Check if code is filler
        if (!(OpcodeOptions & 0x40)) {
            // This instruction can not be a filler
            // Save position of this instruction
            IFillerEnd = IBegin;
            break;
        }
        if (Opcodei != 0xCC && (Opcodei & 0xFFFE) != 0x3C00 && Opcodei != 0x11F
            && !(s.Warnings1 & 0x1000000)) {
                // Not a filler
                // Save position of this instruction
                IFillerEnd = IBegin;
                break;
        }
        // If loop exits here then fillers end at end of this instruction
        IFillerEnd = IEnd;
    }
    // Safety check
    if (IFillerEnd <= IFillerBegin) return 0;

    // Size of fillers
    uint32_t FillerSize = IFillerEnd - IFillerBegin;

    // Write size of filling space
    OutFile.Put(CommentSeparator);
    OutFile.Put("Filling space: ");
    OutFile.PutHex(FillerSize, 2);
    OutFile.NewLine();
    // Write filler type
    OutFile.Put(CommentSeparator);
    OutFile.Put("Filler type: ");
    switch (FillerType) {
    case 0xCC:
        FillerName = "INT 3 Debug breakpoint"; break;
    case 0x3C00:
        FillerName = "NOP"; break;
    case 0x3C01:
        FillerName = "NOP with prefixes"; break;
    case 0x011F:
        FillerName = "Multi-byte NOP";break;
    }
    OutFile.Put(FillerName);
    if (FillerType == 0xFFFFFFFF) {
        OutFile.Put(" with same source and destination");
    }

    // Write as bytes
    uint32_t Pos;
    for (Pos = IFillerBegin; Pos < IFillerEnd; Pos++) {
        if (((Pos - IFillerBegin) & 7) == 0) {
            // Start new line
            OutFile.NewLine();
            OutFile.Put(CommentSeparator);
            OutFile.Tabulate(AsmTab1);
            OutFile.Put(Syntax == SUBTYPE_GASM ? ".byte " : "db ");
        }
        else {
            // Continue on same line
            OutFile.Put(", ");
        }
        // Write byte value
        OutFile.PutHex(Get<uint8_t>(Pos), 1);
    }
    // Blank line
    OutFile.NewLine(); OutFile.NewLine();

    // Find alignment
    uint32_t Alignment = 4;                         // Limit to 2^4 = 16

    // Check if first non-filler is aligned by this value
    while (Alignment && (IFillerEnd & ((1 << Alignment) - 1))) {
        // Not aligned by 2^Alignment
        Alignment--;
    }
    if (Alignment) {

        // Check if smaller alignment would do
        if (Alignment > 3 && FillerSize < 1u << (Alignment-1)) {
            // End is aligned by 16, but there are less than 8 filler bytes.
            // Change to align 8
            Alignment--;
        }
        // Write align directive
        WriteAlign(1 << Alignment);
        // Prevent writing ALIGN again
        FlagPrevious &= ~1;
    }

    // Restore IBegin and IEnd to beginning of first non-filler instruction
    IBegin = IEnd = IFillerEnd;

    if (LabelInaccessible == IFillerBegin && IFillerEnd < LabelEnd) {
        // Mark first instruction after filler as inaccessible
        LabelInaccessible = IFillerEnd;
    }

    // Return success. Fillers have been written. Don't write as normal instructions
    return 1;
}

void CDisassembler::WriteAlign(uint32_t a) {
    // Write alignment directive
    OutFile.Put(Syntax == SUBTYPE_GASM ? ".ALIGN" : "ALIGN");
    OutFile.Tabulate(AsmTab1);
    OutFile.PutDecimal(a);
    OutFile.NewLine();
}

void CDisassembler::WriteFileBegin() {
    // Write begin of file

    OutFile.SetFileType(FILETYPE_ASM);

    // Initial comment
    OutFile.Put(CommentSeparator);
    OutFile.Put("Disassembly of file: ");
    OutFile.Put(cmd.InputFile);
    OutFile.NewLine();
    // Date and time. 
    // Note: will fail after year 2038 on computers that use 32-bit time_t
    time_t time1 = time(0);
    char * timestring = ctime(&time1);
    if (timestring) {
        // Remove terminating '\n' in timestring
        for (char *c = timestring; *c; c++) {
            if (*c < ' ') *c = 0;
        }
        // Write date and time as comment
        OutFile.Put(CommentSeparator);
        OutFile.Put(timestring);
        OutFile.NewLine();
    }

    // Write type and mode
    OutFile.Put(CommentSeparator);
    OutFile.Put("Type: ");
    OutFile.Put(CFileBuffer::GetFileFormatName(cmd.InputType));
    OutFile.PutDecimal(WordSize);
    OutFile.NewLine();

    // Write syntax dialect
    OutFile.Put(CommentSeparator);
    OutFile.Put("Syntax: ");
    switch (Syntax) {
    case SUBTYPE_MASM:
        OutFile.Put(WordSize < 64 ? "MASM/ML" : "MASM/ML64");  break;
    case SUBTYPE_NASM:
        OutFile.Put("NASM");  break;
    case SUBTYPE_GASM:
        OutFile.Put("GAS(Intel)");  break;
    }
    OutFile.NewLine();

    // Write instruction set as comment
    // Instruction set is at least .386 if 32 bit mode
    if (InstructionSetMax < 3 && (MasmOptions & 0x200)) InstructionSetMax = 3;

    // Get name of basic instruction set
    const char * set0 = "";
    if (InstructionSetMax < InstructionSetNamesLen) {
        set0 = InstructionSetNames[InstructionSetMax];
    }

    // Write as comment
    OutFile.Put(CommentSeparator);
    OutFile.Put("Instruction set: ");
    OutFile.Put(set0);

    if (InstructionSetAMDMAX) {
        // Get name of any AMD-specific instruction set
        const char * setA = "";
        switch (InstructionSetAMDMAX) {
        case 1:  setA = "AMD 3DNow";   break;
        case 2:  setA = "AMD 3DNowE";  break;
        case 4:  setA = "AMD SSE4a";   break;
        case 5:  setA = "AMD XOP";     break;
        case 6:  setA = "AMD FMA4";    break;
        case 7:  setA = "AMD TBM";   break;
        }
        if (*setA) {
            OutFile.Put(", ");
            OutFile.Put(setA);
        }
    }
    // VIA instruction set:
    if (InstructionSetOR & 0x2000) OutFile.Put(", VIA");

    // Additional instruction sets:
    if (WordSize > 32) OutFile.Put(", x64");
    if (InstructionSetOR & 0x100) OutFile.Put(", 80x87");
    if (InstructionSetOR & 0x800) OutFile.Put(", privileged instructions");
    OutFile.NewLine();

    if (NamesChanged) {
        // Tell that symbol names have been changed
        OutFile.NewLine();
        OutFile.Put(CommentSeparator);
        OutFile.Put("Error: symbol names contain illegal characters,");
        OutFile.NewLine(); OutFile.Put(CommentSeparator);
        OutFile.PutDecimal(NamesChanged);
#if ReplaceIllegalChars
        OutFile.Put(" Symbol names changed");
#else
        OutFile.Put(" Symbol names not changed");
#endif
        OutFile.NewLine();
    }

    // Write syntax-specific initializations
    switch (Syntax) {
    case SUBTYPE_MASM:
        WriteFileBeginMASM();  
        WritePublicsAndExternalsMASM();
        break;
    case SUBTYPE_NASM:
        WriteFileBeginNASM();  
        WritePublicsAndExternalsNASMGASM();
        break;
    case SUBTYPE_GASM:
        WriteFileBeginGASM();
        WritePublicsAndExternalsNASMGASM();
        break;
    }
}


void CDisassembler::WriteFileBeginMASM() {
    // Write MASM-specific file init
    if (WordSize < 64) {
        // Write instruction set directive, except for 64 bit assembler
        const char * set1 = "";
        switch (InstructionSetMax) {
        case 0:  set1 = ".8086";  break;
        case 1:  set1 = ".186";  break;
        case 2:  set1 = ".286";  break;
        case 3:  set1 = ".386";  break;
        case 4:  set1 = ".486";  break;
        case 5:  set1 = ".586";  break;
        case 6: default:
            set1 = ".686";  break;
        }
        // Write basic instruction set
        OutFile.NewLine();
        OutFile.Put(set1);
        if (InstructionSetOR & 0x800) {
            // Privileged. Add "p"
            OutFile.Put("p");
        }
        OutFile.NewLine();
        // Write extended instruction set
        if (InstructionSetOR & 0x100) {
            // Floating point
            if (InstructionSetMax < 3) {
                OutFile.Put(".8087");  OutFile.NewLine();
            }
            else if (InstructionSetMax < 5) {
                OutFile.Put(".387");  OutFile.NewLine();
            }
        }
        if (InstructionSetMax >= 0x11) {
            // .xmm directive. Not differentiated between SSE, SSE2, etc.
            OutFile.Put(".xmm");  OutFile.NewLine();
        }
        else if (InstructionSetMax >= 7) {
            // .mmx directive
            OutFile.Put(".mmx");  OutFile.NewLine();
        }
    }
    if (MasmOptions & 1) {
        // Need dotname option
        OutFile.Put("option dotname");  OutFile.NewLine();
    }
    if (WordSize == 32) {
        // Write .model flat if 32 bit mode
        OutFile.Put(".model flat");  OutFile.NewLine();
    }
    // Initialize Assumes for segment registers
    if (!(MasmOptions & 0x100)) {
        // No 16-bit segments. Assume CS=DS=ES=SS=flat
        Assumes[0]=Assumes[1]=Assumes[2]=Assumes[3] = ASM_SEGMENT_FLAT;
    }
    else {
        // 16-bit segmented model. Segment register values unknown
        Assumes[0]=Assumes[1]=Assumes[2]=Assumes[3] = ASM_SEGMENT_UNKNOWN;
    }
    // FS and GS assumed to ERROR
    Assumes[4] = Assumes[5] = ASM_SEGMENT_ERROR;

