File: elf2cof.cpp

package info (click to toggle)
objconv 2.56%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,300 kB
  • sloc: cpp: 27,039; makefile: 4; sh: 2
file content (707 lines) | stat: -rw-r--r-- 31,540 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
/****************************  elf2cof.cpp   *********************************
* Author:        Agner Fog
* Date created:  2006-08-19
* Last modified: 2013-11-27
* Project:       objconv
* Module:        elf2cof.cpp
* Description:
* Module for converting ELF file to PE/COFF file
*
* Copyright 2006-2013 GNU General Public License http://www.gnu.org/licenses
*****************************************************************************/
#include "stdafx.h"
// All functions in this module are templated to make two versions: 32 and 64 bits.
// See instantiations at the end of this file.


// Constructor
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
CELF2COF<ELFSTRUCTURES>::CELF2COF() {
   // Reset all
   memset(this, 0, sizeof(*this));
}


// Convert(): Do the conversion
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CELF2COF<ELFSTRUCTURES>::Convert() {

   // Some compilers require this-> for accessing members of template base class,
   // according to the so-called two-phase lookup rule.

   // Allocate variable size buffers
   NewSectIndex.SetNum(this->NSections);// Allocate section translation table
   NewSectIndex.SetZero();              // Initialize

   // Call the subfunctions
   ToFile.SetFileType(FILETYPE_COFF);  // Set type of to file
   MakeFileHeader();                   // Make file header
   MakeSectionsIndex();                // Make sections index translation table
   MakeSymbolTable();                  // Make symbol table and string tables
   MakeSections();                     // Make sections and relocation tables
   HideUnusedSymbols();                // Hide unused symbols
   MakeBinaryFile();                   // Put sections together
   *this << ToFile;                    // Take over new file buffer
}


// MakeFileHeader(): Convert subfunction to make file header
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CELF2COF<ELFSTRUCTURES>::MakeFileHeader() {
   
   // Make PE file header
   NewFileHeader.Machine = (this->WordSize == 32) ? PE_MACHINE_I386 : PE_MACHINE_X8664;
   NewFileHeader.TimeDateStamp = (uint32_t)time(0);
   NewFileHeader.SizeOfOptionalHeader = 0;
   NewFileHeader.Flags = 0;

   // Values inserted later:
   NewFileHeader.NumberOfSections = 0;
   NewFileHeader.PSymbolTable = 0;
   NewFileHeader.NumberOfSymbols = 0;

   // Put file header into file
   ToFile.Push(&NewFileHeader, sizeof(NewFileHeader));
}


// MakeSectionsIndex(): Make sections index translation table
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CELF2COF<ELFSTRUCTURES>::MakeSectionsIndex() {
   // We must make this table before the segments, because it is needed for the
   // symbol table, and we must make the symbol table before the relocation table,
   // and we must make the relocation table together with the sections.

   uint32_t oldsec;                     // Section number in old file
   uint32_t newsec = 0;                 // Section number in new file

   // Loop through old sections
   for (oldsec = 0; oldsec < this->NSections; oldsec++) {

      // Get section name
      const char * sname = "";
      uint32_t namei = this->SectionHeaders[oldsec].sh_name;

      if (namei >= this->SecStringTableLen) {
          err.submit(2112);
      }
      else sname = this->SecStringTable + namei;

      if (cmd.DebugInfo == CMDL_DEBUG_STRIP) {
         // Check for debug section names
         if (strncmp(sname, ".note",    5) == 0
         ||  strncmp(sname, ".comment", 8) == 0
         ||  strncmp(sname, ".stab",    5) == 0
         ||  strncmp(sname, ".debug",   6) == 0) {
            // Remove this section
            this->SectionHeaders[oldsec].sh_type = SHT_REMOVE_ME;
            cmd.CountDebugRemoved();
         }
      }

      if (cmd.ExeptionInfo == CMDL_EXCEPTION_STRIP) {
         // Check for exception section name
         if (strncmp(sname, ".eh_frame", 9) == 0) {
            // Remove this section
            this->SectionHeaders[oldsec].sh_type = SHT_REMOVE_ME;
            cmd.CountExceptionRemoved();
         }
      }

