1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
|
/**************************** mac2elf.cpp *********************************
* Author: Agner Fog
* Date created: 2008-05-15
* Last modified: 2009-05-19
* Project: objconv
* Module: mac2elf.cpp
* Description:
* Module for converting Mach-O file to ELF file
*
* Copyright 2008 GNU General Public License http://www.gnu.org/licenses
*****************************************************************************/
#include "stdafx.h"
template <class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt,
class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
CMAC2ELF<MACSTRUCTURES,ELFSTRUCTURES>::CMAC2ELF () {
// Constructor
memset(this, 0, sizeof(*this)); // Reset everything
}
template <class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt,
class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CMAC2ELF<MACSTRUCTURES,ELFSTRUCTURES>::Convert() {
// Do the conversion
// Some compilers require this-> for accessing members of template base class,
// according to the so-called two-phase lookup rule.
NumSectionsNew = 5; // Number of sections generated so far
// Allocate variable size buffers
MaxSectionsNew = NumSectionsNew + 2 * this->NumSections + 2;// Max number of sections needed
NewSections.SetNum(MaxSectionsNew+1); // Allocate buffers for each section
NewSections.SetZero(); // Initialize
NewSectionHeaders.SetNum(MaxSectionsNew+1); // Allocate array for temporary section headers
NewSectionHeaders.SetZero(); // Initialize
NewSectIndex.SetNum(this->NumSections+1); // Array for translating old section index to new section index
NewSectIndex.SetZero(); // Initialize
SectionSymbols.SetNum(this->MaxSectionsNew+1); // Array of new symbol indices for sections
SectionSymbols.SetZero(); // Initialize
NewSymbolIndex.SetNum(this->SymTabNumber); // Array of new symbol indices
NewSymbolIndex.SetZero(); // Initialize
// Call the subfunctions
ToFile.SetFileType(FILETYPE_ELF); // Set type of to file
MakeSegments(); // Make segment headers and code/data segments
MakeSymbolTable(); // Symbol table and string tables
MakeRelocationTables(this->FileHeader); // Make relocation tables
MakeImportTables(); // Fill import tables
MakeGOT(); // Make fake Global Offset Table
MakeBinaryFile(); // Putting sections together
*this << ToFile; // Take over new file buffer
}
template <class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt,
class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CMAC2ELF<MACSTRUCTURES,ELFSTRUCTURES>::MakeSegments() {
// Convert subfunction: Make segment headers and code/data segments
TELF_SectionHeader NewSecHeader; // New section header
uint32_t oldsec; // Section index in old file
uint32_t newsec; // Section index in new file
uint32_t SecNameIndex; // Section name index into shstrtab
char const * SecName; // Name of new section
const int MAXSECTIONNAMELENGTH = 256;
char RelocationSectionName[MAXSECTIONNAMELENGTH];
const int WordSize = sizeof(MInt) * 8;
// Special segment names
static const char * SpecialSegmentNames[] = {
"Null", ".symtab", ".shstrtab", ".strtab", ".stabstr"
};
// Indexes to these are:
symtab = 1; // Symbol table section number
shstrtab = 2; // Section name string table section number
strtab = 3; // Object name string table section number
stabstr = 4; // Debug string table section number
// Number of special segments = number of names in SpecialSegmentNames:
const uint32_t NumSpecialSegments = sizeof(SpecialSegmentNames)/sizeof(SpecialSegmentNames[0]);
// Make first section header string table entry empty
NewSections[shstrtab].PushString("");
// Loop through special sections, except the first Null section:
for (newsec = 0; newsec < NumSpecialSegments; newsec++) {
// Put data into new section header:
// Initialize to zero
memset(&NewSecHeader, 0, sizeof(NewSecHeader));
if (newsec > 0) {
// Put name into section header string table
SecName = SpecialSegmentNames[newsec];
SecNameIndex = NewSections[shstrtab].PushString(SecName);
// Put name into new section header
NewSecHeader.sh_name = SecNameIndex;
}
// Put section header into temporary buffer
NewSectionHeaders[newsec] = NewSecHeader;
}
// Put type, flags, etc. into special segments:
NewSectionHeaders[symtab] .sh_type = SHT_SYMTAB;
NewSectionHeaders[symtab] .sh_entsize = sizeof(TELF_Symbol);
NewSectionHeaders[symtab] .sh_link = strtab;
NewSectionHeaders[shstrtab].sh_type = SHT_STRTAB;
NewSectionHeaders[shstrtab].sh_flags = SHF_STRINGS;
NewSectionHeaders[shstrtab].sh_addralign = 1;
NewSectionHeaders[strtab] .sh_type = SHT_STRTAB;
NewSectionHeaders[strtab] .sh_flags = SHF_STRINGS;