    // Write assume if FS or GS used
    // This is superfluous because an assume directive will be written at first use of FS/GS
    if (MasmOptions & 2) {
        OutFile.Put("assume fs:nothing");  OutFile.NewLine();
    }
    if (MasmOptions & 4) {
        OutFile.Put("assume gs:nothing");  OutFile.NewLine();
    }
    OutFile.NewLine();                            // Blank line
}

void CDisassembler::WriteFileBeginNASM() {
    // Write NASM-specific file init
    OutFile.NewLine();
    if (WordSize == 64) {
        OutFile.Put("default rel"); OutFile.NewLine();
    }
    //if (InstructionSetMax >= 0x11) {OutFile.Put("%define xmmword  oword");  OutFile.NewLine();}
    //if (InstructionSetMax >= 0x19) {OutFile.Put("%define ymmword");  OutFile.NewLine();}
    OutFile.NewLine();
}

void CDisassembler::WriteFileBeginGASM() {
    // Write  GAS-specific file init
    OutFile.NewLine();
    OutFile.Put(CommentSeparator);
    OutFile.Put("Note: Uses Intel syntax with destination operand first. Remember to");
    OutFile.NewLine();
    OutFile.Put(CommentSeparator);
    OutFile.Put("put syntax directives in the beginning and end of inline assembly:");
    OutFile.NewLine();
    OutFile.Put(".intel_syntax noprefix ");
    OutFile.NewLine(); OutFile.NewLine();
}

void CDisassembler::WritePublicsAndExternalsMASM() {
    // Write public and external symbol definitions
    uint32_t i;                                     // Loop counter
    uint32_t LinesWritten = 0;                      // Count lines written
    const char * XName;                           // Name of external symbols

    // Loop through public symbols
    for (i = 0; i < Symbols.GetNumEntries(); i++) {
        if (Symbols[i].Scope & 0x1C) {
            // Symbol is public
            OutFile.Put("public ");
            // Write name
            OutFile.Put(Symbols.GetName(i));
            // Check if weak or communal
            if (Symbols[i].Scope & 0x18) {
                // Scope is weak or communal
                OutFile.Tabulate(AsmTab3);
                OutFile.Put(CommentSeparator);
                if (Symbols[i].Scope & 8) OutFile.Put("Note: Weak. Not supported by MASM ");
                if (Symbols[i].Scope & 0x10) OutFile.Put("Note: Communal. Not supported by MASM");
            }
            OutFile.NewLine();  LinesWritten++;
        }
    }
    // Blank line if anything written
    if (LinesWritten) {
        OutFile.NewLine();
        LinesWritten = 0;
    }
    // Loop through external symbols
    for (i = 0; i < Symbols.GetNumEntries(); i++) {

        if (Symbols[i].Scope & 0x20) {
            // Symbol is external
            OutFile.Put("extern ");
            // Get name
            XName = Symbols.GetName(i);
            // Check for dynamic import
            if (Symbols[i].DLLName && strncmp(XName, Symbols.ImportTablePrefix, (uint32_t)strlen(Symbols.ImportTablePrefix)) == 0) {
                // Remove "_imp" prefix from name
                XName += (uint32_t)strlen(Symbols.ImportTablePrefix);
            }

            // Write name
            OutFile.Put(XName);
            OutFile.Put(": ");

            // Write type
            if ((Symbols[i].Type & 0xFE) == 0x84) {
                // Far
                OutFile.Put("far");
            }
            else if ((Symbols[i].Type & 0xF0) == 0x80 || Symbols[i].DLLName) {
                // Near
                OutFile.Put("near");
            }
            else {
                // Data. Write size
                switch (GetDataItemSize(Symbols[i].Type)) {
                case 1: default: OutFile.Put("byte");  break;
                case 2: OutFile.Put("word");  break;
                case 4: OutFile.Put("dword");  break;
                case 6: OutFile.Put("fword");  break;
                case 8: OutFile.Put("qword");  break;
                case 10: OutFile.Put("tbyte");  break;
                case 16: OutFile.Put("xmmword");  break;
                case 32: OutFile.Put("ymmword");  break;
                }
            }
            // Add comment if DLL import
            if (Symbols[i].DLLName) {
                OutFile.Tabulate(AsmTab3);
                OutFile.Put(CommentSeparator);
                OutFile.Put(Symbols.GetDLLName(i));
            }
            // Finished line
            OutFile.NewLine();  LinesWritten++;
        }
    }
    // Blank line if anything written
    if (LinesWritten) {
        OutFile.NewLine();
        LinesWritten = 0;
    }
    // Write the value of any constants
    // Loop through symbols
    for (i = 0; i < Symbols.GetNumEntries(); i++) {
        // Local symbols included because there might be a rip-relative address to a named constant = 0
        if (Symbols[i].Section == ASM_SEGMENT_ABSOLUTE /*&& (Symbols[i].Scope & 0x1C)*/) {
            // Symbol is constant
            // Write name
            OutFile.Put(Symbols.GetName(i));
            OutFile.Put(" equ ");
            // Write value as hexadecimal
            OutFile.PutHex(Symbols[i].Offset, 1);
            // Write decimal value as comment
            OutFile.Tabulate(AsmTab3);
            OutFile.Put(CommentSeparator);
            OutFile.PutDecimal(Symbols[i].Offset, 1);
            OutFile.NewLine();  LinesWritten++;
        }
    }
    // Blank line if anything written
    if (LinesWritten) {
        OutFile.NewLine();
        LinesWritten = 0;
    }
    // Write any group definitions
    int32_t GroupId, SegmentId;
    // Loop through sections to search for group definitions
    for (GroupId = 1; GroupId < (int32_t)Sections.GetNumEntries(); GroupId++) {

        // Get section type
        uint32_t SectionType = Sections[GroupId].Type;
        if (SectionType & 0x800) {
            // This is a segment group definition
            // Count number of members
            uint32_t NumMembers = 0;
            // Write group name
            WriteSectionName(GroupId);
            // Write "group"
            OutFile.Put(" ");  OutFile.Tabulate(AsmTab1);  OutFile.Put("GROUP ");
            // Search for group members
            for (SegmentId = 1; SegmentId < (int32_t)Sections.GetNumEntries(); SegmentId++) {
                if (Sections[SegmentId].Group == GroupId && !(Sections[SegmentId].Type & 0x800)) {
                    // is this first member?
                    if (NumMembers++) {
                        // Not first member. Write comma
                        OutFile.Put(", ");
                    }
                    // Write group member
                    WriteSectionName(SegmentId);
                }
            }
            // End line
            OutFile.NewLine();  LinesWritten++;
        }
    }
    // Blank line if anything written
    if (LinesWritten) {
        OutFile.NewLine();
        LinesWritten = 0;
    }
}


void CDisassembler::WritePublicsAndExternalsNASMGASM() {
    // Write public and external symbol definitions, NASM and GAS syntax
    uint32_t i;                                     // Loop counter
    uint32_t LinesWritten = 0;                      // Count lines written
    const char * XName;                           // Name of external symbols

    // Loop through public symbols
    for (i = 0; i < Symbols.GetNumEntries(); i++) {
        if (Symbols[i].Scope & 0x1C) {
            // Symbol is public
            if (Syntax == SUBTYPE_GASM) OutFile.Put(".");
            OutFile.Put("global ");
            // Write name
            OutFile.Put(Symbols.GetName(i));

            // Write type
            if ((Symbols[i].Type & 0xF0) == 0x80) {         
                // Symbol is a function
                if (Syntax == SUBTYPE_NASM) { 
                    OutFile.Put(": function");
                }
                else if (Syntax == SUBTYPE_GASM) {
                    OutFile.NewLine();
                    OutFile.Put(".type ");
                    OutFile.Put(Symbols.GetName(i));
                    OutFile.Put(", @function");
                }
            }