      // Search for program data sections only
      if (this->SectionHeaders[oldsec].sh_type == SHT_PROGBITS 
      ||  this->SectionHeaders[oldsec].sh_type == SHT_NOBITS) {
         // Section index translation table
         NewSectIndex[oldsec] = newsec++;
      }
      else {
         NewSectIndex[oldsec] = 0;
      }
   }
   // Store number of sections in new file
   NumSectionsNew = newsec;

   // Calculate file offset of raw data
   RawDataOffset = sizeof(SCOFF_FileHeader) + NumSectionsNew * sizeof(SCOFF_SectionHeader);
}


// MakeSections(): Convert subfunction to make sections and relocation tables
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CELF2COF<ELFSTRUCTURES>::MakeSections() {
   uint32_t oldsec;                   // Section number in old file
   uint32_t relsec;                   // Relocation section in old file
   SCOFF_SectionHeader NewHeader;   // New section header
   TELF_SectionHeader OldHeader;        // Old section header
   TELF_SectionHeader OldRelHeader;     // Old relocation section header
   TELF_Relocation OldRelocation;       // Old relocation table entry
   SCOFF_Relocation NewRelocation;  // New relocation table entry

   // Loop through old sections
   for (oldsec = 0; oldsec < this->NSections; oldsec++) {

      // Copy old header for convenience
      OldHeader = this->SectionHeaders[oldsec];

      // Search for program data sections only
      if (OldHeader.sh_type == SHT_PROGBITS || OldHeader.sh_type == SHT_NOBITS) {

         // Reset new section header
         memset(&NewHeader, 0, sizeof(NewHeader));

         // Section name
         const char * sname = "";
         uint32_t namei = OldHeader.sh_name;
         if (namei >= this->SecStringTableLen) {
             err.submit(2112);
         }
         else sname = this->SecStringTable + namei;

         // Check for special names
         if (strcmp(sname, ELF_CONSTRUCTOR_NAME)==0) {
            // This is the constructors segment
            sname = COFF_CONSTRUCTOR_NAME;
            OldHeader.sh_flags &= ~ SHF_WRITE;
         }

         // Store name in section header
         COFF_PutNameInSectionHeader(NewHeader, sname, NewStringTable);

         // Raw data
         NewHeader.SizeOfRawData = uint32_t(OldHeader.sh_size);  // section size in file
         if (OldHeader.sh_size && OldHeader.sh_type != SHT_NOBITS) {
            // File  to raw data for section
            NewHeader.PRawData = NewRawData.GetDataSize() + RawDataOffset;

            // Copy raw data
            NewRawData.Push(this->Buf()+(uint32_t)(OldHeader.sh_offset), (uint32_t)(OldHeader.sh_size)); 
            NewRawData.Align(4);
         }

         // Section flags
         NewHeader.Flags = PE_SCN_MEM_READ;
         if (OldHeader.sh_flags & SHF_WRITE) NewHeader.Flags |= PE_SCN_MEM_WRITE;
         if (OldHeader.sh_flags & SHF_EXECINSTR) {
            NewHeader.Flags |= PE_SCN_MEM_EXECUTE | PE_SCN_CNT_CODE;
         }
         else {
            NewHeader.Flags |= (OldHeader.sh_type == SHT_PROGBITS) ? 
            PE_SCN_CNT_INIT_DATA : PE_SCN_CNT_UNINIT_DATA;
         }
         // Alignment
         int NewAlign = FloorLog2(uint32_t(OldHeader.sh_addralign)) + 1;
         if (NewAlign > 14) NewAlign = 14;   // limit for highest alignment
         NewHeader.Flags |= PE_SCN_ALIGN_1 * NewAlign;

         // Find relocation table for this section by searching through all sections
         for (relsec = 1; relsec < this->NSections; relsec++) {

            // Get section header
            OldRelHeader = this->SectionHeaders[relsec];

            // Check if this is a relocations section referring to oldsec
            if ((OldRelHeader.sh_type == SHT_REL || OldRelHeader.sh_type == SHT_RELA) // if section is relocation
            && OldRelHeader.sh_info == oldsec) { // and if section refers to current section

               // Found the right relocation table. Get pointer
               int8_t * reltab = this->Buf() + uint32_t(OldRelHeader.sh_offset);
               int8_t * reltabend = reltab + uint32_t(OldRelHeader.sh_size);

