File: codec.effect

package info (click to toggle)
obs-retro-effects 1.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,004 kB
  • sloc: ansic: 7,133; sh: 153; makefile: 27; cpp: 16
file content (395 lines) | stat: -rw-r--r-- 9,038 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
// FMV (RPZA) shader
// by Millennium Cyborg

// Ported to FiniteSingularity's OBS Retro Effects plugin

// Loosely based on the encoding method in ffmpeg's RPZA encoder:
// https://ffmpeg.org/doxygen/trunk/rpzaenc_8c_source.html

uniform float4x4 ViewProj;
uniform texture2d image;
uniform float2 uv_size;
uniform texture2d prev_frame;
uniform float is_keyframe;
uniform float colors_per_channel;
uniform float rpza_threshold_prev_frame;
uniform float rpza_threshold_solid;
uniform float rpza_threshold_gradient;

// #define RPZA_DEBUG_COLORS
// #define SRGB_CONV

#ifdef SRGB_CONV
#define INPUT_CONV srgb_linear_to_nonlinear
#define OUTPUT_CONV srgb_nonlinear_to_linear
#else
#define INPUT_CONV
#define OUTPUT_CONV
#endif

sampler_state textureSampler{
    Filter = Linear;
    AddressU = Clamp;
    AddressV = Clamp;
    MinLOD = 0;
    MaxLOD = 0;
};

struct VertData
{
	float4 pos : POSITION;
	float2 uv : TEXCOORD0;
};

// From libobs/data/color.effect
// Can't get the relevant include to work at the moment

float srgb_linear_to_nonlinear_channel(float u)
{
	return (u <= 0.0031308) ? (12.92 * u) : ((1.055 * pow(u, 1. / 2.4)) - 0.055);
}

float3 srgb_linear_to_nonlinear(float3 v)
{
	return float3(srgb_linear_to_nonlinear_channel(v.r), srgb_linear_to_nonlinear_channel(v.g), srgb_linear_to_nonlinear_channel(v.b));
}

float srgb_nonlinear_to_linear_channel(float u)
{
	return (u <= 0.04045) ? (u / 12.92) : pow((u + 0.055) / 1.055, 2.4);
}

float3 srgb_nonlinear_to_linear(float3 v)
{
	return float3(srgb_nonlinear_to_linear_channel(v.r), srgb_nonlinear_to_linear_channel(v.g), srgb_nonlinear_to_linear_channel(v.b));
}

// UV: proportion across source texture, 0 to 1
// px: output-scaled pixels, 0 to uv_size-1

float2 pxFromUv(float2 uv)
{
	return floor(uv * uv_size.xy);
}

float2 uvFromPx(float2 tx)
{
	return (tx + 0.5) / uv_size.xy;
}

float4 sampleSource(float2 px)
{
	// Sample, nearest-neighbour
	float4 col = image.Sample(textureSampler, uvFromPx(px));

	col.rgb = INPUT_CONV(col.rgb);

	return col;
}

float4 samplePrev(float2 px)
{
	// Sample, nearest-neighbour
	float4 col = prev_frame.Sample(textureSampler, uvFromPx(px));

	col.rgb = INPUT_CONV(col.rgb);

	return col;
}

float3 quantize(float3 color, float dither)
{
	return floor(color.rgb * colors_per_channel + dither) / colors_per_channel;
}

float2 mod(float2 x, float2 y)
{
	return x - y * floor(x / y);
}

float get_bayer(float2 px)
{
	
#ifdef OPENGL
	const int bayer4[16] = int[16](
		0, 8, 2, 10,
		12, 4, 14, 6,
		3, 11, 1, 9,
		15, 7, 13, 5
	);
#else
	int bayer4[16] =
	{
		0, 8, 2, 10,
		12, 4, 14, 6,
		3, 11, 1, 9,
		15, 7, 13, 5
	};
#endif
	float2 sample_coord = mod(px, float2(4.0, 4.0));
	return float(bayer4[int(sample_coord.y) * 4 + int(sample_coord.x)]) / 16.0;
}

float4 ApplyDitherNoise(float4 color, float2 px)
{
	float noise = get_bayer(px);
	color.rgb = quantize(color.rgb, noise);
	return color;
}

float4 sampleWithDither(float2 px)
{
	float4 col = sampleSource(px);
	col = ApplyDitherNoise(col, px);
	return col;
}