            // Check if weak or communal
            if (Symbols[i].Scope & 0x18) {
                // Scope is weak or communal
                OutFile.Tabulate(AsmTab3);
                OutFile.Put(CommentSeparator);
                if (Symbols[i].Scope & 8) OutFile.Put("Note: Weak.");
                if (Symbols[i].Scope & 0x10) OutFile.Put("Note: Communal.");
            }
            OutFile.NewLine();  LinesWritten++;
        }
    }
    // Blank line if anything written
    if (LinesWritten) {
        OutFile.NewLine();
        LinesWritten = 0;
    }
    // Loop through external symbols
    for (i = 0; i < Symbols.GetNumEntries(); i++) {

        if (Symbols[i].Scope & 0x20) {
            // Symbol is external
            if (Syntax == SUBTYPE_GASM) OutFile.Put(".");
            OutFile.Put("extern ");
            // Get name
            XName = Symbols.GetName(i);
            // Check for dynamic import
            if (Symbols[i].DLLName && strncmp(XName, Symbols.ImportTablePrefix, (uint32_t)strlen(Symbols.ImportTablePrefix)) == 0) {
                // Remove "_imp" prefix from name
                XName += (uint32_t)strlen(Symbols.ImportTablePrefix);
            }
            // Write name
            OutFile.Put(XName);
            OutFile.Put(" ");
            OutFile.Tabulate(AsmTab3);
            OutFile.Put(CommentSeparator);

            // Write type
            if ((Symbols[i].Type & 0xFE) == 0x84) {
                // Far
                OutFile.Put("far");
            }
            else if ((Symbols[i].Type & 0xF0) == 0x80 || Symbols[i].DLLName) {
                // Near
                OutFile.Put("near");
            }
            else {
                // Data. Write size
                switch (GetDataItemSize(Symbols[i].Type)) {
                case 1: default: OutFile.Put("byte");  break;
                case 2: OutFile.Put("word");  break;
                case 4: OutFile.Put("dword");  break;
                case 6: OutFile.Put("fword");  break;
                case 8: OutFile.Put("qword");  break;
                case 10: OutFile.Put("tbyte");  break;
                case 16: OutFile.Put("xmmword");  break;
                case 32: OutFile.Put("ymmword");  break;
                }
            }
            // Add comment if DLL import
            if (Symbols[i].DLLName) {
                OutFile.Tabulate(AsmTab3);
                OutFile.Put(CommentSeparator);
                OutFile.Put(Symbols.GetDLLName(i));
            }
            // Finished line
            OutFile.NewLine();  LinesWritten++;
        }
    }
    // Blank line if anything written
    if (LinesWritten) {
        OutFile.NewLine();  LinesWritten = 0;
    }
    // Write the value of any constants
    // Loop through symbols
    for (i = 0; i < Symbols.GetNumEntries(); i++) {
        if (Symbols[i].Section == ASM_SEGMENT_ABSOLUTE /*&& (Symbols[i].Scope & 0x1C)*/) {
            // Symbol is constant
            if (Syntax == SUBTYPE_NASM) {
                // Write name equ value
                OutFile.Put(Symbols.GetName(i));
                OutFile.Put(" equ ");
            }
            else {
                // Gas: write .equ name, value
                OutFile.Put(".equ ");
                OutFile.Tabulate(AsmTab1);
                OutFile.Put(Symbols.GetName(i));
                OutFile.Put(", ");
            }
            // Write value as hexadecimal
            OutFile.PutHex(Symbols[i].Offset, 1);
            // Write decimal value as comment
            OutFile.Tabulate(AsmTab3);
            OutFile.Put(CommentSeparator);
            OutFile.PutDecimal(Symbols[i].Offset, 1);
            OutFile.NewLine();  LinesWritten++;
        }
    }
    // Blank line if anything written
    if (LinesWritten) {
        OutFile.NewLine();
        LinesWritten = 0;
    }
    // Write any group definitions
    int32_t GroupId, SegmentId;
    // Loop through sections to search for group definitions
    for (GroupId = 1; GroupId < (int32_t)Sections.GetNumEntries(); GroupId++) {
        // Get section type
        uint32_t SectionType = Sections[GroupId].Type;
        if (SectionType & 0x800) {
            // This is a segment group definition
            // Count number of members
            uint32_t NumMembers = 0;
            // Write group name
            WriteSectionName(GroupId);
            // Write "group"
            OutFile.Put(" ");  OutFile.Tabulate(AsmTab1);  OutFile.Put("GROUP ");
            // Search for group members
            for (SegmentId = 1; SegmentId < (int32_t)Sections.GetNumEntries(); SegmentId++) {
                if (Sections[SegmentId].Group == GroupId && !(Sections[SegmentId].Type & 0x800)) {
                    // is this first member?
                    if (NumMembers++) {
                        // Not first member. Write comma
                        OutFile.Put(", ");
                    }
                    // Write group member
                    WriteSectionName(SegmentId);
                }
            }
            // End line
            OutFile.NewLine();  LinesWritten++;
        }
    }
    // Blank line if anything written
    if (LinesWritten) {
        OutFile.NewLine();
        LinesWritten = 0;
    }
}


void CDisassembler::WriteFileEnd() {
    // Write end of file
    OutFile.NewLine();
    switch(Syntax) {
    case SUBTYPE_MASM:
        OutFile.Put("END");  break;
    case SUBTYPE_GASM:
        OutFile.Put(CommentSeparator);
        OutFile.Put("Return to AT&T syntax with destination operand last:");
        OutFile.NewLine();
        OutFile.Put(".att_syntax prefix ");
        OutFile.NewLine();
        break;
    case SUBTYPE_NASM:
        break;
    }
}


void CDisassembler::WriteSegmentBegin() {
    // Write begin of segment
    // Choose dialect
    switch (Syntax) {
    case SUBTYPE_MASM:
        WriteSegmentBeginMASM();  break;
    case SUBTYPE_NASM:
        WriteSegmentBeginNASM();  break;
    case SUBTYPE_GASM:
        WriteSegmentBeginGASM();  break;
    }
}


void CDisassembler::WriteSegmentBeginMASM() {
    // Write begin of segment
    OutFile.NewLine();                            // Blank line

    // Check if Section is valid
    if (Section == 0 || Section >= Sections.GetNumEntries()) {
        // Illegal segment entry
        OutFile.Put("UNKNOWN SEGMENT");  OutFile.NewLine(); 
        return;
    }

    // Write segment name
    WriteSectionName(Section);
    // Tabulate
    OutFile.Put(" "); OutFile.Tabulate(AsmTab1);
    // Write "segment"
    OutFile.Put("SEGMENT ");

    // Write alignment
    switch (Sections[Section].Align) {
    case 0:  // 1
        OutFile.Put("BYTE ");  break;
    case 1:  // 2
        OutFile.Put("WORD ");  break;
    case 2:  // 4
        OutFile.Put("DWORD ");  break;
    case 4:  // 16
        OutFile.Put("PARA ");  break;
        //case 8:  // 256 or 4096. Definition is ambiguous!
        //   OutFile.Put("PAGE ");  break;
    default:
        // Non-standard alignment
        OutFile.Put("ALIGN("); 
        OutFile.PutDecimal(1 << Sections[Section].Align); 
        OutFile.Put(") "); 
        break;
    }
    if (WordSize != 64) {
        // "PUBLIC" not supported by ml64 assembler
        OutFile.Put("PUBLIC ");
        // Write segment word size if necessary
        if (MasmOptions & 0x100) {
            // There is at least one 16-bit segment. Write segment word size
            OutFile.Put("USE"); 
            OutFile.PutDecimal(Sections[Section].WordSize);
            OutFile.Put(" "); 
        }
    }
    // Write segment class
    switch (Sections[Section].Type & 0xFF) {
    case 1:
        OutFile.Put("'CODE'");   break;
    case 2:
        OutFile.Put("'DATA'");   break;
    case 3:
        OutFile.Put("'BSS'");    break;
    case 4:
        OutFile.Put("'CONST'");  break;
    default:;
        // Unknown class. Write nothing
    }

    // Tabulate to comment
    OutFile.Put(" ");  OutFile.Tabulate(AsmTab3);
    OutFile.Put(CommentSeparator);
    // Write section number
    OutFile.Put("section number ");  
    OutFile.PutDecimal(Section);

    // New line
    OutFile.NewLine();

    if (Sections[Section].Type & 0x1000) {
        // Communal
        OutFile.Put(CommentSeparator);
        OutFile.Put(" Communal section not supported by MASM");
        OutFile.NewLine();
    }

    if (WordSize == 16 && Sections[Section].Type == 1) {
        // 16 bit code segment. Write ASSUME CS: SEGMENTNAME
        OutFile.Put("ASSUME ");
        OutFile.Tabulate(AsmTab1);
        OutFile.Put("CS:");
        if (Sections[Section].Group) {
            // Group name takes precedence over segment name
            WriteSectionName(Sections[Section].Group);
        }
        else {
            WriteSectionName(Section);
        }
        OutFile.NewLine();
        Assumes[1] = Section;
    }
}

void CDisassembler::WriteSegmentBeginNASM() {
    // Write begin of segment
    OutFile.NewLine();                            // Blank line

    // Check if Section is valid
    if (Section == 0 || Section >= Sections.GetNumEntries()) {
        // Illegal segment entry
        OutFile.Put("UNKNOWN SEGMENT");  OutFile.NewLine(); 
        return;
    }