               // Get entry size
               int entrysize = uint32_t(OldRelHeader.sh_entsize);
               int expectedentrysize = (OldRelHeader.sh_type == SHT_RELA) ? 
                  sizeof(TELF_Relocation) :                    // Elf32_Rela, Elf64_Rela
                  sizeof(TELF_Relocation) - this->WordSize/8;  // Elf32_Rel,  Elf64_Rel
               if (entrysize < expectedentrysize) {err.submit(2033); entrysize = expectedentrysize;}

               // File pointer for new relocations
               NewHeader.PRelocations = NewRawData.GetDataSize() + RawDataOffset;   // file  to relocation entries

               // Loop through relocation table entries
               for (; reltab < reltabend; reltab += entrysize) {

                  // Copy relocation table entry with or without addend
                  OldRelocation.r_addend = 0;
                  memcpy(&OldRelocation, reltab, entrysize); 

                  // Find inline addend
                  uint32_t InlinePosition = (uint32_t)(NewHeader.PRawData - RawDataOffset + OldRelocation.r_offset);

                  // Check that address is valid
                  if (InlinePosition >= this->GetDataSize()) {
                     // Address is invalid
                     err.submit(2032);
                     break;
                  }

                  // Pointer to inline addend
                  int32_t * piaddend = (int32_t*)(NewRawData.Buf() + InlinePosition);

                  // Symbol offset
                  NewRelocation.VirtualAddress = uint32_t(OldRelocation.r_offset);

                  // Symbol table index
                  if (OldRelocation.r_sym < NewSymbolIndex.GetNumEntries()) { 
                     NewRelocation.SymbolTableIndex = NewSymbolIndex[OldRelocation.r_sym];
                  }
                  else {
                     NewRelocation.SymbolTableIndex = 0; // Symbol table index out of range
                  }

                  // Get relocation type and fix addend
                  if (this->WordSize == 32) {
                     switch(OldRelocation.r_type) {
                     case R_386_NONE:    // Ignored
                        NewRelocation.Type = COFF32_RELOC_ABS;  break;

                     case R_386_IRELATIVE:
                        err.submit(1063); // Warning: Gnu indirect function cannot be converted
                        // continue in next case?:
                     case R_386_32:      // 32-bit absolute virtual address
                        NewRelocation.Type = COFF32_RELOC_DIR32;  
                        *piaddend += uint32_t(OldRelocation.r_addend);  
                        break;

                     case R_386_PC32:   // 32-bit self-relative
                        NewRelocation.Type = COFF32_RELOC_REL32;  
                        // Difference between EIP-relative and self-relative relocation = size of address field
                        // Adjust inline addend for different relocation method:
                        *piaddend += 4 + uint32_t(OldRelocation.r_addend);
                        break;

                     case R_386_GOT32: case R_386_GLOB_DAT: case R_386_GOTOFF: case R_386_GOTPC:
                        // Global offset table
                        err.submit(2042);     // cannot convert position-independent code
                        err.ClearError(2042); // report this error only once
                        NewRelocation.Type = 0;
                        break;

                     case R_386_PLT32: case R_386_JMP_SLOT: 
                        // procedure linkage table
                        err.submit(2043);     // cannot convert import table
                        err.ClearError(2043); // report this error only once
                        NewRelocation.Type = 0;
                        break;

                     case R_386_RELATIVE:  // adjust by program base
                     default:              // Unknown or unsupported relocation method
                        err.submit(2030, OldRelocation.r_type); 
                        err.ClearError(2030); // report this error only once
                        NewRelocation.Type = 0; 
                        break;
                     }
                  }
                  else { // WordSize == 64
                     switch(OldRelocation.r_type) {
                     case R_X86_64_NONE:     // Ignored
                        NewRelocation.Type = COFF64_RELOC_ABS;  
                        break;

                     case R_X86_64_64:      // 64 bit absolute virtual addres
                        NewRelocation.Type = COFF64_RELOC_ABS64;  
                        *(int64_t*)piaddend += OldRelocation.r_addend;  
                        break;

