File: astring.mli

package info (click to toggle)
ocaml-astring 0.8.5-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 396 kB
  • sloc: ml: 4,475; makefile: 16
file content (1374 lines) | stat: -rw-r--r-- 52,930 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
(*---------------------------------------------------------------------------
   Copyright (c) 2015 The astring programmers. All rights reserved.
   Distributed under the ISC license, see terms at the end of the file.
  ---------------------------------------------------------------------------*)

(** Alternative [Char] and [String] modules.

    Open the module to use it. This defines {{!strf}one value} in your
    scope, redefines the [(^)] operator, the [Char] module and the [String]
    module.

    Consult the {{!diff}differences} with the OCaml
    {{!Stdlib.String}[String]}
    module, the {{!port}porting guide} and a few {{!examples}examples}. *)

(** {1 String} *)

val strf : ('a, Format.formatter, unit, string) format4 -> 'a
(** [strf] is {!Format.asprintf}. *)

val ( ^ ) : string -> string -> string
(** [s ^ s'] is {!val:String.append}. *)

(** Characters (bytes in fact). *)
module Char : sig

  (** {1 Bytes} *)

  type t = char
  (** The type for bytes. *)

  val of_byte : int -> char
  (** [of_byte b] is a byte from [b].

      @raise Invalid_argument if [b] is  not in the range \[[0x00];[0xFF]\]. *)

  (**/**)
  val unsafe_of_byte : int -> char
  (**/**)

  val of_int : int -> char option
  (** [of_int b] is a byte from [b]. [None] is returned if [b] is not in the
      range \[[0x00];[0xFF]\]. *)

  val to_int : char -> int
  (** [to_int b] is the byte [b] as an integer. *)

  val hash : char -> int
  (** [hash] is {!Hashtbl.hash}. *)

  (** {1:pred Predicates} *)

  val equal : char -> char -> bool
  (** [equal b b'] is [b = b']. *)

  val compare : char -> char -> int
  (** [compare b b'] is {!Stdlib.compare}[ b b']. *)

  (** {1 Bytes as US-ASCII characters} *)

  (** US-ASCII character support

      The following functions act only on US-ASCII code points, that
      is on the bytes in range \[[0x00];[0x7F]\]. The functions can
      be safely used on UTF-8 encoded strings, they will of course
      only deal with US-ASCII related matters.

      {b References.}
      {ul
      {- Vint Cerf.
      {{:http://tools.ietf.org/html/rfc20}
      {e ASCII format for Network Interchange}}. RFC 20, 1969.}} *)
  module Ascii : sig

    (** {1 Predicates} *)

    val is_valid : char -> bool
    (** [is_valid c] is [true] iff [c] is an US-ASCII character,
        that is a byte in the range \[[0x00];[0x7F]\]. *)

    val is_digit : char -> bool
    (** [is_digit c] is [true] iff [c] is an US-ASCII digit
        ['0'] ... ['9'], that is a byte in the range \[[0x30];[0x39]\]. *)

    val is_hex_digit : char -> bool
    (** [is_hex_digit c] is [true] iff [c] is an US-ASCII hexadecimal
        digit ['0'] ... ['9'], ['a'] ... ['f'], ['A'] ... ['F'],
        that is a byte in one of the ranges \[[0x30];[0x39]\],
        \[[0x41];[0x46]\], \[[0x61];[0x66]\]. *)

    val is_upper : char -> bool
    (** [is_upper c] is [true] iff [c] is an US-ASCII uppercase
        letter ['A'] ... ['Z'], that is a byte in the range
        \[[0x41];[0x5A]\]. *)

    val is_lower : char -> bool
    (** [is_lower c] is [true] iff [c] is an US-ASCII lowercase
        letter ['a'] ... ['z'], that is a byte in the range
        \[[0x61];[0x7A]\]. *)

    val is_letter : char -> bool
    (** [is_letter c] is [is_lower c || is_upper c]. *)

    val is_alphanum : char -> bool
    (** [is_alphanum c] is [is_letter c || is_digit c]. *)

    val is_white : char -> bool
    (** [is_white c] is [true] iff [c] is an US-ASCII white space
        character, that is one of space [' '] ([0x20]), tab ['\t']
        ([0x09]), newline ['\n'] ([0x0A]), vertical tab ([0x0B]), form
        feed ([0x0C]), carriage return ['\r'] ([0x0D]). *)

    val is_blank : char -> bool
    (** [is_blank c] is [true] iff [c] is an US-ASCII blank character,
        that is either space [' '] ([0x20]) or tab ['\t'] ([0x09]). *)

    val is_graphic : char -> bool
    (** [is_graphic c] is [true] iff [c] is an US-ASCII graphic
        character that is a byte in the range \[[0x21];[0x7E]\]. *)

    val is_print : char -> bool
    (** [is_print c] is [is_graphic c || c = ' ']. *)

    val is_control : char -> bool
    (** [is_control c] is [true] iff [c] is an US-ASCII control character,
        that is a byte in the range \[[0x00];[0x1F]\] or [0x7F]. *)