    // Write SECTION directive
    OutFile.Put("SECTION ");   
    // Write segment name
    WriteSectionName(Section);
    // Tabulate
    OutFile.Put(" ");  OutFile.Tabulate(AsmTab2);
    OutFile.Put("align=");
    OutFile.PutDecimal(1 << Sections[Section].Align);
    if (Sections[Section].WordSize != WordSize) {
        OutFile.Put(" use");
        OutFile.PutDecimal(Sections[Section].WordSize);
    }
    if ((Sections[Section].Type & 0xFF) == 1) {
        OutFile.Put(" exec");
    }
    else {
        OutFile.Put(" noexec");
    }

    // Tabulate to comment
    OutFile.Put(" ");  OutFile.Tabulate(AsmTab3);
    OutFile.Put(CommentSeparator);
    // Write section number
    OutFile.Put("section number ");  
    OutFile.PutDecimal(Section);
    // Write type
    OutFile.Put(", ");
    switch (Sections[Section].Type & 0xFF) {
    case 1: OutFile.Put("code");  break;
    case 2: OutFile.Put("data");  break;
    case 3: OutFile.Put("bss");  break;
    case 4: OutFile.Put("const");  break;
    default: OutFile.Put("unknown type: ");  
        OutFile.PutHex(Sections[Section].Type & 0xFF);        
        break;
    }

    // New line
    OutFile.NewLine();

    if (Sections[Section].Type & 0x1000) {
        // Communal
        OutFile.Put(CommentSeparator);
        OutFile.Put(" Communal section not supported by NASM");
        OutFile.NewLine();
    }
}

void CDisassembler::WriteSegmentBeginGASM() {
    // Write begin of segment
    uint32_t Type;                                  // Section type

    OutFile.NewLine();                            // Blank line

    // Check if Section is valid
    if (Section == 0 || Section >= Sections.GetNumEntries()) {
        // Illegal segment entry
        OutFile.Put("UNKNOWN SEGMENT");  OutFile.NewLine(); 
        return;
    }

    // Write SECTION directive
    OutFile.Put(".SECTION ");
    OutFile.Tabulate(AsmTab1);
    // Write segment name
    WriteSectionName(Section);
    // Tabulate
    OutFile.Put(" ");  OutFile.Tabulate(AsmTab2);
    // Flags not supported by all versions of Gas. Put as comment:
    OutFile.Put(CommentSeparator);
    // Write flags
    OutFile.Put('"');
    Type = Sections[Section].Type & 0xFF;
    if (Type) OutFile.Put('a');                   // Allocatable
    if (Type != 1 && Type != 4) OutFile.Put('w'); // Writeable
    if (Type == 1) OutFile.Put('x');              // Executable
    OutFile.Put('"');
    if (Type) OutFile.Put(", @progbits");         // Allocatable

    // Tabulate to comment
    OutFile.Put(" ");  OutFile.Tabulate(AsmTab3);
    OutFile.Put(CommentSeparator);
    // Write section number
    OutFile.Put("section number ");  
    OutFile.PutDecimal(Section);
    // Write type
    OutFile.Put(", ");
    switch (Sections[Section].Type & 0xFF) {
    case 1: OutFile.Put("code");  break;
    case 2: OutFile.Put("data");  break;
    case 3: OutFile.Put("bss");  break;
    case 4: OutFile.Put("const");  break;
    default: OutFile.Put("unknown");  break;
    }
    OutFile.NewLine();                            // Blank line
    if (Sections[Section].Type & 0x1000) {
        // Communal
        OutFile.Put(CommentSeparator);
        OutFile.Put(" Communal section ");
        OutFile.NewLine();
    }

    // Write alignment
    OutFile.Tabulate(AsmTab1);
    OutFile.Put(".ALIGN");
    OutFile.Tabulate(AsmTab2);
    OutFile.PutDecimal(1 << Sections[Section].Align);

    // New line
    OutFile.NewLine();
}


void CDisassembler::WriteSegmentEnd() {
    // Write end of segment
    OutFile.NewLine();

    if (Syntax != SUBTYPE_MASM) {
        // Not MASM syntax, write only blank line
        return;
    }

    // Check if Section is valid
    if (Section == 0 || Section >= Sections.GetNumEntries()) {
        // Illegal segment entry
        OutFile.Put("UNKNOWN ENDS");  OutFile.NewLine(); 
        return;
    }

    // Write segment name
    const char * segname = (char*)NameBuffer.Buf() + Sections[Section].Name;
    OutFile.Put(segname);

    // Tabulate
    OutFile.Put(" "); OutFile.Tabulate(AsmTab1);
    // Write "segment"
    OutFile.Put("ENDS");
    // New line
    OutFile.NewLine();
}



void CDisassembler::WriteFunctionBegin() {
    // Write begin of function IFunction

    // Check if IFunction is valid
    if (IFunction == 0 || IFunction >= FunctionList.GetNumEntries()) {
        // Should not occur
        OutFile.Put(CommentSeparator);
        OutFile.Put("Internal error: undefined function begin");
        return;
    }

    // Get symbol old index
    uint32_t symi = FunctionList[IFunction].OldSymbolIndex;

    // Get symbol record
    uint32_t SymI = Symbols.Old2NewIndex(symi);

    OutFile.NewLine();                        // Blank line

    // Remember that symbol has been written
    Symbols[SymI].Scope |= 0x100;

    // Check alignment if preceded by NOP
    if ((FlagPrevious & 1) && (IBegin & 0x0F) == 0 && Sections[Section].Align >= 4) {
        WriteAlign(16);
    }

    if (Symbols[SymI].Name == 0) {
        // Has no name. Probably only NOP fillers
        return;
    }

    // Write function name etc.
    switch (Syntax) {
    case SUBTYPE_MASM:
        WriteFunctionBeginMASM(SymI, Symbols[SymI].Scope);  break;
    case SUBTYPE_NASM:
        WriteFunctionBeginNASM(SymI, Symbols[SymI].Scope);  break;
    case SUBTYPE_GASM:
        WriteFunctionBeginGASM(SymI, Symbols[SymI].Scope);  break;
    }
}

void CDisassembler::WriteFunctionBeginMASM(uint32_t symi, uint32_t scope) {
    // Write begin of function, MASM syntax
    // Write name
    WriteSymbolName(symi);
    // Space
    OutFile.Put(" "); OutFile.Tabulate(AsmTab1);

    if (scope & 0x1C) {
        // Scope is public
        // Write "PROC"
        OutFile.Put("PROC");
        // Write "NEAR" unless 64 bit mode
        if (WordSize < 64) OutFile.Put(" NEAR");
        // Check if weak
        if (scope & 8) {
            OutFile.NewLine();
            OutFile.Put(CommentSeparator);
            OutFile.Put(" WEAK ");
            WriteSymbolName(symi);
        }
        // Check if communal
        if (scope & 0x10) {
            OutFile.NewLine();
            OutFile.Put(CommentSeparator);
            OutFile.Put(" COMDEF ");
            WriteSymbolName(symi);
        }
    }
    else {
        // Scope is local
        OutFile.Put("LABEL NEAR");
    }
    // Check if Gnu indirect
    if (Symbols[symi].Type & 0x40000000) {
        OutFile.Put(CommentSeparator);
        OutFile.Put("Gnu indirect function"); // Cannot be represented in Masm syntax
    }
    // End line
    OutFile.NewLine();
}

void CDisassembler::WriteFunctionBeginNASM(uint32_t symi, uint32_t scope) {
    // Write begin of function, NASM syntax
    // Write name
    WriteSymbolName(symi);
    // Colon
    OutFile.Put(":"); OutFile.Tabulate(AsmTab1);

    if (scope & 0x1C) {
        // Scope is public
        // Write comment
        OutFile.Put(CommentSeparator);
        OutFile.Put("Function begin");
        // Check if weak
        if (scope & 8) {
            OutFile.Put(", weak");
        }
        // Check if communal
        if (scope & 0x10) {
            OutFile.Put(", communal");
        }
    }
    else {
        // Scope is local. Write comment
        OutFile.Put(CommentSeparator);
        OutFile.Put("Local function");
    }
    // Check if Gnu indirect
    if (Symbols[symi].Type & 0x40000000) {
        OutFile.Put(CommentSeparator);
        OutFile.Put("Gnu indirect function"); // Cannot be represented in NASM/YASM syntax
    }
    // End line
    OutFile.NewLine();
}

void CDisassembler::WriteFunctionBeginGASM(uint32_t symi, uint32_t scope) {
    // Write begin of function, GAS syntax
    WriteSymbolName(symi);                        // Write name
    OutFile.Put(":"); 
    OutFile.Tabulate(AsmTab3);  OutFile.Put(CommentSeparator);
    if (scope & 3) OutFile.Put("Local ");
    if (scope & 8) OutFile.Put("weak ");
    if (scope & 0x10) OutFile.Put("communal ");
    OutFile.Put("Function");
    OutFile.NewLine();
    OutFile.Tabulate(AsmTab1);
    OutFile.Put(".type ");
    OutFile.Tabulate(AsmTab2);
    WriteSymbolName(symi); // Write name
    if (Symbols[symi].Type & 0x40000000) {
        OutFile.Put(", @gnu_indirect_function");
    }
    else {
        OutFile.Put(", @function");
    }
    OutFile.NewLine();
}


void CDisassembler::WriteFunctionEnd() {
    // Write end of function

    // Check if IFunction is valid
    if (IFunction == 0 || IFunction >= FunctionList.GetNumEntries()) {
        // Should not occur
        OutFile.Put(CommentSeparator);
        OutFile.Put("Internal error: undefined function end");
        return;
    }