                     case R_X86_64_IRELATIVE:
                        err.submit(1063); // Warning: Gnu indirect function cannot be converted
                        // continue in next case?:
                     case R_X86_64_32S:     // 32 bit absolute virtual address, sign extended
                     case R_X86_64_32:      // 32 bit absolute virtual address, zero extended
                        NewRelocation.Type = COFF64_RELOC_ABS32;  
                        *piaddend += uint32_t(OldRelocation.r_addend);  
                        break;

                     case R_X86_64_PC32:    // 32 bit, self-relative
                        // See COFF2ELF.cpp for an explanation of the difference between
                        // COFF and ELF relative relocation methods
                        *piaddend += uint32_t(OldRelocation.r_addend);
                        if (*piaddend >= -8 && *piaddend <= -4) {
                           NewRelocation.Type = (uint16_t)(COFF64_RELOC_REL32 - *piaddend - 4);  
                           *piaddend = 0;
                        }
                        else {
                           NewRelocation.Type = COFF64_RELOC_REL32;
                           *piaddend += 4;
                        }
                        break;

                     case R_X86_64_RELATIVE:  // Adjust by program base
                        err.submit(2030, OldRelocation.r_type); 
                        err.ClearError(2030); // report this error only once
                        NewRelocation.Type = 0;
                        break;

                     case R_X86_64_GOT32: case R_X86_64_GLOB_DAT: case R_X86_64_GOTPCREL:
                        // Global offset table
                        err.submit(2042);     // cannot convert position-independent code
                        err.ClearError(2042); // report this error only once
                        NewRelocation.Type = 0;
                        break;

                     case R_X86_64_PLT32: case R_X86_64_JUMP_SLOT: 
                        // procedure linkage table
                        err.submit(2042);     // cannot convert import table
                        err.ClearError(2043); // report this error only once
                        NewRelocation.Type = 0;
                        break;

                     default:              // Unknown or unsupported relocation method
                        err.submit(2030, OldRelocation.r_type); 
                        err.ClearError(2030); // report this error only once
                        NewRelocation.Type = 0; 
                        break;
                     }
                  }

                  // Store relocation entry
                  NewRawData.Push(&NewRelocation, SIZE_SCOFF_Relocation);
                  NewHeader.NRelocations++;

                  // Remember that symbol is used
                  if (OldRelocation.r_type) {
                     SymbolsUsed[NewRelocation.SymbolTableIndex]++;
                  }                                  

               } // End of relocations loop

            } // End of if right relocation table

         } // End of search for relocation table

         // Align raw data for next section
         NewRawData.Align(4);

         // Store section header in file
         ToFile.Push(&NewHeader, sizeof(NewHeader));

      } // End of if section has program data

   } // End of loop through old sections

} // End of function MakeSections


// Check for overflow when converting 64 bit symbol value to 32 bits.
// Value may be signed or unsigned
static int SymbolOverflow(uint64_t x) {
   uint32_t Upper = HighDWord(x);        // Upper 32 bits of 64 bit value
   if (Upper == 0xFFFFFFFF) {          // Check for signed overflow
      return int32_t(x) >= 0;            // Overflow if not signed
   }
   return Upper != 0;                  // Check for unsigned overflow
}
static int SymbolOverflow(uint32_t x) {  // Overloaded 32 bit version
   return 0;                           // Cannot overflow if already 32 bits
}


// MakeSymbolTable(): Convert subfunction to make symbol table and string tables
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CELF2COF<ELFSTRUCTURES>::MakeSymbolTable() {
   uint32_t oldsec;                      // Section number in old file
   TELF_SectionHeader OldHeader;         // Old section header
   int FoundSymTab = 0;                  // Found symbol table
   char * strtab;                        // Old symbol string table
   int8_t * symtab;                      // Old symbol table
   uint32_t symtabsize;                  // Size of old symbol table
   uint32_t stringtabsize;               // Size of old string table
   int8_t * symtabend;                   // End of old symbol table
   uint32_t entrysize;                   // Size of each entry in old symbol table
   uint32_t OldSymI;                     // Symbol index in old symbol table
   uint32_t NewSymI = 0;                 // Symbol index in new symbol table
   const char * symname = 0;           // Symbol name
   TELF_Symbol OldSym;                     // Old symbol table record
   SCOFF_SymTableEntry NewSym;         // New symbol table record
   SCOFF_SymTableEntry AuxSym;         // Auxiliary symbol table entry
   uint32_t numaux;                      // Number of auxiliary records for new entry