// rotate components
float3 rotateCol(float3 col, int amount)
{
	amount %= 3;

	if (amount == 0)
		return col;
   
	if (amount == 1)
		return col.gbr;
    
	return col.brg;
}

float calcSquareError(float3 ref, float3 col)
{
	float3 d = saturate(abs(col - ref));
	return dot(d, d);
}

// Calculating per-pixel isn't ideal but it'll do for now
void calcGradient(int2 blockCoord, out float3 mean, out float3 startCol, out float3 endCol)
{
	// What I think the correct ordering is:
	// 1) add dither mask scaled down appropriately (/16 then /32) and offset appropriately (-8/16)
	// 2) calc gradient
	// 3) find nearest colours in rgb555
	// Here I follow the method in the ffpmeg RPZA encoder:
	// ( https://ffmpeg.org/doxygen/trunk/rpzaenc_8c_source.html )
	// Pick as primary the channel with the largest range of values.
	// That channel has a gradient from its min to its max.
	// For the other two channels, use a least squares regression.

	// Find min/max per channel
	float3 minCol = float3(1.0, 1.0, 1.0);
	float3 maxCol = float3(0.0, 0.0, 0.0);

	float3 sum = float3(0.0, 0.0, 0.0); // r, g, b
	float3 sumSq = float3(0.0, 0.0, 0.0); // rr, gg, bb
	float3 sumProd = float3(0.0, 0.0, 0.0); // bg, gr, rb (index by (max+cur)%3)
	for (int bx = 0; bx < 4; ++bx)
	{
		for (int by = 0; by < 4; ++by)
		{
			int2 px = blockCoord * 4 + int2(bx, by);
			float3 col = sampleWithDither(px).rgb;
			minCol = min(minCol, col);
			maxCol = max(maxCol, col);
			sum += col;
			sumSq += col * col;
			sumProd += float3(col.b * col.g, col.g * col.r, col.r * col.b);
		}
	}

	// Find max range across channels
	int maxChanIdx = 0;
	float maxChanRange = 0;
	float3 chanRange = abs(minCol - maxCol);
	for (int c = 0; c < 3; ++c)
	{
		if (chanRange[c] > maxChanRange)
		{
			maxChanIdx = c;
			maxChanRange = chanRange[c];
		}
	}

#ifdef OPENGL
	bvec3 maxChanMask = equal(int3(0, 1, 2), int3(maxChanIdx));
#else
	float3 maxChanMask = (int3(0, 1, 2) == maxChanIdx);
#endif

	sumProd = rotateCol(sumProd, maxChanIdx);

	// Find slope per channel vs max channel
	float3 m = float3(1.0, 1.0, 1.0);
	float3 b = float3(0.0, 0.0, 0.0);

	float d = 16.0f * sumSq[maxChanIdx] - sum[maxChanIdx] * sum[maxChanIdx];

	mean = sum / 16.0f;

	// Avoid div by 0. All the pixels in the block are the same colour or very close.
	if (abs(d) < 0.00001f)
	{
		startCol = endCol = mean;
	}
	else
	{
		// This is a rearrangement of the least squares regression formula
		float sumMax = sum[maxChanIdx];
		m = (16.0f * sumProd - sumMax * sum) / d;
		b = (sum - m * sumMax) / 16.0f;
#ifdef OPENGL
		startCol = mix(m * minCol[maxChanIdx] + b, minCol, maxChanMask);
		endCol = mix(m * maxCol[maxChanIdx] + b, maxCol, maxChanMask);
#else
		startCol = maxChanMask ? minCol : m * minCol[maxChanIdx] + b;
		endCol = maxChanMask ? maxCol : m * maxCol[maxChanIdx] + b;
#endif
	}

	startCol = saturate(startCol);
	endCol = saturate(endCol);
}

float4 rpzaEncode(float2 sourcePx)
{
	int2 coordInBlock = int2(floor(mod(sourcePx, float2(4.0, 4.0))));
	int2 blockCoord = int2(floor(sourcePx / 4.0));