    // Get symbol index
    uint32_t SymOldI = FunctionList[IFunction].OldSymbolIndex;
    uint32_t SymNewI = Symbols.Old2NewIndex(SymOldI);

    // check scope
    if (Symbols[SymNewI].Scope & 0x1C) {
        // Has public scope. Write end of function
        switch (Syntax) {
        case SUBTYPE_MASM:
            WriteFunctionEndMASM(SymNewI);  break;
        case SUBTYPE_NASM:
            WriteFunctionEndNASM(SymNewI);  break;
        case SUBTYPE_GASM:
            WriteFunctionEndGASM(SymNewI);  break;
        }
    }
}

void CDisassembler::WriteFunctionEndMASM(uint32_t symi) {
    // Write end of function, MASM syntax
    // Write name
    WriteSymbolName(symi);

    // Space
    OutFile.Put(" "); OutFile.Tabulate(AsmTab1);
    // Write "ENDP"
    OutFile.Put("ENDP");
    OutFile.NewLine();
}

void CDisassembler::WriteFunctionEndNASM(uint32_t symi) {
    // Write end of function, NASM syntax
    // Write comment
    OutFile.Put(CommentSeparator);
    // Write name
    WriteSymbolName(symi);
    OutFile.Put(" End of function");
    OutFile.NewLine();
}

void CDisassembler::WriteFunctionEndGASM(uint32_t symi){
    // Write end of function, GAS syntax
    // Write .size directive
    OutFile.Tabulate(AsmTab1);
    OutFile.Put(".size ");
    OutFile.Tabulate(AsmTab2);
    WriteSymbolName(symi);                        // Name of function
    OutFile.Put(", . - ");
    WriteSymbolName(symi);                        // Name of function
    OutFile.Tabulate(AsmTab3);
    OutFile.Put(CommentSeparator);
    OutFile.Put("End of function is probably here");
    OutFile.NewLine();
}


void CDisassembler::WriteCodeLabel(uint32_t symi) {
    // Write private or public code label. symi is new symbol index

    // Get scope
    uint32_t Scope = Symbols[symi].Scope;

    // Check scope
    if (Scope & 0x100) return;                    // Has been written as function begin

    if (Scope == 0) {
        // Inaccessible. No name. Make blank line
        OutFile.NewLine();
        // Remember position for warning check
        LabelInaccessible = IBegin;
        return;
    }

    // Begin on new line if preceded by another symbol
    if (OutFile.GetColumn()) OutFile.NewLine(); 

    // Check alignment if preceded by NOP
    if ((Scope & 0xFF) > 1 && (FlagPrevious & 1) && (IBegin & 0x0F) == 0 && Sections[Section].Align >= 4) {
        WriteAlign(16);
    }

    switch (Syntax) {
    case SUBTYPE_MASM:
        WriteCodeLabelMASM(symi, Symbols[symi].Scope);  break;
    case SUBTYPE_NASM:
        WriteCodeLabelNASM(symi, Symbols[symi].Scope);  break;
    case SUBTYPE_GASM:
        WriteCodeLabelGASM(symi, Symbols[symi].Scope);  break;
    }

    // Remember this has been written
    Symbols[symi].Scope |= 0x100;
}


void CDisassembler::WriteCodeLabelMASM(uint32_t symi, uint32_t scope) {
    // Write private or public code label, MASM syntax
    if ((scope & 0xFF) > 1) {
        // Scope > function local. Write as label near
        // Check if extra linefeed needed
        // if (!(IFunction && FunctionList[IFunction].Start == IBegin)) 
        // New line
        OutFile.NewLine();

        // Write name
        WriteSymbolName(symi);
        // Space
        OutFile.Put(" "); OutFile.Tabulate(AsmTab1);
        // Write "LABEL"
        OutFile.Put("LABEL");
        // Write "NEAR" even 64 bit mode
        OutFile.Put(" NEAR");
        // New line
        OutFile.NewLine();

        // Check if weak
        if (scope & 8) {
            OutFile.Put(CommentSeparator);
            OutFile.Put(" WEAK ");
            WriteSymbolName(symi);
            OutFile.NewLine();
        }
        // Check if communal
        if (scope & 0x10) {
            OutFile.Put(CommentSeparator);
            OutFile.Put(" COMDEF ");
            WriteSymbolName(symi);
            OutFile.NewLine();
        }
    }
    else {
        // Symbol is local to current function. Write name with colon
        if (FlagPrevious & 2) {
            // Insert blank line if previous instruction was unconditional jump or return
            OutFile.NewLine();
        }
        // Write name
        WriteSymbolName(symi);
        // Write ":"
        OutFile.Put(":");
        if (OutFile.GetColumn() > AsmTab1) {
            // Past tabstop. Go to next line
            OutFile.NewLine();                   // New line
        }
    }
}

void CDisassembler::WriteCodeLabelNASM(uint32_t symi, uint32_t scope) {
    // Write private or public code label, NASM syntax
    if ((scope & 0xFF) > 2) {
        // Scope is public
        OutFile.NewLine();
        // Write name
        WriteSymbolName(symi);
        OutFile.Put(":");

        // Check if weak
        if (scope & 8) {
            OutFile.Put(CommentSeparator);
            OutFile.Put(" weak ");
            WriteSymbolName(symi);
        }
        // Check if communal
        if (scope & 0x10) {
            OutFile.Put(CommentSeparator);
            OutFile.Put(" communal ");
            WriteSymbolName(symi);
        }
        OutFile.NewLine();
    }
    else {
        // Symbol is local to current function. Write name with colon
        if (FlagPrevious & 2) {
            // Insert blank line if previous instruction was unconditional jump or return
            OutFile.NewLine();
        }
        // Write name
        WriteSymbolName(symi);
        // Write ":"
        OutFile.Put(":");
        if (OutFile.GetColumn() > AsmTab1) {
            // Past tabstop. Go to next line
            OutFile.NewLine();                   // New line
        }
    }
}

void CDisassembler::WriteCodeLabelGASM(uint32_t symi, uint32_t scope) {
    // Write private or public code label, GAS syntax same as NASM syntax
    WriteCodeLabelNASM(symi, scope);
}

void CDisassembler::WriteAssume() {
    // Write assume directive for segment register if MASM syntax
    if (Syntax != SUBTYPE_MASM) return;
    if (!s.AddressField) return;

    int32_t SegReg, PrefixSeg;                      // Segment register used
    uint32_t symo;                                  // Target symbol old index
    uint32_t symi;                                  // Target symbol new index
    int32_t TargetSegment;                          // Target segment/section
    int32_t TargetGroup;                            // Group containing target segment

    // Find which segment register is used for addressing memory operand
    SegReg = 3;  // DS is default
    if (s.BaseReg == 4+1 || s.BaseReg == 5+1) {
        // Base register is (E)BP or ESP
        SegReg = 2;     // SS register used unless there is a prefix
    }
    if (s.Prefixes[0]) {
        // There is a segment prefix
        PrefixSeg = GetSegmentRegisterFromPrefix();
        if (PrefixSeg >= 0 && PrefixSeg <= 5) {
            // Segment prefix is valid. Segment determined by segment prefix
            SegReg = PrefixSeg;
        }
    }
    // Default target segment is none
    TargetSegment = TargetGroup = 0;

    // Find symbol referenced by next instruction
    if (s.AddressRelocation && s.AddressRelocation < Relocations.GetNumEntries()) {
        symo = Relocations[s.AddressRelocation].TargetOldIndex; // Target symbol old index
        if (symo) {
            symi = Symbols.Old2NewIndex(symo);                   // Target symbol new index
            if (symi) {
                TargetSegment = Symbols[symi].Section;            // Target segment
                if (TargetSegment < 0 || TargetSegment >= (int32_t)Sections.GetNumEntries()) {
                    TargetSegment = 0;
                }
                else {
                    TargetGroup = Sections[TargetSegment].Group;   // Group containing target segment
                    if (TargetGroup <= ASM_SEGMENT_ERROR || TargetGroup >= (int32_t)Sections.GetNumEntries()) {
                        TargetGroup = 0;
                    }
                }
            }
        }
    }
    if (TargetSegment) {
        // Target has a segment. Check if it is different from currently assumed segment
        if (TargetSegment != Assumes[SegReg] && TargetGroup != Assumes[SegReg]) {
            // Assume directive needed
            // If segment belongs to a group then the group takes precedence
            if (TargetGroup) TargetSegment = TargetGroup;
            // Write assume directive
            OutFile.Put("ASSUME ");
            OutFile.Tabulate(AsmTab1);
            OutFile.Put(RegisterNamesSeg[SegReg]);  // Name of segment register used
            OutFile.Put(":");
            WriteSectionName(TargetSegment);        // Name of segment or group referenced
            OutFile.NewLine();
            Assumes[SegReg] = TargetSegment;
        }
    }
    else {
        // Target segment not specified. Assumed value may be anyting but 'error'
        if (Assumes[SegReg] <= ASM_SEGMENT_ERROR) {
            // Segment register is assumed to 'error'. Change assume to 'nothing'
            OutFile.Put("ASSUME ");
            OutFile.Tabulate(AsmTab1);
            OutFile.Put(RegisterNamesSeg[SegReg]);  // Name of segment register used
            OutFile.Put(":NOTHING");
            OutFile.NewLine();
            Assumes[SegReg] = ASM_SEGMENT_NOTHING;
        }
    }
}