   // Initialize new string table. make space for 4-bytes size
   NewStringTable.Push(0, 4);

   // Loop through old sections to find symbol table
   for (oldsec = 0; oldsec < this->NSections; oldsec++) {

      // Search for program data sections only
      if (this->SectionHeaders[oldsec].sh_type == SHT_SYMTAB 
      || this->SectionHeaders[oldsec].sh_type==SHT_DYNSYM) {
         FoundSymTab++;  numaux = 0;

         // Copy symbol table header for convenience
         OldHeader = this->SectionHeaders[oldsec];

         // Find associated string table
         if (OldHeader.sh_link >= this->NSections) {err.submit(2035); OldHeader.sh_link = 0;}
         strtab = (char*)this->Buf() + uint32_t(this->SectionHeaders[OldHeader.sh_link].sh_offset);
         stringtabsize = uint32_t(this->SectionHeaders[OldHeader.sh_link].sh_size);
            

         // Find old symbol table
         entrysize = uint32_t(OldHeader.sh_entsize);
         if (entrysize < sizeof(TELF_Symbol)) {err.submit(2033); entrysize = sizeof(TELF_Symbol);}

         symtab = this->Buf() + uint32_t(OldHeader.sh_offset);
         symtabsize = uint32_t(OldHeader.sh_size);
         symtabend = symtab + symtabsize;

         // Loop through old symbol table
         for (OldSymI = 0; symtab < symtabend; symtab += entrysize, OldSymI++) {

            // Copy old symbol table entry
            OldSym = *(TELF_Symbol*)symtab;

            // Reset new symbol table entry
            memset(&NewSym, 0, sizeof(NewSym));

            // New symbol index
            NewSymI = NewSymbolTable.GetNumEntries(); 

            // Symbol type
            int type = OldSym.st_type;

            // Symbol storage class = binding
            int binding = OldSym.st_bind;

            // Get symbol name
            if (OldSym.st_name < stringtabsize) {
               symname = strtab + OldSym.st_name;

               if (symname && *symname && type != STT_FILE) {
                  // Symbol has a name that we want to store
                  COFF_PutNameInSymbolTable(NewSym, symname, NewStringTable);
               }
            }
            else { // points outside string table
               err.submit(2112); continue;
            }

            // Value
            NewSym.s.Value = uint32_t(OldSym.st_value);
            // Check for overflow if converting 64 bit symbol value to 32 bits
            if (SymbolOverflow(OldSym.st_value)) err.submit(2020, symname); 

            // Section
            if (OldSym.st_shndx == SHN_UNDEF) {
               NewSym.s.SectionNumber = COFF_SECTION_UNDEF; // External
            }
            else if ((int16_t)(OldSym.st_shndx) == SHN_ABS) {
               NewSym.s.SectionNumber = COFF_SECTION_ABSOLUTE; // Absolute symbol
            }
            else if (OldSym.st_shndx >= this->NSections) {
               err.submit(2036, OldSym.st_shndx); // Special/unknown section index or out of range
            }
            else {
               // Normal section index. 
               // Look up in section index translation table and add 1 because it is 1-based
               NewSym.s.SectionNumber = (int16_t)(NewSectIndex[OldSym.st_shndx] + 1);
            }

            // Convert binding/storage class
            switch (binding) {
            case STB_LOCAL:
               NewSym.s.StorageClass = COFF_CLASS_STATIC; break;

            case STB_GLOBAL:
               NewSym.s.StorageClass = COFF_CLASS_EXTERNAL; break;

            case STB_WEAK:
               err.submit(1051, symname); // Weak public symbol not supported
               NewSym.s.StorageClass = COFF_CLASS_WEAK_EXTERNAL; break;

            default: 
               err.submit(2037, binding); // Other. Not supported
            }