NewSectionHeaders[strtab] .sh_addralign = 1;
NewSectionHeaders[stabstr] .sh_type = SHT_STRTAB;
NewSectionHeaders[stabstr] .sh_flags = SHF_STRINGS;
NewSectionHeaders[stabstr] .sh_addralign = 1;
if (newsec != NumSectionsNew) {
// Check my program for internal consistency
// If you get this error then change the value of NumSectionsNew in
// the constructor to equal the number of entries in
// SpecialSegmentNames, including the Null segment
err.submit(9000);
}
// Find sections in old file
uint32_t icmd; // Current load command
uint32_t command; // Load command
uint32_t cmdsize = 0; // Command size
// Pointer to current position in old file
uint8_t * currentp = (uint8_t*)(this->Buf() + sizeof(TMAC_header));
// Loop through file commands
for (icmd = 1; icmd <= this->FileHeader.ncmds; icmd++, currentp += cmdsize) {
command = ((MAC_load_command*)currentp) -> cmd;
cmdsize = ((MAC_load_command*)currentp) -> cmdsize;
if (command == MAC_LC_SEGMENT || command == MAC_LC_SEGMENT_64) {
// This is the segment command (there should be only one)
if ((command == MAC_LC_SEGMENT) ^ (WordSize == 32)) {
// 32-bit segment in 64-bit file or vice versa
err.submit(2320); return;
}
if (cmdsize < sizeof(TMAC_segment_command)) {
// Zero cmdsize or too small
err.submit(2321); return;
}
// Point to segment command
TMAC_segment_command * sh = (TMAC_segment_command*)currentp;
if (stricmp(sh->segname, MAC_SEG_OBJC) == 0) {
// objective-C runtime segment
err.submit(2021); continue;
}
// Find first section header
TMAC_section * sectp = (TMAC_section*)(currentp + sizeof(TMAC_segment_command));
// Loop through section headers
for (oldsec = 1; oldsec <= this->NumSections; oldsec++, sectp++) {
// Get section name
SecName = sectp->sectname;
// Check for special section names
if (stricmp(SecName,"__eh_frame") == 0) {
// This is an exception handler section
if (cmd.ExeptionInfo == CMDL_EXCEPTION_STRIP) {
// Remove exception handler section
cmd.CountExceptionRemoved();
continue;
}
else if (cmd.InputType != cmd.OutputType) {
err.submit(1030); // Warn that exception information is incompatible
}
}
if (sectp->flags & MAC_S_ATTR_DEBUG) {
// This section has debug information
if (cmd.DebugInfo == CMDL_DEBUG_STRIP) {
// Remove debug info
cmd.CountDebugRemoved();
continue;
}
else if (cmd.InputType != cmd.OutputType) {
err.submit(1029); // Warn that debug information is incompatible
}
}
// Store section index in index translation table
NewSectIndex[oldsec] = newsec;
// Store section data
if (sectp->size > 0 && !((sectp->flags & MAC_SECTION_TYPE) == MAC_S_ZEROFILL || (sectp->flags & MAC_SECTION_TYPE)==MAC_S_GB_ZEROFILL)) {
NewSections[newsec].Push(this->Buf()+sectp->offset, uint32_t(sectp->size));
}
// Put data into new section header:
// Initialize to zero
memset(&NewSecHeader, 0, sizeof(NewSecHeader));
uint32_t type = sectp->flags & MAC_SECTION_TYPE;
uint32_t attributes = sectp->flags & MAC_SECTION_ATTRIBUTES;
// Section type
if (type == MAC_S_ZEROFILL || type == MAC_S_GB_ZEROFILL) {
// BSS section
NewSecHeader.sh_type = SHT_NOBITS; // BSS
}
else {
// Normal code or data section
NewSecHeader.sh_type = SHT_PROGBITS; // Program code or data
}
// Section flags
NewSecHeader.sh_flags |= SHF_ALLOC; // Occupies memory during execution
if (attributes & (MAC_S_ATTR_SOME_INSTRUCTIONS | MAC_S_ATTR_PURE_INSTRUCTIONS)) {
// Executable
NewSecHeader.sh_flags |= SHF_EXECINSTR;
}
else {
switch (type) {
case MAC_S_CSTRING_LITERALS:
case MAC_S_4BYTE_LITERALS:
case MAC_S_8BYTE_LITERALS:
case MAC_S_16BYTE_LITERALS:
case MAC_S_LITERAL_POINTERS:
// not writeable
break;
default:
// writeable
NewSecHeader.sh_flags |= SHF_WRITE;
break;
}
}
// Check for special sections
if (strcmp(SecName, MAC_CONSTRUCTOR_NAME) == 0) {
// Constructors segment
SecName = ELF_CONSTRUCTOR_NAME;
NewSecHeader.sh_flags = SHF_WRITE | SHF_ALLOC;
}
// Put name into section header string table
SecNameIndex = NewSections[shstrtab].PushString(SecName);
// Put name into new section header
NewSecHeader.sh_name = SecNameIndex;
// Section virtual memory address
NewSecHeader.sh_addr = sectp->addr;
// Section size in memory
NewSecHeader.sh_size = sectp->size;
// Section alignment
NewSecHeader.sh_addralign = uint32_t(1 << sectp->align);
// Put section header into temporary buffer
NewSectionHeaders[newsec] = NewSecHeader;
// Increment section number
newsec++;
// Check if section is import table
int SectionType = sectp->flags & MAC_SECTION_TYPE;
int IsImportTable = SectionType >= MAC_S_NON_LAZY_SYMBOL_POINTERS && SectionType <= MAC_S_SYMBOL_STUBS;
if (sectp->nreloc > 0 || IsImportTable) {
// Source section has relocations.