void CDisassembler::WriteInstruction() {
    // Write instruction and operands
    uint32_t NumOperands = 0;                       // Number of operands written
    uint32_t i;                                     // Loop index
    const char * OpName;                          // Opcode name

    if (s.AddressFieldSize && Syntax == SUBTYPE_MASM) {
        // There is a memory operand. Check if ASSUME directive needed
        WriteAssume();
    }

    if (CodeMode & 6) {
        // Code is dubious. Show as comment only
        OutFile.Put(CommentSeparator);             // Start comment
    }
    else if ((s.OpcodeDef->Options & 0x20) && s.OpcodeStart1 > IBegin) {
        // Write prefixes explicitly. 
        // This is used for rare cases where the assembler cannot generate the prefix
        OutFile.Tabulate(AsmTab1);                 // Tabulate
        OutFile.Put(Syntax == SUBTYPE_GASM ? ".byte " : "DB ");
        OutFile.Tabulate(AsmTab2);                 // Tabulate
        for (i = IBegin; i < s.OpcodeStart1; i++) {
            if (i > IBegin) OutFile.Put(", ");
            OutFile.PutHex(Get<uint8_t>(i), 1);
        }
        OutFile.Tabulate(AsmTab3);                 // Tabulate
        OutFile.Put(CommentSeparator);
        if ((s.OpcodeDef->AllowedPrefixes & 8) && Get<uint8_t>(IBegin) == 0xF2) {
            OutFile.Put("BND prefix coded explicitly");    // Comment
        }
        else {        
            OutFile.Put("Prefix coded explicitly");    // Comment
        }
        OutFile.NewLine();
    }

    if ((s.Operands[0] & 0xF0) == 0xC0 || (s.Operands[1] & 0xF0) == 0xC0) {
        // String instruction or xlat instruction
        WriteStringInstruction();
        return;
    }

    OutFile.Tabulate(AsmTab1);                     // Tabulate

    if ((s.OpcodeDef->AllowedPrefixes & 0xC40) == 0xC40) {
        switch (s.Prefixes[5]) {
        case 0xF2:
            OutFile.Put("xacquire ");  break;      // xacquire prefix
        case 0xF3:
            OutFile.Put("xrelease ");  break;      // xrelease prefix
        }
    }
    if (s.Prefixes[2]) {
        OutFile.Put("lock ");                      // Lock prefix
    }

    // Get opcode name
    if (s.OpcodeDef->Name) {
        // Opcode name
        OpName = s.OpcodeDef->Name;
        // Search for opcode comment
        s.OpComment = strchr(OpName, ';');
        if (s.OpComment) s.OpComment++;            // Point to after ';'
    }
    else {
        OpName = "UNDEFINED";                      // Undefined code with no name
        s.OpComment = 0;
    }

    // Check prefix option
    if ((s.OpcodeDef->Options & 2) && (s.Prefixes[7] & 0x30)) {
        // Put prefix 'v' for VEX-prefixed instruction
        OutFile.Put('v');
    }

    // Write opcode name
    if (s.OpComment) {
        // OpName string contains opcode name and comment, separated by ';'
        while (*OpName != ';' && *OpName != 0) {   // Write opcode name until comment
            OutFile.Put(*(OpName++));
        }
    }
    else {
        OutFile.Put(OpName);                       // Write normal opcode name
    }

    // Check suffix option
    if (s.OpcodeDef->Options & 1) {
        // Append suffix for operand size or type to name
        if ((s.OpcodeDef->AllowedPrefixes & 0x7000) == 0x1000) {
            // F.P. operand size defined by W prefix bit
            i = s.Prefixes[7] & 8;  // W prefix bit
            OutFile.Put(i ? 'd' : 's');
        }
        else if ((s.OpcodeDef->AllowedPrefixes & 0x7000) == 0x3000) {
            // Integer or f.p. operand size defined by W prefix bit
            bool f = false;
            // Find out if operands are integer or f.p.
            for (i = 0; i < s.MaxNumOperands; i++) {
                if ((s.Operands[i] & 0xF0) == 0x40) {
                    f = true; break;
                }
            }
            i = s.Prefixes[7] & 8;  // W prefix bit
            if (f) {
                OutFile.Put(i ? 'd' : 's');  // float precision suffix
            }
            else {            
                OutFile.Put(i ? 'q' : 'd');  // integer size suffix
            }
        }
        else if ((s.OpcodeDef->AllowedPrefixes & 0x7000) == 0x4000) {
            // Integer operand size defined by W prefix bit
            i = s.Prefixes[7] & 8;  // W prefix bit
            OutFile.Put(i ? 'w' : 'b');
        }
        else if ((s.OpcodeDef->AllowedPrefixes & 0x7000) == 0x5000) {
            // mask register operand size defined by W prefix bit and 66 prefix
            i  = (s.Prefixes[7] & 8) >> 2;      // W prefix bit
            i |= s.Prefixes[5] != 0x66;         // 66 prefix bit
            OutFile.Put("bwdq"[i]);
        }
        else if (s.OpcodeDef->AllowedPrefixes & 0xE00) {
            // F.P. operand type and size defined by prefixes
            switch (s.Prefixes[5]) {
            case 0:     // No prefix = ps
                OutFile.Put("ps");  break;
            case 0x66:  // 66 prefix = pd
                OutFile.Put("pd");  break;
            case 0xF3:  // F3 prefix = ss
                OutFile.Put("ss");  break;
            case 0xF2:  // F2 prefix = sd
                OutFile.Put("sd");  break;
            default:
                err.submit(9000); // Should not occur
            }
        }
        else if (s.OpcodeDef->AllowedPrefixes & 0x100){
            // Integer operand size defined by prefixes
            // Suffix for operand size
            i = s.OperandSize / 8;
            if (i <= 8) {
                static const char SizeSuffixes[] = " bw d f q"; // Table of suffixes
                OutFile.Put(SizeSuffixes[i]);
            }
        }
    }
    // Alternative suffix option
    if (s.OpcodeDef->Options & 0x1000) {
        // Append alternative suffix for vector element size to name
        if ((s.OpcodeDef->AllowedPrefixes & 0x7000) == 0x3000) {
            // Integer operand size defined by W prefix bit
            i = ((s.Prefixes[7] & 8) + 8) * 4;  // W prefix bit -> 8 / 16
            OutFile.PutDecimal(i);
        }
        if ((s.OpcodeDef->AllowedPrefixes & 0x7000) == 0x4000) { // 32 / 64
            i = (s.Prefixes[7] & 8) + 8;  // W prefix bit -> 8 / 16
            OutFile.PutDecimal(i);
        }
    }
    // More suffix option
    if ((s.OpcodeDef->Options & 0x400) && s.ImmediateFieldSize == 8) {
        // 64 bit immediate mov
        if (Syntax == SUBTYPE_GASM) OutFile.Put("abs");
    }   

    // Space between opcode name and operands
    OutFile.Put(" "); OutFile.Tabulate(AsmTab2);  // Tabulate. At least one space

    // Loop for all operands to write
    for (i = 0; i < s.MaxNumOperands; i++) {
        if (s.Operands[i] & 0xFFFF) {

            // Write operand i
            if (NumOperands++) {
                // At least one operand before this one. Separate by ", "
                OutFile.Put(", ");
            }

            // Write constant and jump operands
            switch (s.Operands[i] & 0xF0) {
            case 0x10: case 0x20: case 0x30: case 0x80:
                WriteImmediateOperand(s.Operands[i]);
                continue;
            }