    (** {1 Casing transforms} *)

    val uppercase : char -> char
    (** [uppercase c] is [c] with US-ASCII characters ['a'] to ['z'] mapped
        to ['A'] to ['Z']. *)

    val lowercase : char -> char
    (** [lowercase c] is [c] with US-ASCII characters ['A'] to ['Z'] mapped
        to ['a'] to ['z']. *)

    (** {1 Escaping to printable US-ASCII} *)

    val escape : char -> string
    (** [escape c] escapes [c] with:
        {ul
        {- ['\\'] ([0x5C]) escaped to the sequence ["\\\\"] ([0x5C],[0x5C]).}
        {- Any byte in the ranges \[[0x00];[0x1F]\] and
           \[[0x7F];[0xFF]\] escaped by an {e hexadecimal} ["\xHH"]
           escape with [H] a capital hexadecimal number. These bytes
           are the US-ASCII control characters and non US-ASCII bytes.}
        {- Any other byte is left unchanged.}}

        Use {!String.Ascii.unescape} to unescape. *)

    val escape_char : char -> string
    (** [escape_char c] is like {!escape} except is escapes [s] according
        to OCaml's lexical conventions for characters with:
        {ul
        {- ['\b'] ([0x08]) escaped to the sequence ["\\b"] ([0x5C,0x62]).}
        {- ['\t'] ([0x09]) escaped to the sequence ["\\t"] ([0x5C,0x74]).}
        {- ['\n'] ([0x0A]) escaped to the sequence ["\\n"] ([0x5C,0x6E]).}
        {- ['\r'] ([0x0D]) escaped to the sequence ["\\r"] ([0x5C,0x72]).}
        {- ['\\''] ([0x27]) escaped to the sequence ["\\'"] ([0x5C,0x27]).}
        {- Other bytes follow the rules of {!escape}}}

        Use {!String.Ascii.unescape_string} to unescape. *)
  end

  (** {1:pp Pretty printing} *)

  val pp : Format.formatter -> char -> unit
  (** [pp ppf c] prints [c] on [ppf]. *)

  val dump : Format.formatter -> char -> unit
  (** [dump ppf c] prints [c] as a syntactically valid OCaml
      char on [ppf] using {!Ascii.escape_char} *)
end

(** Strings, {{!Sub}substrings}, string {{!Set}sets} and {{!Map}maps}.

    A string [s] of length [l] is a zero-based indexed sequence of [l]
    bytes. An index [i] of [s] is an integer in the range
    \[[0];[l-1]\], it represents the [i]th byte of [s] which can be
    accessed using the string indexing operator [s.[i]].

    {b Important.} OCaml's [string]s became immutable since 4.02.
    Whenever possible compile your code with the [-safe-string]
    option. This module does not expose any mutable operation on
    strings and {b assumes} strings are immutable. See the
    {{!port}porting guide}. *)
module String : sig

  (** {1 String} *)

  type t = string
  (** The type for strings. Finite sequences of immutable bytes. *)

  val empty : string
  (** [empty] is an empty string. *)

  val v : len:int -> (int -> char) -> string
  (** [v len f] is a string [s] of length [len] with [s.[i] = f
      i] for all indices [i] of [s]. [f] is invoked
      in increasing index order.

      @raise Invalid_argument if [len] is not in the range \[[0];
      {!Sys.max_string_length}\]. *)

  val length : string -> int
  (** [length s] is the number of bytes in [s]. *)

  val get : string -> int -> char
  (** [get s i] is the byte of [s]' at index [i]. This is
      equivalent to the [s.[i]] notation.

      @raise Invalid_argument if [i] is not an index of [s]. *)

  val get_byte : string -> int -> int
  (** [get_byte s i] is [Char.to_int (get s i)] *)

  (**/**)
  val unsafe_get : string -> int -> char
  val unsafe_get_byte : string -> int -> int
  (**/**)

  val head : ?rev:bool -> string -> char option
  (** [head s] is [Some (get s h)] with [h = 0] if [rev = false] (default) or
      [h = length s - 1] if [rev = true]. [None] is returned if [s] is
      empty. *)

  val get_head : ?rev:bool -> string -> char
  (** [get_head s] is like {!head} but @raise Invalid_argument if [s]
      is empty. *)

  val hash : string -> int
  (** [hash s] is {!Hashtbl.hash}[ s]. *)

  (** {1:append Appending strings} *)

  val append : string -> string -> string
  (** [append s s'] appends [s'] to [s]. This is equivalent to
      [s ^ s'].