// Make a relocation section in destination file
// Put data into relocation section header:
// Initialize to zero
memset(&NewSecHeader, 0, sizeof(NewSecHeader));
// Name for relocation section = ".rel" or ".rela" + name of section
if (WordSize == 32) {
strcpy(RelocationSectionName, ".rel");
}
else {
strcpy(RelocationSectionName, ".rela");
}
strncat(RelocationSectionName, SecName, MAXSECTIONNAMELENGTH-5);
RelocationSectionName[MAXSECTIONNAMELENGTH-1] = 0;
// Put name into section header string table
uint32_t SecNameIndex = NewSections[shstrtab].PushString(RelocationSectionName);
// Put name into new section header
NewSecHeader.sh_name = SecNameIndex;
// Section type
NewSecHeader.sh_type = (WordSize == 32) ? SHT_REL : SHT_RELA; // Relocation section
// Entry size
NewSecHeader.sh_entsize = (WordSize == 32) ? sizeof(Elf32_Rel) : sizeof(Elf64_Rela); // Relocation section
// Section alignment
NewSecHeader.sh_addralign = WordSize / 8;
// Link to the section it relocates for
NewSecHeader.sh_info = newsec - 1;
// Put section header into temporary buffer
NewSectionHeaders[newsec] = NewSecHeader;
// Increment section number
newsec++;
// Check if there are any GOT relocations
// Pointer to old relocation entry
if (sectp->reloff >= this->GetDataSize()) {err.submit(2035); break;}
MAC_relocation_info * relp = (MAC_relocation_info*)(this->Buf() + sectp->reloff);
// Loop through old relocations
for (uint32_t oldr = 1; oldr <= sectp->nreloc; oldr++, relp++) {
uint32_t RType = relp->r_type; // relocation type
// No scattered relocation in 64-bit mode. GOT only in 64-bit mode
if (WordSize == 64 && (RType == MAC64_RELOC_GOT_LOAD || RType == MAC64_RELOC_GOT)) {
HasGOT++;
}
}
}
}
// Check if GOT needed
if (HasGOT && WordSize == 64) {
// Make a fake Global Offset Table
FakeGOTSection = newsec;
// Put name and data into section header
memset(&NewSecHeader, 0, sizeof(NewSecHeader));
SecNameIndex = NewSections[shstrtab].PushString("_fakeGOT");
NewSecHeader.sh_name = SecNameIndex;
NewSecHeader.sh_type = SHT_PROGBITS; // Type
NewSecHeader.sh_flags = SHF_ALLOC; // Flags
NewSecHeader.sh_addralign = 8; // Alignment
// Put section header into temporary buffer
NewSectionHeaders[newsec++] = NewSecHeader;
// Make relocation section for fake GOT
memset(&NewSecHeader, 0, sizeof(NewSecHeader));
// Put name and data into section header
SecNameIndex = NewSections[shstrtab].PushString("_rela.fakeGOT");
NewSecHeader.sh_name = SecNameIndex;
NewSecHeader.sh_type = SHT_RELA; // Type
NewSecHeader.sh_flags = 0; // Flags
NewSecHeader.sh_addralign = 8; // Alignment
NewSecHeader.sh_entsize = sizeof(Elf64_Rela); // Entry size
NewSecHeader.sh_info = newsec - 1; // Link to the section it relocates for
NewSecHeader.sh_link = symtab; // Link to symbol table
// Put section header into temporary buffer
NewSectionHeaders[newsec++] = NewSecHeader;
}
// Number of sections generated
NumSectionsNew = newsec;
}
}
}
template <class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt,
class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CMAC2ELF<MACSTRUCTURES,ELFSTRUCTURES>::MakeSymbolTable() {
// Convert subfunction: Make symbol table and string tables
uint32_t isym; // current old symbol table entry
uint32_t OldSectionIndex; // Index into old section table. 1-based
uint32_t NewSectionIndex; // Index into new section table. 0-based
const char * name1; // Name of symbol
TELF_Symbol sym; // Temporary symbol table record
uint32_t DebugRemoved = 0;// Debug symbols removed
// pointer to old string table
char * oldstringtab = (char*)(this->Buf() + this->StringTabOffset);
// pointer to old symbol table
TMAC_nlist * symp0, *symp;
symp0 = (TMAC_nlist*)(this->Buf() + this->SymTabOffset);
// Check within range
if (this->SymTabOffset + this->SymTabNumber * sizeof(TMAC_nlist) > this->DataSize) {
err.submit(2040); return;
}
// Make the first symbol record empty
NewSections[symtab].Push(0, sizeof(TELF_Symbol));
// Make first string table entries empty
NewSections[strtab] .PushString("");
NewSections[stabstr].PushString("");
// Make symbol records for the start of each section in case they are needed
// by section-relative relocations (r_extern = 0 in MAC_relocation_info)
for (uint32_t sec = 1; sec < NumSectionsNew; sec++) {
uint32_t type = NewSectionHeaders[sec].sh_type;
if (type == SHT_PROGBITS || type == SHT_NOBITS) {
// Make unnamed symbol table entry for this section
memset(&sym, 0, sizeof(sym));
sym.st_shndx = sec;
sym.st_type = STT_SECTION;
// Put record into new symbol table
NewSections[symtab].Push(&sym, sizeof(sym));
// Insert into section symbol translation table
SectionSymbols[sec] = NewSections[symtab].GetLastIndex();
}
}
// Loop through old symbol table. Local symbols first, global symbols last
for (isym = 0, symp = symp0; isym < this->SymTabNumber; isym++, symp++) {
if ((symp->n_type & MAC_N_STAB) && (cmd.DebugInfo & CMDL_DEBUG_STRIP)) {
// Debug symbol should be removed
DebugRemoved++; continue;
}
// Reset destination entry
memset(&sym, 0, sizeof(sym));
// Get binding
if (isym < this->iextdefsym) {
// Local
sym.st_bind = STB_LOCAL;
}
else if (symp->n_desc & (MAC_N_WEAK_REF | MAC_N_WEAK_DEF)) {
// Weak public or weak external
sym.st_bind = STB_WEAK;
}
else {
// Global (public or external)
sym.st_bind = STB_GLOBAL;
}
// Symbol name
if (symp->n_strx < this->StringTabSize) {
name1 = oldstringtab + symp->n_strx;
}
else {
err.submit(2112); break;
}
// Symbol value
sym.st_value = symp->n_value;
// Get section
OldSectionIndex = symp->n_sect;
if (OldSectionIndex > this->NumSections) {
err.submit(2016); break;
}
// Get new section index