            // Write register and memory operands
            uint32_t optype = (s.Operands[i] >> 16) & 0x0F;
            switch (optype) {
            case 0:        // Other type of operand
                WriteOtherOperand(s.Operands[i]);  break;

            case 0x1:  // Direct memory operand
                WriteRMOperand(s.Operands[i]);  break;

            case 0x2:  // Register operand indicated by last bits of opcode
                WriteShortRegOperand(s.Operands[i]);  break;

            case 0x3:  // Register or memory operand indicated by mod/rm bits
                WriteRMOperand(s.Operands[i]);  break;

            case 0x4:  // Register operand indicated by reg bits
                WriteRegOperand(s.Operands[i]);  break;

            case 0x5:  // Register operand indicated by dest bits of DREX byte
                WriteDREXOperand(s.Operands[i]);  break;

            case 0x6:  // Register operand indicated by VEX.vvvv bits
                WriteVEXOperand(s.Operands[i], 0);  break;

            case 0x7:  // Register operand indicated by bits 4-7 of immediate operand
                WriteVEXOperand(s.Operands[i], 1);  break;

            case 0x8:  // Register operand indicated by bits 0-3 of immediate operand
                WriteVEXOperand(s.Operands[i], 2);  break; // Unused. For future use
            }
            int isMem = optype == 3 && s.Mod != 3;
            if (s.Prefixes[3] == 0x62) { // EVEX and MVEX prefix can have extra operand attributes
                if (s.Prefixes[6] & 0x20) {                
                    WriteOperandAttributeEVEX(i, isMem);
                }
                else {
                    WriteOperandAttributeMVEX(i, isMem);
                }
            }
            if (s.Prefixes[3] == 0x62 && (i == s.MaxNumOperands - 1 || (s.Operands[i+1] & 0xFFF) < 0x40)) {
                // This is the last SIMD operand
                if (!(s.Operands[4] & 0x80000000)) {
                    s.Operands[4] |= 0x80000000;  // Make sure we don't write this twice
                    if (s.Prefixes[6] & 0x20) {                
                        WriteOperandAttributeEVEX(98, isMem);
                    }
                    else {
                        WriteOperandAttributeMVEX(98, isMem);
                    }
                }
            }
        }
    }
    if (s.Prefixes[3] == 0x62) { // EVEX and MVEX prefix can have extra attributes after operands
        if (s.Prefixes[6] & 0x20) {                
            WriteOperandAttributeEVEX(99, 0);
        }
        else {
            WriteOperandAttributeMVEX(99, 0);
        }
    }
    if (s.OpComment) {
        // Write opcode comment
        OutFile.Put(' ');
        OutFile.Put(CommentSeparator);
        OutFile.Put(s.OpComment);
    }
}


void CDisassembler::WriteStringInstruction() {
    // Write string instruction or xlat instruction
    uint32_t NumOperands = 0;                       // Number of operands written
    uint32_t i;                                     // Loop index
    uint32_t Segment;                               // Possible segment prefix

    if (!(s.OpcodeDef->AllowedPrefixes & 0x1100)) {
        // Operand size is 8 if operand size prefixes not allowed
        s.OperandSize = 8;
    }

    OutFile.Tabulate(AsmTab1);                    // Tabulate

    if (Syntax != SUBTYPE_MASM && s.Prefixes[0] && (s.OpcodeDef->AllowedPrefixes & 4)) {
        // Get segment prefix
        Segment = GetSegmentRegisterFromPrefix();  // Interpret segment prefix
        // Write segment override
        OutFile.Put(RegisterNamesSeg[Segment]);
        OutFile.Put(" ");
    }     

    // Check repeat prefix
    if (s.OpcodeDef->AllowedPrefixes & 0x20) {
        if (s.Prefixes[3]) {
            // Repeat prefix
            OutFile.Put("rep ");
        }
    }
    else if (s.OpcodeDef->AllowedPrefixes & 0x40) {
        if (s.Prefixes[3] == 0xF2) {
            // repne prefix
            OutFile.Put("repne ");
        }
        else if (s.Prefixes[3] == 0xF3) {
            // repe prefix
            OutFile.Put("repe ");
        }
    }

    // Write opcode name
    OutFile.Put(s.OpcodeDef->Name);               // Opcode name

    if (Syntax == SUBTYPE_MASM
        && (((s.OpcodeDef->AllowedPrefixes & 4) && s.Prefixes[0]) 
        || ((s.OpcodeDef->AllowedPrefixes & 1) && s.Prefixes[1]))) {
            // Has segment or address size prefix. Must write operands explicitly
            OutFile.Put(" ");                          // Space before operands

            // Check address size for pointer registers
            const char * * PointerRegisterNames;
            switch (s.AddressSize) {
            case 16:
                PointerRegisterNames = RegisterNames16;  break;
            case 32:
                PointerRegisterNames = RegisterNames32;  break;
            case 64:
                PointerRegisterNames = RegisterNames64;  break;
            default: 
                PointerRegisterNames = 0;  // should not occur
            }

            // Loop for possibly two operands
            for (i = 0; i < 2; i++) {
                if (s.Operands[i]) {
                    // Operand i defined
                    if (NumOperands++) {
                        // An operand before this one. Separate by ", "
                        OutFile.Put(", ");
                    }
                    if (NumOperands == 1) {
                        // Write operand size for first operand
                        switch (s.OperandSize) {
                        case 8:
                            OutFile.Put("byte  ");  break;
                        case 16:
                            OutFile.Put("word  ");  break;
                        case 32:
                            OutFile.Put("dword  ");  break;
                        case 64:
                            OutFile.Put("qword  ");  break;
                        }
                    }
                    // Get segment
                    Segment = 1;                        // Default segment is DS
                    if (s.Prefixes[0]) {
                        Segment = GetSegmentRegisterFromPrefix(); // Interpret segment prefix
                    }
                    if ((s.Operands[i] & 0xCF) == 0xC2) {
                        Segment = 0;                      // Segment is ES regardless of prefix for [edi] operand
                    }
                    // Write segment override
                    OutFile.Put(RegisterNamesSeg[Segment]);
                    OutFile.Put(":");
                    // Opening "["
                    OutFile.Put("[");

                    // Write pointer register
                    switch (s.Operands[i] & 0xCF) {
                    case 0xC0:  // [bx], [ebx] or [rbx]
                        OutFile.Put(PointerRegisterNames[3]);  
                        break;
                    case 0xC1:  // [si], [esi] or [rsi]
                        OutFile.Put(PointerRegisterNames[6]);  
                        break;
                    case 0xC2:  // [di], [edi] or [rdi]
                        OutFile.Put(PointerRegisterNames[7]);  
                        break;
                    }
                    // Closing "]"
                    OutFile.Put("]");
                }
            }
    }
    else {
        // We don't have to write the operands
        // Append suffix for operand size, except for xlat
        if ((s.Operands[1] & 0xCF) != 0xC0) {

            // Suffix for operand size
            uint32_t i = s.OperandSize / 8;
            if (i <= 8) {
                static const char SizeSuffixes[] = " bw d   q"; // Table of suffixes
                OutFile.Put(SizeSuffixes[i]);
            }
        }
    }
}


void CDisassembler::WriteCodeComment() {
    // Write hex listing of instruction as comment after instruction
    uint32_t i;                                     // Index to current byte
    uint32_t FieldSize;                             // Number of bytes in field
    const char * Spacer;                          // Space between fields

    OutFile.Tabulate(AsmTab3);                    // Tabulate to comment field
    OutFile.Put(CommentSeparator);                // Start comment

    // Write address
    if (SectionEnd + SectionAddress + (uint32_t)ImageBase > 0xFFFF) {
        // Write 32 bit address
        OutFile.PutHex(IBegin + SectionAddress + (uint32_t)ImageBase);
    }
    else {
        // Write 16 bit address
        OutFile.PutHex((uint16_t)(IBegin + SectionAddress));
    }

    // Space after address
    OutFile.Put(" _");

    // Start of instruction
    i = IBegin;

    // Write bytes
    while (i < IEnd) {
        FieldSize = 1;                             // Size of field to write
        Spacer = " ";                              // Space between fields

        // Spacer and FieldSize depends on fields
        if (i == s.OpcodeStart1 && i > IBegin) {
            Spacer = ": ";                          // Space between prefixes and opcode
        }
        if (i == s.OpcodeStart2 + 1) {
            Spacer = ". ";                          // Space between opcode and mod/reg/rm bytes
        }
        if (i == s.AddressField && s.AddressFieldSize) {
            Spacer = ", ";                          // Space before address field
            FieldSize = s.AddressFieldSize;
        }
        if (i == s.ImmediateField && s.ImmediateFieldSize) {
            Spacer = ", ";                          // Space before immediate operand field
            FieldSize = s.ImmediateFieldSize;
        }
        // Write space
        OutFile.Put(Spacer);

        // Write byte or bytes
        switch (FieldSize) {
        case 1:  // Write single byte
            OutFile.PutHex(Get<uint8_t>(i));
            break;
        case 2:  // Write two bytes
            OutFile.PutHex(Get<uint16_t>(i));
            break;
        case 3:  // Write three bytes (operands for "enter" instruction)
            OutFile.PutHex(Get<uint16_t>(i));
            OutFile.Put(", ");
            OutFile.PutHex(Get<uint8_t>(i+2));
            break;
        case 4:  // Write four bytes
            if ((s.Operands[0] & 0xFE) == 0x84) {
                // Far jump/call address
                OutFile.PutHex(Get<uint16_t>(i));
                OutFile.Put(" ");
                OutFile.PutHex(Get<uint16_t>(i+2));
            }
            else {
                // Any other 32 bit operand
                OutFile.PutHex(Get<uint32_t>(i));
            }
            break;
        case 6:  // Write six bytes (far jump address)
            OutFile.PutHex(Get<uint32_t>(i));
            OutFile.Put(" ");
            OutFile.PutHex(Get<uint16_t>(i+4));
            break;
        case 8:  // Write eight bytes
            OutFile.PutHex(Get<uint64_t>(i));
            break;
        }
        // Search for relocation
        SARelocation rel1;                            // Make relocation records for searching
        rel1.Section = Section;
        rel1.Offset  = i;                             // rel1 marks current field in instruction