            // Make record depending on type
            switch (type) {
            case STT_OBJECT: case STT_NOTYPE:
               // Data object
               NewSym.s.Type = COFF_TYPE_NOT_FUNCTION;  
               if (OldSymI > 0) { // First symbol entry in ELF file is unused
                  NewSymbolTable.Push(&NewSym, SIZE_SCOFF_SymTableEntry);
               }
               break;

            case STT_GNU_IFUNC:
               err.submit(1063); // Warning: Gnu indirect function cannot be converted
               // continue in next case:
            case STT_FUNC:
               // Function
               NewSym.s.Type = COFF_TYPE_FUNCTION;  
               NewSymbolTable.Push(&NewSym, SIZE_SCOFF_SymTableEntry);
               // Aux records needed only if debug information included
               break;

            case STT_FILE: {
               // File name record
               memset(&NewSym, 0, sizeof(NewSym));
               strcpy(NewSym.s.Name, ".file");
               NewSym.s.StorageClass = COFF_CLASS_FILE;
               NewSym.s.SectionNumber = COFF_SECTION_DEBUG;
               // Remove path from file name
               const char * shortname = symname;
               uint32_t len = (uint32_t)strlen(symname);
               if (len > 1) {
                  // Scan backwards for last '/'
                  for (int scan = len-2; scan >= 0; scan--) {
                     if (symname[scan] == '/' || symname[scan] == '\\') {
                        // Path found. Short name starts after this character
                        shortname = symname + scan + 1;
                        break;
                     }
                  }
               }
               len = (uint32_t)strlen(shortname);
               if (len > 35) len = 35;  // arbitrary limit to file name length

               // Number of auxiliary records for storing file name
               numaux = (len + SIZE_SCOFF_SymTableEntry - 1) / SIZE_SCOFF_SymTableEntry;
               NewSym.s.NumAuxSymbols = (uint8_t)numaux;
               // Store regular record
               NewSymbolTable.Push(&NewSym, SIZE_SCOFF_SymTableEntry);               
               // Store numaux auxiliary records for file name
               for (uint32_t i = 0; i < numaux; i++) { // Can't push all in one operation because NumEntries will be wrong
                  NewSymbolTable.Push(0, SIZE_SCOFF_SymTableEntry);
               }
               // copy name into NewSymbolTable aux records
               int8_t * PointAux = NewSymbolTable.Buf() + NewSymbolTable.GetDataSize();
               memcpy(PointAux - numaux*SIZE_SCOFF_SymTableEntry, shortname, len);
               break;}

            case STT_SECTION: {
               // Section name record
               NewSym.s.Value = 0;
               NewSym.s.Type = 0;
               NewSym.s.StorageClass = COFF_CLASS_STATIC;
               NewSym.s.NumAuxSymbols = (uint8_t)(numaux = 1);

               // Find corresponding section header
               TELF_SectionHeader * OldSecHdr = 0;
               if (OldSym.st_shndx < this->NSections) {
                  OldSecHdr = &(this->SectionHeaders[OldSym.st_shndx]);

                  // Find section name
                  char * sname;
                  if (OldSecHdr->sh_name < this->SecStringTableLen) {
                     sname = this->SecStringTable + OldSecHdr->sh_name;
                     // Put into symbol table
                     COFF_PutNameInSymbolTable(NewSym, sname, NewStringTable);
                  }
               }

               // Store regular record
               NewSymbolTable.Push(&NewSym, SIZE_SCOFF_SymTableEntry);               

               // Make auxiliary record
               memset(&AuxSym, 0, sizeof(AuxSym));
               if (OldSecHdr) {
                  AuxSym.section.Length = uint32_t(OldSecHdr->sh_size);
                  // Find corresponding relocation section header
                  // Assume that relocation section comes immediately after section record
                  if ((uint32_t)OldSym.st_shndx + 1 < this->NSections    // if not last section
                  && (OldSecHdr[1].sh_type == SHT_REL || OldSecHdr[1].sh_type == SHT_RELA) // and if next section is relocation
                  && OldSecHdr[1].sh_info == OldSym.st_shndx // and if next section refers to current section
                  && OldSecHdr[1].sh_entsize > 0) { // Avoid division by 0
                     // Calculate number of relocations
                     AuxSym.section.NumberOfRelocations = (uint16_t)(uint32_t(OldSecHdr[1].sh_size) / uint32_t(OldSecHdr[1].sh_entsize));
                  }
               }
               // Store auxiliary record
               NewSymbolTable.Push(&AuxSym, SIZE_SCOFF_SymTableEntry);               
               break;}