NewSectionIndex = 0;
if (OldSectionIndex > 0) {
// Get new section index from translation table
NewSectionIndex = NewSectIndex[OldSectionIndex];
// Change symbol address to section-relative
// (Also in 64-bit mode)
sym.st_value -= NewSectionHeaders[NewSectionIndex].sh_addr;
}
sym.st_shndx = (uint16_t)NewSectionIndex;
if (OldSectionIndex && !NewSectionIndex) {
// Section has been removed. Remove symbol also
continue;
}
// Check symbol type
int32_t RefType = symp->n_desc & MAC_REF_TYPE;
if (RefType == MAC_REF_FLAG_UNDEFINED_LAZY || RefType == MAC_REF_FLAG_PRIVATE_UNDEFINED_LAZY) {
// Lazy binding
err.submit(1061, name1);
}
else if ((symp->n_type & MAC_N_TYPE) == MAC_N_ABS) {
// Absolute symbol
sym.st_type = STT_NOTYPE;
sym.st_shndx = (uint16_t)SHN_ABS;
if (sym.st_bind == STB_LOCAL) {
continue; // Remove absolute local symbol (not allowed in COFF)
}
}
else if (sym.st_shndx == 0) { // added by Vladimir 'phcoder' Serbinenko:
// This is an external
sym.st_type = STT_NOTYPE;
}
else {
// This is a data definition record
if (NewSectionHeaders[NewSectionIndex].sh_flags & SHF_EXECINSTR) {
// Code section, assume this is a function
sym.st_type = STT_FUNC;
}
else {
// This is a data object
sym.st_type = STT_OBJECT;
}
if (sym.st_bind == STB_GLOBAL && NewSectionIndex) {
// Symbol is public
// The size is not specified in Mac record,
// so we may give it an arbitrary size:
sym.st_size = 4;
}
}
// Put symbol name into string table
if (name1 && *name1) {
sym.st_name = NewSections[strtab].PushString(name1);
}
// Put record into new symbol table
NewSections[symtab].Push(&sym, sizeof(sym));
// Insert into symbol translation table
NewSymbolIndex[isym] = NewSections[symtab].GetLastIndex();
// Make index to first global symbol
if (isym >= this->iextdefsym && !NewSectionHeaders[symtab].sh_info) {
// This is the first global symbol
NewSectionHeaders[symtab].sh_info = NewSymbolIndex[isym];
}
}
}
template <class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt,
class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CMAC2ELF<MACSTRUCTURES,ELFSTRUCTURES>::MakeRelocationTables(MAC_header_32&) {
// Convert subfunction: Relocation tables, 32-bit version
uint32_t oldsec; // Relocated section number in source file
uint32_t newsec; // Relocated section number in destination file
uint32_t newsecr; // Relocation table section number in destination file
MInt SectAddr; // Section address of relocation source
MInt SourceAddress; // Address of relocation source including section address
MInt TargetAddress; // Target address including section address
uint32_t TargetSection; // New section index of relocation target
uint32_t TargetOffset; // Section-relative offset of relocation target
uint32_t RefAddress; // Reference point address including section address
uint32_t RefSection; // New section index of reference point
uint32_t RefOffset; // Section-relative offset of reference point
int32_t * inlinep = 0; // Pointer to inline addend
//const int WordSize = sizeof(MInt) * 8;
TELF_SectionHeader * NewRelTableSecHeader; // Section header for new relocation table
// Number of symbols
uint32_t NumSymbols = NewSections[symtab].GetNumEntries();
// New symbol table
//Elf32_Sym * NewSymbolTable = (Elf32_Sym *)(NewSections[symtab].Buf());
// Find first section header
MAC_section_32 * sectp = (MAC_section_32*)(this->Buf() + this->SectionHeaderOffset);
// Loop through section headers
for (oldsec = 1; oldsec <= this->NumSections; oldsec++, sectp++) {
if (sectp->nreloc > 0) {
// Source section has relocations
// New section index
newsec = NewSectIndex[oldsec];
// Check that section has not been deleted
if (newsec > 0) {
// Section address
SectAddr = NewSectionHeaders[newsec].sh_addr;
// Finc new relocation table section
newsecr = newsec + 1;
if (newsecr >= NewSectionHeaders.GetNumEntries()) {
err.submit(9000); return;}
// New relocation table section header
NewRelTableSecHeader = &NewSectionHeaders[newsecr];
// Check that we have allocated this as a relocation section
if (NewRelTableSecHeader->sh_info != newsec) {
err.submit(9000); return;
}
// Insert header info
NewRelTableSecHeader->sh_type = SHT_REL;
NewRelTableSecHeader->sh_flags = 0;
NewRelTableSecHeader->sh_addralign = 4;
NewRelTableSecHeader->sh_link = symtab; // Point to symbol table
NewRelTableSecHeader->sh_info = newsec; // Point to relocated section
NewRelTableSecHeader->sh_entsize = sizeof(Elf32_Rel); // Entry size:
// Pointer to old relocation entry
if (sectp->reloff >= this->GetDataSize()) {err.submit(2035); break;}
MAC_relocation_info * relp = (MAC_relocation_info*)(this->Buf() + sectp->reloff);
// Loop through old relocations
for (uint32_t oldr = 1; oldr <= sectp->nreloc; oldr++, relp++) {
// Make new relocation entry and set to zero
Elf32_Rel NewRelocEntry;
memset(&NewRelocEntry, 0, sizeof(NewRelocEntry));
if (relp->r_address & R_SCATTERED) {
// scattered relocation into
MAC_scattered_relocation_info * scatp = (MAC_scattered_relocation_info*)relp;
// Address of source
NewRelocEntry.r_offset = scatp->r_address;
if (NewRelocEntry.r_offset >= NewSections[newsec].GetDataSize()) {
err.submit(2035); continue; // Out of range
}
// Pointer to inline addend
inlinep = (int32_t*)(NewSections[newsec].Buf() + NewRelocEntry.r_offset);
if (scatp->r_pcrel) {
// Self-relative scattered
if (scatp->r_type != MAC32_RELOC_VANILLA) {
err.submit(2030, scatp->r_type); continue; // Unexpected type
}
// Scattered, self-relative, vanilla
// Note: I have never seen this relocation method, so I have not
// been able to test it. I don't know for sure how it works and
// the documentation is poor.