        // Is there a relocation source exactly here?
        int32_t irel = Relocations.Exists(rel1);        // Finds relocation with source = i

        if (irel > 0) {
            // This field has a relocation. Indicate relocation type
            // 0 = unknown, 1 = direct, 2 = self-relative, 3 = image-relative, 
            // 4 = segment relative, 5 = relative to arbitrary ref. point, 8 = segment address/descriptor
            uint32_t RelType = Relocations[irel].Type;
            if (RelType) {
                OutFile.Put(Lookup(RelocationTypeNames, RelType));
            }
            if (Relocations[irel].Size > FieldSize) {
                // Relocation has wrong size
                OutFile.Put(" Misplaced relocation.");
            }
        }

        // Point to next byte
        i += FieldSize;
    }
    // New line
    OutFile.NewLine();
}


void CDisassembler::CountInstructions() {
    // Count total number of instructions defined in opcodes.cpp
    // Two instructions are regarded as the same and counted as one if they 
    // have the same name and differ only in the bits that define register 
    // name, operand size, etc.

    uint32_t map;                                   // Map number
    uint32_t index;                                 // Index into map
    uint32_t n;                                     // Number of instructions with same code
    uint32_t iset;                                  // Instruction set
    uint32_t instructions = 0;                      // Total number of instructions
    uint32_t mmxinstr = 0;                          // Number of MMX instructions
    uint32_t sseinstr = 0;                          // Number of SSE instructions
    uint32_t sse2instr = 0;                         // Number of SSE2 instructions
    uint32_t sse3instr = 0;                         // Number of SSE3 instructions
    uint32_t ssse3instr = 0;                        // Number of SSSE3 instructions
    uint32_t sse41instr = 0;                        // Number of SSE4.1 instructions
    uint32_t sse42instr = 0;                        // Number of SSE4.2 instructions
    uint32_t AVXinstr  = 0;                         // Number of AVX instructions
    uint32_t FMAinstr  = 0;                         // Number of FMA3 and later instructions
    uint32_t AVX2instr  = 0;                        // Number of AVX2 instructions
    uint32_t BMIinstr  = 0;                         // Number of BMI instructions and other small instruction sets
    uint32_t AVX512instr = 0;                       // Number of AVX-512 instructions
    uint32_t AVX512FP16instr = 0;                   // Number of AVX512-FP16 instructions
    uint32_t MICinstr = 0;                          // Number of MIC instructions
    uint32_t AMDinstr = 0;                          // Number of AMD instructions
    uint32_t VIAinstr = 0;                          // Number of AMD instructions
    uint32_t privilinstr = 0;                       // Number of privileged instructions
    uint32_t undocinstr = 0;                        // Number of undocumented instructions
    uint32_t droppedinstr = 0;                      // Number of opcodes planned but never implemented
    uint32_t VEXdouble = 0;                         // Number of instructions that have both VEX and non-VEX version
    SOpcodeDef const * opcode;                    // Pointer to map entry

    // Loop through all maps
    for (map = 0; map < NumOpcodeTables1; map++) {
        // Loop through each map
        for (index = 0; index < OpcodeTableLength[map]; index++) {
            opcode = OpcodeTables[map] + index;
            if (opcode->InstructionFormat && opcode->Name 
            && !opcode->TableLink && !(opcode->InstructionFormat & 0x8000)) {
                // instruction is defined
                if ((opcode->InstructionFormat & 0xFFF) == 3
                && index > 0 && (opcode-1)->Name 
                && strcmp(opcode->Name, (opcode-1)->Name) == 0) {
                    // Same as previous instruction, just with another register
                    continue;                         // Don't count this
                }
                n = 1;                               // Default = one instruction per map entry
                // Check if we have multiple instructions with different prefixes
                if (opcode->Options & 1) {
                    if (opcode->AllowedPrefixes & 0x3000) {
                        n++;                           // Extra instruction with W prefix bit
                    }
                    else if (opcode->AllowedPrefixes & 0xE00) {               
                        if (opcode->AllowedPrefixes & 0x200) n++; // Extra instruction with 66 prefix
                        if (opcode->AllowedPrefixes & 0x400) n++; // Extra instruction with F3 prefix
                        if (opcode->AllowedPrefixes & 0x800) n++; // Extra instruction with F2 prefix
                    }
                    else if (opcode->AllowedPrefixes & 0x100) {
                        n++;                                      // Extra instruction with 66 prefix
                        if (opcode->AllowedPrefixes & 0x1000) n++;// Extra instruction with L prefix bit
                    }
                }
                if (opcode->Options & 2) VEXdouble += n; // Instructions that have both VEX and non-VEX version
                instructions += n;                   // Count total instructions

                iset = opcode->InstructionSet;       // Instruction set
                if (iset & 0x20000) {
                    droppedinstr += n; iset = 0;      // Opcodes planned but never implemented
                }
                if (iset & 0x800) privilinstr += n;  // Privileged instruction
                if (opcode->InstructionFormat & 0x4000) undocinstr += n; // Undocumented instruction

                switch (iset & 0x37FF) {
                case 7:  // MMX
                    mmxinstr += n;  break;
                case 0x11:  // SSE
                    sseinstr += n;  break;
                case 0x12:  // SSE2
                    sse2instr += n;  break;
                case 0x13: // SSE3
                    sse3instr += n;  break;
                case 0x14: // SSSE3
                    ssse3instr += n;  break;
                case 0x15: // SSE4.1
                    sse41instr += n;  break;
                case 0x16: // SSE4.2
                    sse42instr += n;  break;
                case 0x17: case 0x18: case 0x19: // VEX etc.
                    AVXinstr += n;  break;
                case 0x1A: case 0x1B:            // FMA and later instructions
                    FMAinstr += n;  break;
                case 0x1C:                       // AVX2 instructions
                    AVX2instr += n; break;
                case 0x1D: case 0x1E:            // BMI and other small instruction sets
                    BMIinstr += n; break;
                case 0x20:                       // AVX-512 instructions
                    AVX512instr += n; break;
                case 0x25:                       // AVX512-FP16 instructions
                    AVX512FP16instr += n; break;
                case 0x80:                       // MIC instructions
                    MICinstr += n; break;
                case 0x1001: case 0x1002: case 0x1004: case 0x1005: case 0x1006:  // AMD
                    AMDinstr += n;  break;
                case 0x2001: // VIA
                    VIAinstr += n;  break;               
                }
            }
        }
    }

    // output result
    printf("\n\nNumber of instruction opcodes supported by disassembler:\n%5i Total, including:", 
        instructions);
    printf("\n%5i Privileged instructions", privilinstr);
    printf("\n%5i MMX    instructions", mmxinstr);
    printf("\n%5i SSE    instructions", sseinstr);
    printf("\n%5i SSE2   instructions", sse2instr);
    printf("\n%5i SSE3   instructions", sse3instr);
    printf("\n%5i SSSE3  instructions", ssse3instr);
    printf("\n%5i SSE4.1 instructions", sse41instr);
    printf("\n%5i SSE4.2 instructions", sse42instr);
    printf("\n%5i AVX    instructions etc.", AVXinstr);
    printf("\n%5i AVX2   instructions", AVX2instr);
    printf("\n%5i FMA3   instructions", FMAinstr);
    printf("\n%5i BMI/micsellaneous instr.", BMIinstr);
    printf("\n%5i AVX512 instructions", AVX512instr);
    printf("\n%5i AVX512-FP16 instructions", AVX512FP16instr);    
    printf("\n%5i MIC/Xeon Phi instructions", MICinstr);
    printf("\n%5i AMD    instructions", AMDinstr);
    printf("\n%5i VIA    instructions", VIAinstr);   
    printf("\n%5i instructions planned but never implemented in any CPU", droppedinstr);
    printf("\n%5i undocumented or illegal instructions", undocinstr);
    printf("\n%5i instructions have both VEX and non-VEX versions", VEXdouble);
    printf("\n");

#if 0   // temporary test code

    // find entries with 0x2000 prefix code
    printf("\n\nInstructions with operand swap flag:\n");
    // Loop through all maps
    for (map = 0; map < NumOpcodeTables1; map++) {
        // Loop through each map
        for (index = 0; index < OpcodeTableLength[map]; index++) {
            opcode = OpcodeTables[map] + index;
            if ((opcode->AllowedPrefixes & 0x2000) == 0x2000) {
                printf("\n%04X %02X  %s", map, index, opcode->Name);
            }
        }
    }

    /*
    printf("\n\nTables linked by type 0x0E:\n");
    // Loop through all maps
    for (map = 0; map < NumOpcodeTables1; map++) {
        // Loop through each map
        for (index = 0; index < OpcodeTableLength[map]; index++) {
            opcode = OpcodeTables[map] + index;
            if (opcode->TableLink == 0x0E) {
                printf("  0x%02X", opcode->InstructionSet);
            }
        }
    }*/

    printf("\n");

#endif
}