            case STT_COMMON:
            default:
               err.submit(2038, type); // Symbol type not supported
            }

            if (FoundSymTab == 1) {
               // Make translation table from old symbol index to new symbol index,
               // assuming there is only one symbol table.
               // Make sure all old symbols have an entry in the NewSymbolIndex table,
               // even if they are discarded.
               NewSymbolIndex.Push(NewSymI);
            }
         } // End OldSymI loop
      }
   } // End search for symbol table
   if (FoundSymTab == 0) err.submit(2034); // Symbol table not found
   if (FoundSymTab  > 1) err.submit(1032); // More than one symbol table found

   // Allocate space for SymbolsUsed table
   SymbolsUsed.SetNum(NewSymI+1);
   SymbolsUsed.SetZero();                  // Initialize
}


// HideUnusedSymbols(): Hide unused symbols if stripping debug info or exception info
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CELF2COF<ELFSTRUCTURES>::HideUnusedSymbols() {

   if (cmd.DebugInfo != CMDL_DEBUG_STRIP && cmd.ExeptionInfo != CMDL_EXCEPTION_STRIP) {
      // No sections removed. Do nothing
      return;
   }

   // Pointer to new symbol table
   union {
      SCOFF_SymTableEntry * p; // Symtab entry pointer
      int8_t * b;                // Used for increment
   } NewSymtab;
   NewSymtab.b = NewSymbolTable.Buf();
   int numaux = 0, isym;
   int NumberOfSymbols = NewSymbolTable.GetNumEntries();

   // Loop through new symbol table
   for (isym = 0; isym < NumberOfSymbols; isym += numaux+1, NewSymtab.b += SIZE_SCOFF_SymTableEntry*(numaux+1)) {

      // Number of auxiliary records belonging to same symbol
      numaux = NewSymtab.p->s.NumAuxSymbols;  if (numaux < 0) numaux = 0;

      if (NewSymtab.p->s.StorageClass == COFF_CLASS_EXTERNAL
      ||  NewSymtab.p->s.StorageClass == COFF_CLASS_WEAK_EXTERNAL) {
         if (NewSymtab.p->s.SectionNumber == COFF_SECTION_UNDEF) {
            // External symbol. Check if it is used
            if (!SymbolsUsed[isym]) {
               // Symbol is unused. Hide it to prevent linking errors
               NewSymtab.p->s.StorageClass = COFF_CLASS_NULL;
               NewSymtab.p->s.SectionNumber = COFF_SECTION_UNDEF;
               NewSymtab.p->s.Type = COFF_TYPE_NOT_FUNCTION;
               cmd.CountSymbolsHidden();
            }
         }
      }
   }
}

// MakeBinaryFile(): Convert subfunction to put all sections together
template <class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CELF2COF<ELFSTRUCTURES>::MakeBinaryFile() {

   // Insert string table size
   //NewStringTable.Get<uint32_t>(0) = NewStringTable.GetDataSize();
   // Some compilers fail with the double template here. Avoid the template:
   *(uint32_t*)(NewStringTable.Buf()) = NewStringTable.GetDataSize();

   // Update file header
   NewFileHeader.NumberOfSections = (uint16_t)NumSectionsNew;
   NewFileHeader.PSymbolTable = RawDataOffset + NewRawData.GetDataSize();
   NewFileHeader.NumberOfSymbols = NewSymbolTable.GetNumEntries();

   // Replace file header in new file with updated version
   memcpy(ToFile.Buf(), &NewFileHeader, sizeof(NewFileHeader));

   // Section headers have already been inserted.
   // Insert raw data in file
   ToFile.Push(NewRawData.Buf(), NewRawData.GetDataSize());

   // Insert symbol table
   ToFile.Push(NewSymbolTable.Buf(), NewSymbolTable.GetDataSize());

   // Insert string table
   ToFile.Push(NewStringTable.Buf(), NewStringTable.GetDataSize());
}


// Make template instances for 32 and 64 bits
template class CELF2COF<ELF32STRUCTURES>;
template class CELF2COF<ELF64STRUCTURES>;