SourceAddress = SectAddr + scatp->r_address;
// Target address
TargetAddress = SourceAddress + *inlinep;
TranslateAddress(TargetAddress, TargetSection, TargetOffset);
if (TargetSection == 0) {err.submit(2031); continue;} // not found
NewRelocEntry.r_sym = SectionSymbols[TargetSection];
if (NewRelocEntry.r_sym == 0) {
err.submit(2031); continue; // refers to non-program section
}
// inline contains full relative address
// compensate by subtracting relative address to target section
*inlinep -= int32_t(NewSectionHeaders[TargetSection].sh_addr - SourceAddress);
// Relocation type
NewRelocEntry.r_type = R_386_PC32;
}
else if (scatp->r_type == MAC32_RELOC_VANILLA) {
// Scattered, absolute
TargetAddress = *inlinep;
TranslateAddress(TargetAddress, TargetSection, TargetOffset);
if (TargetSection == 0) {
err.submit(2031); continue;} // Target not found
NewRelocEntry.r_sym = SectionSymbols[TargetSection];
*inlinep = TargetOffset;
NewRelocEntry.r_type = R_386_32;
if (scatp->r_length != 2) {
err.submit(2030, scatp->r_type); continue; // Only 32-bit supported
}
}
else if (scatp->r_type == MAC32_RELOC_SECTDIFF || scatp->r_type == MAC32_RELOC_LOCAL_SECTDIFF) {
// relative to arbitrary reference point
// check that next record is MAC32_RELOC_PAIR
if (oldr == sectp->nreloc || (scatp+1)->r_type != MAC32_RELOC_PAIR || scatp->r_length != 2) {
err.submit(2050); continue;
}
// Find target address and reference point
RefAddress = (scatp+1)->r_value;
TranslateAddress(RefAddress, RefSection, RefOffset);
TargetAddress = RefAddress + *inlinep;
TranslateAddress(TargetAddress, TargetSection, TargetOffset);
// Check that both points are found
if (RefSection == 0 || TargetSection == 0) {
err.submit(2031); oldr++; relp++; continue;
}
// Address relative to arbitrary reference point can be translated
// to self-relative address if reference point is in same section as source
if (RefSection != newsec) {
err.submit(2044); oldr++; relp++; continue;
}
// Translation is possible
// Get symbol for target section
NewRelocEntry.r_sym = SectionSymbols[TargetSection];
// Make self-relative relocation
NewRelocEntry.r_type = R_386_PC32;
// Calculate compensating addend
*inlinep = TargetOffset + scatp->r_address - RefOffset;
// Linker will add (target section) - (source full address) to *inlinep, which gives
// (target full address) - (reference point full address)
// Advance pointers because we have used two records
oldr++; relp++;
}
else if (scatp->r_type == MAC32_RELOC_PB_LA_PTR) {
// procedure linkage table. Not supported
NewRelocEntry.r_type = R_386_PLT32;
err.submit(2043);
}
else {
// unknown scattered relocation type
err.submit(2030, scatp->r_type); continue;
}
}
else {
// Non scattered relocation info
// Section offset of relocated address
NewRelocEntry.r_offset = relp->r_address;
if (NewRelocEntry.r_offset >= NewSections[newsec].GetDataSize()) {
err.submit(2035); continue; // Out of range
}
// Pointer to inline addend
inlinep = (int32_t*)(NewSections[newsec].Buf() + NewRelocEntry.r_offset);
if (relp->r_extern) {
// r_extern = 1: target indicated by symbol index
uint32_t symold = relp->r_symbolnum;
if (symold >= this->SymTabNumber) {
err.submit(2031); continue; // index out of range
}
NewRelocEntry.r_sym = NewSymbolIndex[symold];
if (relp->r_pcrel) {
// Self-relative.
// Inline contains -(source address)
// Add (source address) to compensate
*inlinep += int32_t(SectAddr + relp->r_address);
}
}
else {
// r_extern = 0. Target indicated by section + offset
// Old section number
uint32_t secold = relp->r_symbolnum;
if (secold > this->NumSections) {
err.submit(2031); continue; // index out of range
}
TargetSection = NewSectIndex[secold];
NewRelocEntry.r_sym = SectionSymbols[TargetSection];
if (NewRelocEntry.r_sym == 0 || NewRelocEntry.r_sym > NumSymbols) {
err.submit(2031); continue; // refers to non-program section
}
if (relp->r_pcrel) {
// Self-relative.
// Inline contains (target address)-(source address)
// Subtract this to compensate
// Target section address
TargetOffset = uint32_t(NewSectionHeaders[TargetSection].sh_addr);
SourceAddress = SectAddr + relp->r_address;
*inlinep -= int32_t(TargetOffset - SourceAddress);
}
else {
// Absolute reference
// Inline contains target address, convert to section:offset address
TranslateAddress(*inlinep, TargetSection, TargetOffset);
if (TargetSection == 0) { // Target not found
err.submit(2035); continue;
}
// Translate to section-relative address by subtracting target section address
*inlinep -= int32_t(NewSectionHeaders[TargetSection].sh_addr);
}
}
// relocation type (32-bit non-scattered)
switch (relp->r_type) {
case MAC32_RELOC_VANILLA:
// Normal relocation
if (relp->r_pcrel) { // self relative
NewRelocEntry.r_type = R_386_PC32;
}
else { // direct
NewRelocEntry.r_type = R_386_32;
}
break;
default:
err.submit(2030, relp->r_type); // unknown type
continue;
}
// size
if (relp->r_length != 2) { // wrong size
err.submit(2030,relp->r_type);
}
}
// Put relocation record into table
NewSections[newsecr].Push(&NewRelocEntry, sizeof(NewRelocEntry));
}
}
}
}
}
template <class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt,