	// NOTE: error calcs not going to be as accurate as they could be because they're not taking the quantization into account

	// Compute the gradient by least squares
	float3 mean = float3(0.0, 0.0, 0.0);
	float3 startCol = float3(0.0, 0.0, 0.0);
	float3 endCol = float3(1.0, 1.0, 1.0);
	calcGradient(blockCoord, mean, startCol, endCol);

	mean = quantize(mean, 0.0);
	startCol = quantize(startCol, 0.0);
	endCol = quantize(endCol, 0.0);

	// Compute 4-col gradient
	float3 gradCol[4];
                
	for (int i = 0; i < 4; ++i)
	{
		float3 p = lerp(startCol, endCol, float(i) / 3.0);
		// convert to rgb555
		gradCol[i] = quantize(p, 0.0);
	}

	// Iterate pixels and compute total square error then sqrt mean square error

	float sumSqErr0 = 0.0f;
	float sumSqErr1 = 0.0f;
	float sumSqErr4 = 0.0f;

	for (int bx = 0; bx < 4; ++bx)
	{
		for (int by = 0; by < 4; ++by)
		{
			int2 px = blockCoord * 4 + int2(bx, by);
			float3 col = sampleWithDither(px).rgb;

			sumSqErr0 += calcSquareError(col, samplePrev(px).rgb);
            
			sumSqErr1 += calcSquareError(col, mean);

			// Find closest color in gradient
			float minErr = 9999999.0;
			float3 minErrCol = float3(1.0, 1.0, 1.0);
			for (int i = 0; i < 4; ++i)
			{
				float3 p = gradCol[i];
				float err = calcSquareError(p, col);
				if (err < minErr)
				{
					minErrCol = p;
					minErr = err;
				}
			}
                        
			sumSqErr4 += minErr;
		}
	}
	
	float3 col = sampleWithDither(sourcePx).rgb;

	// option 0: keep previous block
	if (is_keyframe < 0.5f && sumSqErr0 < rpza_threshold_prev_frame * rpza_threshold_prev_frame)
	{
		// Adding a debug col for this doesn't quite work
		return float4(samplePrev(sourcePx).rgb, 1);
	}

	// option 1: single color
	if (sumSqErr1 < rpza_threshold_solid * rpza_threshold_solid)
	{
#ifdef RPZA_DEBUG_COLORS
		return float4(1, 0, 0, 1);
#else
		return float4(mean, 1);
#endif
	}

	// option 2: 4 colors
	if (sumSqErr4 < rpza_threshold_gradient * rpza_threshold_gradient)
	{
		// Find closest color in gradient
		float minErr = 9999999.0;
		float3 minErrCol = float3(1.0, 1.0, 1.0);
		for (int i = 0; i < 4; ++i)
		{
			float3 p = gradCol[i];
			float err = calcSquareError(p, col);
			if (err < minErr)
			{
				minErrCol = p;
				minErr = err;
			}
		}
#ifdef RPZA_DEBUG_COLORS
		return float4(0, 1, 0, 1);
#else
		return float4(minErrCol, 1);
#endif
	}

	// option 3: 16 colors
#ifdef RPZA_DEBUG_COLORS
	return float4(0, 0, 1, 1);
#else
	return float4(col, 1);
#endif
}

VertData mainTransform(VertData v_in)
{
	v_in.pos = mul(float4(v_in.pos.xyz, 1.0), ViewProj);
	return v_in;
}

float4 mainImageRPZA(VertData v_in) : TARGET
{
	float2 uv = v_in.uv;
	float2 px = pxFromUv(uv);

	float4 col = sampleWithDither(px);

	col.rgb = rpzaEncode(px).rgb;

	// Convert srgb to linear for output
	col.rgb = OUTPUT_CONV(col.rgb);

	return col;
}


technique DrawRPZA
{
	pass
	{
		vertex_shader = mainTransform(v_in);
		pixel_shader = mainImageRPZA(v_in);
	}
}