class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CMAC2ELF<MACSTRUCTURES,ELFSTRUCTURES>::MakeRelocationTables(MAC_header_64&) {
// Convert subfunction: Relocation tables, 64-bit version
uint32_t oldsec; // Relocated section number in source file
uint32_t newsec; // Relocated section number in destination file
uint32_t newsecr; // Relocation table section number in destination file
uint32_t symold; // Old index of symbol
uint32_t TargetSym; // Target symbol
uint32_t TargetSection; // New section index of relocation target
uint32_t RefSym; // Reference symbol
uint32_t RefSection; // New section index of reference point
int64_t RefOffset; // Section-relative offset of reference point
int64_t SectAddr; // Address of current section
//const int WordSize = sizeof(MInt) * 8; // Word size, 32 or 64 bits
TELF_SectionHeader * NewRelTableSecHeader; // Section header for new relocation table
// Number of symbols
//uint32_t NumSymbols = NewSections[symtab].GetNumEntries();
// New symbol table
Elf64_Sym * NewSymbolTable = (Elf64_Sym *)(NewSections[symtab].Buf());
// Find first section header
MAC_section_64 * sectp = (MAC_section_64*)(this->Buf() + this->SectionHeaderOffset);
// Loop through section headers
for (oldsec = 1; oldsec <= this->NumSections; oldsec++, sectp++) {
if (sectp->nreloc > 0) {
// Source section has relocations
// New section index
newsec = NewSectIndex[oldsec];
// Check that section has not been deleted
if (newsec > 0) {
// Section address
SectAddr = NewSectionHeaders[newsec].sh_addr;
// Finc new relocation table section
newsecr = newsec + 1;
if (newsecr > NewSectionHeaders.GetNumEntries()) {
err.submit(9000); return;
}
// New relocation table section header
NewRelTableSecHeader = &NewSectionHeaders[newsecr];
// Check that we have allocated this as a relocation section
if (NewRelTableSecHeader->sh_info != newsec) {
err.submit(9000); return;
}
// Insert header info
NewRelTableSecHeader->sh_type = SHT_RELA;
NewRelTableSecHeader->sh_flags = 0;
NewRelTableSecHeader->sh_addralign = 8;
NewRelTableSecHeader->sh_link = symtab; // Point to symbol table
NewRelTableSecHeader->sh_info = newsec; // Point to relocated section
// Entry size:
NewRelTableSecHeader->sh_entsize = sizeof(Elf64_Rela);
// Pointer to old relocation entry
if (sectp->reloff >= this->GetDataSize()) {err.submit(2035); break;}
MAC_relocation_info * relp = (MAC_relocation_info*)(this->Buf() + sectp->reloff);
// Loop through old relocations
for (uint32_t oldr = 1; oldr <= sectp->nreloc; oldr++, relp++) {
// Make new relocation entry and set to zero
Elf64_Rela NewRelocEntry;
memset(&NewRelocEntry, 0, sizeof(NewRelocEntry));
// Pointer to inline addend
int32_t * inlinep = 0;
if (relp->r_address & R_SCATTERED) {
// scattered not allowed in 64-bit
err.submit(2030, ((MAC_scattered_relocation_info*)relp)->r_type); continue;
}
else {
// Non scattered relocation info
// Section offset of relocated address
NewRelocEntry.r_offset = relp->r_address;
if (NewRelocEntry.r_offset >= NewSections[newsec].GetDataSize()) {
err.submit(2035); continue; // Out of range
}
// Pointer to inline addend
inlinep = (int32_t*)(NewSections[newsec].Buf() + NewRelocEntry.r_offset);
// Symbol index of target
symold = relp->r_symbolnum;
if (relp->r_extern) {
if (symold >= this->SymTabNumber) {
err.submit(2031); continue; // index out of range
}
NewRelocEntry.r_sym = NewSymbolIndex[symold];
}
else {
// r_extern = 0, r_symbolnum = section
if (symold > NumSectionsNew) {err.submit(2031); continue;}
TargetSection = NewSectIndex[symold];
NewRelocEntry.r_sym = SectionSymbols[TargetSection];
if (relp->r_pcrel) {
// Self-relative.
// Inline contains (target address)-(source address)
// Subtract this to compensate
// Target section address
uint64_t TargetSectAddr = NewSectionHeaders[TargetSection].sh_addr;
uint64_t SourceAddress = SectAddr + relp->r_address;
*inlinep -= int32_t(TargetSectAddr - SourceAddress);
*inlinep += 4; // Compensate for subtracting 4 below
}
}
// Find relocation type
switch (relp->r_type) {
case MAC64_RELOC_UNSIGNED: // absolute address, 32 or 64 bits
if (relp->r_length == 2) {
NewRelocEntry.r_type = R_X86_64_32S; // 32 bit signed
}
else if (relp->r_length == 3) {
NewRelocEntry.r_type = R_X86_64_64; // 64 bit
}
else {
err.submit(2030,relp->r_type); continue;
}
break;
case MAC64_RELOC_SIGNED: // rip-relative, implicit addend = -4
case MAC64_RELOC_BRANCH: // rip-relative, implicit addend = -4
case MAC64_RELOC_SIGNED_1: // implicit addend = -4, not -5
case MAC64_RELOC_SIGNED_2: // implicit addend = -4, not -6
case MAC64_RELOC_SIGNED_4: // implicit addend = -4, not -8
// These are all the same:
// signed 32-bit rip-relative with implicit -4 addend
if (relp->r_length != 2) { // wrong size
err.submit(2030,relp->r_type); continue;
}
NewRelocEntry.r_type = R_X86_64_PC32;
// ELF = self-relative, Mac64 = rip-relative. Compensate for difference
*inlinep -= 4;
break;
case MAC64_RELOC_SUBTRACTOR:
// relative to arbitrary reference point
// must be followed by a X86_64_RELOC_UNSIGNED
// check that next record is MAC64_RELOC_UNSIGNED
if (oldr == sectp->nreloc || (relp+1)->r_type != MAC64_RELOC_UNSIGNED) {
err.submit(2050); continue;
}
// Reference symbol
RefSym = NewRelocEntry.r_sym;
RefSection = NewSymbolTable[RefSym].st_shndx;
RefOffset = NewSymbolTable[RefSym].st_value;
// Target symbol
symold = (relp+1)->r_symbolnum;
if (symold >= this->SymTabNumber) {
err.submit(2031); continue; // index out of range
}
TargetSym = NewSymbolIndex[symold];
NewRelocEntry.r_sym = TargetSym;
// Address relative to arbitrary reference point can be translated
// to self-relative address if reference point is in same section as source
if (RefSection != newsec) {
err.submit(2044); oldr++; relp++; continue;
}
if (relp->r_length == 2) {
*inlinep += int32_t(NewRelocEntry.r_offset) - int32_t(RefOffset);
}
else if (relp->r_length == 3) {
*(int64_t*)inlinep += NewRelocEntry.r_offset - RefOffset;
// there is no 64-bit self-relative relocation in ELF,
// use 32-bit self-relative and hope there is no carry
err.submit(1302); // Warn. This will fail if inline value changes sign
}
else {
err.submit(2044); // wrong size
}
// self-relative type
NewRelocEntry.r_type = R_X86_64_PC32;
// increment counters because we used two records
relp++; oldr++;
break;
case MAC64_RELOC_GOT_LOAD: // a rip-relative load of a GOT entry
*inlinep = -4;
// Continue into next case
case MAC64_RELOC_GOT: // other GOT references
// Make fake GOT entry
//NewRelocEntry.r_addend = MakeGOTEntry(NewRelocEntry.r_sym) - 4;
*inlinep += MakeGOTEntry(NewRelocEntry.r_sym);
NewRelocEntry.r_sym = FakeGOTSymbol;
NewRelocEntry.r_type = R_X86_64_PC32;
break;
}
}
// Put relocation record into table
NewSections[newsecr].Push(&NewRelocEntry, sizeof(NewRelocEntry));
}
}
}
}
}
template <class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt,
class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CMAC2ELF<MACSTRUCTURES,ELFSTRUCTURES>::MakeBinaryFile() {
// Convert subfunction: Make section headers and file header,
// and combine everything into a single memory buffer.
uint32_t newsec; // Section index
uint32_t SecOffset; // Section offset in file
uint32_t SecSize; // Section size in file
uint32_t SectionHeaderOffset; // File offset to section headers
const int WordSize = sizeof(MInt) * 8;
// Set file type in ToFile
ToFile.SetFileType(FILETYPE_ELF);
// Make space for file header in ToFile, but don't fill data into it yet
ToFile.Push(0, sizeof(TELF_Header));
// Loop through new section buffers
for (newsec = 0; newsec < NumSectionsNew; newsec++) {
// Size of section
SecSize = NewSections[newsec].GetDataSize();
// Put section into ToFile
SecOffset = ToFile.Push(NewSections[newsec].Buf(), SecSize);
// Put size and offset into section header
NewSectionHeaders[newsec].sh_offset = SecOffset;
if (SecSize) { // Don't set size of BSS sections to zero
NewSectionHeaders[newsec].sh_size = SecSize;
}
// Align before next entry
ToFile.Align(16);
}
// Start offset of section headers
SectionHeaderOffset = ToFile.GetDataSize();
// Loop through new section headers
for (newsec = 0; newsec < NumSectionsNew; newsec++) {
// Put section header into ToFile
ToFile.Push(&NewSectionHeaders[newsec], sizeof(TELF_SectionHeader));
}
// Make file header
TELF_Header FileHeader;
memset(&FileHeader, 0, sizeof(FileHeader)); // Initialize to 0
// Put file type magic number in
strcpy((char*)(FileHeader.e_ident), ELFMAG);
// File class
FileHeader.e_ident[EI_CLASS] = (WordSize == 32) ? ELFCLASS32 : ELFCLASS64;
// Data Endian-ness
FileHeader.e_ident[EI_DATA] = ELFDATA2LSB;
// ELF version
FileHeader.e_ident[EI_VERSION] = EV_CURRENT;
// ABI
FileHeader.e_ident[EI_OSABI] = ELFOSABI_SYSV;
// ABI version
FileHeader.e_ident[EI_ABIVERSION] = 0;
// File type
FileHeader.e_type = ET_REL;
// Machine architecture
FileHeader.e_machine = (WordSize == 32) ? EM_386 : EM_X86_64;
// Version
FileHeader.e_version = EV_CURRENT;
// Flags
FileHeader.e_flags = 0;
// Section header table offset
FileHeader.e_shoff = SectionHeaderOffset;
// File header size
FileHeader.e_ehsize = sizeof(TELF_Header);
// Section header size
FileHeader.e_shentsize = sizeof(TELF_SectionHeader);
// Number of section headers
FileHeader.e_shnum = (uint16_t)NumSectionsNew;
// Section header string table index
FileHeader.e_shstrndx = (uint16_t)shstrtab;
// Put file header into beginning of ToFile where we made space for it
memcpy(ToFile.Buf(), &FileHeader, sizeof(FileHeader));
}
template <class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt,
class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CMAC2ELF<MACSTRUCTURES,ELFSTRUCTURES>::MakeImportTables() {
// Convert subfunction: Fill import tables
uint32_t oldsec; // Old section number
uint32_t Type; // Old section type
uint32_t NumEntries; // Number of entries in import table
uint32_t EntrySize; // Entry size of import table
uint32_t NewSec1; // New section number of import table
uint32_t NewSec2; // New section number of relocation for import table
uint32_t Offset; // Offset of relocation source
uint32_t OldSymbol; // Old symbol number of import
uint32_t i; // Loop counter
uint32_t * IndSymTab; // Pointer to indirect symbol table
uint32_t IndSymi; // Index into indirect symbol table
uint32_t IndSymNum; // Number of entries in indirect symbol table
TELF_Relocation NewRelocEntry; // New relocation entry
const int WordSize = sizeof(MInt) * 8;
// Machine code of jmp instruction
static const int8_t JmpInstruction[5] = {int8_t(0xE9), int8_t(0xFC), int8_t(0xFF), int8_t(0xFF), int8_t(0xFF)};
// Number of indirect symbols
IndSymNum = this->IndirectSymTabNumber;
if (IndSymNum == 0) {
return; // No indirect symbols
}
// Find indirect symbol table
IndSymTab = (uint32_t*)(this->Buf() + this->IndirectSymTabOffset);
// Find first section header
TMAC_section * sectp = (TMAC_section*)(this->Buf() + this->SectionHeaderOffset);
// Loop through section headers
for (oldsec = 1; oldsec <= this->NumSections; oldsec++, sectp++) {
// Search for import tables
Type = sectp->flags & MAC_SECTION_TYPE;
if (Type >= MAC_S_NON_LAZY_SYMBOL_POINTERS && Type <= MAC_S_SYMBOL_STUBS) {
// This is an import table
// Indirect symbol table first entry
IndSymi = sectp->reserved1;
// Entry size:
EntrySize = sectp->reserved2;
if (EntrySize == 0) EntrySize = WordSize / 8;
// Find new section
NewSec1 = NewSectIndex[oldsec];
NumEntries = uint32_t(NewSectionHeaders[NewSec1].sh_size) / EntrySize;
// Find new relocation section
NewSec2 = NewSec1 + 1;
if (NewSectionHeaders[NewSec2].sh_type != SHT_REL && NewSectionHeaders[NewSec2].sh_type != SHT_RELA) {
err.submit(9000); // This should be a relocation section
}
NewSectionHeaders[NewSec2].sh_link = symtab; // Point to symbol table
// Offset of first relocation
Offset = EntrySize & 1; // 1 if EntrySize = 5, otherwise 0
// Loop through entries
for (i = 0; i < NumEntries; i++, Offset += EntrySize) {
// Find symbol
if (IndSymi >= IndSymNum) {
err.submit(1303); break; // Import symbol table exhausted
}
OldSymbol = IndSymTab[IndSymi];
if (OldSymbol >= this->SymTabNumber) {
err.submit(1052); break;
}
// Increment pointer to import symbol table
IndSymi++;
// Make relocation record
memset(&NewRelocEntry, 0, sizeof(NewRelocEntry));
NewRelocEntry.r_offset = Offset;
if (WordSize == 32) {
if (EntrySize == 4) {
NewRelocEntry.r_type = R_386_32;
}
else if (EntrySize == 5) {
NewRelocEntry.r_type = R_386_PC32;
}
else {
err.submit(2045);
}
}
else { // 64 bit
if (EntrySize == 8) {
NewRelocEntry.r_type = R_X86_64_64;
}
else if (EntrySize == 5) {
NewRelocEntry.r_type = R_X86_64_PC32;
}
else {
err.submit(2045);
}
}
NewRelocEntry.r_sym = NewSymbolIndex[OldSymbol];
// Store relocation record
NewSections[NewSec2].Push(&NewRelocEntry, (WordSize==32) ? sizeof(Elf32_Rel) : sizeof(Elf64_Rela));
// Insert jmp instruction if EntrySize = 5
if (EntrySize == 5) {
if (Offset -1 + EntrySize > NewSections[NewSec1].GetDataSize()) {
err.submit(9000); // Outside section
}
memcpy(NewSections[NewSec1].Buf()+Offset-1, JmpInstruction, 5);
}
}
}
}
}
template <class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt,
class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CMAC2ELF<MACSTRUCTURES,ELFSTRUCTURES>::TranslateAddress(MInt addr, uint32_t & section, uint32_t & offset) {
// Translate 32-bit address to section + offset
// (Sections are not necessarily ordered by address)
uint32_t sec;
MInt secstart;
for (sec = 1; sec < NumSectionsNew; sec++) {
secstart = NewSectionHeaders[sec].sh_addr;
if (addr >= secstart && addr < secstart + MInt(NewSectionHeaders[sec].sh_size)) {
// Section found
section = sec;
offset = uint32_t(addr - secstart);
return;
}
}
// Not found
section = offset = 0;
}
template <class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt,
class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
uint32_t CMAC2ELF<MACSTRUCTURES,ELFSTRUCTURES>::MakeGOTEntry(int symbol) {
// Make entry in fake GOT for symbol
uint32_t NumGOTEntries = GOTSymbols.GetNumEntries();
uint32_t symi; // Symbol index
const int WordSize = sizeof(MInt) * 8;
// Get symbol for start of GOT
FakeGOTSymbol = SectionSymbols[FakeGOTSection];
// Search for symbol in previous entries
for (symi = 0; symi < NumGOTEntries; symi++) {
if (GOTSymbols[symi] == symbol) break;
}
if (symi == NumGOTEntries) {
// Not found. Make new entry
GOTSymbols.Push(symbol);
}
return symi * (WordSize / 8);
}
template <class TMAC_header, class TMAC_segment_command, class TMAC_section, class TMAC_nlist, class MInt,
class TELF_Header, class TELF_SectionHeader, class TELF_Symbol, class TELF_Relocation>
void CMAC2ELF<MACSTRUCTURES,ELFSTRUCTURES>::MakeGOT() {
// Make fake Global Offset Table
const int WordSize = sizeof(MInt) * 8;
if (!HasGOT) return;
uint32_t NumEntries = GOTSymbols.GetNumEntries();
NewSections[FakeGOTSection].Push(0, NumEntries*(WordSize/8));
// Make relocations for GOT
Elf64_Rela NewRelocEntry;
memset(&NewRelocEntry, 0, sizeof(NewRelocEntry));
for (uint32_t i = 0; i < NumEntries; i++) {
NewRelocEntry.r_offset = i * (WordSize/8);
NewRelocEntry.r_sym = GOTSymbols[i];
NewRelocEntry.r_type = R_X86_64_64;
NewSections[FakeGOTSection+1].Push(&NewRelocEntry, sizeof(NewRelocEntry));
}
}
// Make template instances for 32 and 64 bits
template class CMAC2ELF<MAC32STRUCTURES,ELF32STRUCTURES>;
template class CMAC2ELF<MAC64STRUCTURES,ELF64STRUCTURES>;
|