      @raise Invalid_argument if the result is longer than
      {!Sys.max_string_length}. *)

  val concat : ?sep:string -> string list -> string
  (** [concat ~sep ss] concatenates the list of strings [ss], separating
      each consecutive elements in the list [ss] with [sep] (defaults to
      {!empty}).

      @raise Invalid_argument if the result is longer than
      {!Sys.max_string_length}. *)

  (** {1 Predicates} *)

  val is_empty : string -> bool
  (** [is_empty s] is [length s = 0]. *)

  val is_prefix : affix:string -> string -> bool
  (** [is_prefix ~affix s] is [true] iff [affix.[i] = s.[i]] for
      all indices [i] of [affix]. *)

  val is_infix : affix:string -> string -> bool
  (** [is_infix ~affix s] is [true] iff there exists an index [j] in [s] such
      that for all indices [i] of [affix] we have [affix.[i] = s.[j + i]]. *)

  val is_suffix : affix:string -> string -> bool
  (** [is_suffix ~affix s] is true iff [affix.[n - i] = s.[m - i]] for all
      indices [i] of [affix] with [n = String.length affix - 1] and [m =
      String.length s - 1]. *)

  val for_all : (char -> bool) -> string -> bool
  (** [for_all p s] is [true] iff for all indices [i] of [s], [p s.[i]
      = true]. *)

  val exists : (char -> bool) -> string -> bool
  (** [exists p s] is [true] iff there exists an index [i] of [s] with
      [p s.[i] = true]. *)

  val equal : string -> string -> bool
  (** [equal s s'] is [s = s']. *)

  val compare : string -> string -> int
  (** [compare s s'] is [Stdlib.compare s s'], it compares the
      byte sequences of [s] and [s'] in lexicographical order. *)

  (** {1:extract Extracting substrings}

      {b Tip.} These functions extract substrings as new strings. Using
      {{!Sub}substrings} may be less wasteful and more flexible. *)

  val with_range : ?first:int -> ?len:int -> string -> string
  (** [with_range ~first ~len s] are the consecutive bytes of [s] whose
      indices exist in the range \[[first];[first + len - 1]\].

      [first] defaults to [0] and [len] to [max_int]. Note that
      [first] can be any integer and [len] any positive integer.

      @raise Invalid_argument if [len] is negative. *)

  val with_index_range : ?first:int -> ?last:int -> string -> string
  (** [with_index_range ~first ~last s] are the consecutive bytes of
      [s] whose indices exist in the range \[[first];[last]\].

      [first] defaults to [0] and [last] to [String.length s - 1].

      Note that both [first] and [last] can be any integer. If
      [first > last] the interval is empty and the empty string
      is returned. *)

  val trim : ?drop:(char -> bool) -> string -> string
  (** [trim ~drop s] is [s] with prefix and suffix bytes satisfying
      [drop] in [s] removed. [drop] defaults to {!Char.Ascii.is_white}. *)

  val span : ?rev:bool -> ?min:int -> ?max:int -> ?sat:(char -> bool) ->
    string -> (string * string)
  (** [span ~rev ~min ~max ~sat s] is [(l, r)] where:
        {ul
        {- if [rev] is [false] (default), [l] is at least [min]
           and at most [max] consecutive [sat] satisfying initial bytes of
           [s] or {!empty} if there are no such bytes. [r] are the remaining
           bytes of [s].}
        {- if [rev] is [true], [r] is at least [min] and at most [max]
           consecutive [sat] satisfying final bytes of [s] or {!empty}
           if there are no such bytes. [l] are the remaining
           the bytes of [s].}}
      If [max] is unspecified the span is unlimited. If [min]
      is unspecified it defaults to [0]. If [min > max] the condition
      can't be satisfied and the left or right span, depending on [rev], is
      always empty. [sat] defaults to [(fun _ -> true)].

      The invariant [l ^ r = s] holds.

      @raise Invalid_argument if [max] or [min] is negative.  *)

  val take : ?rev:bool -> ?min:int -> ?max:int -> ?sat:(char -> bool) ->
    string -> string
  (** [take ~rev ~min ~max ~sat s] is the matching span of {!span} without
      the remaining one. In other words:
      {[(if rev then snd else fst) @@ span ~rev ~min ~max ~sat s]} *)

  val drop : ?rev:bool -> ?min:int -> ?max:int -> ?sat:(char -> bool) ->
    string -> string
  (** [drop ~rev ~min ~max ~sat s] is the remaining span of {!span} without
      the matching span. In other words:
      {[(if rev then fst else snd) @@ span ~rev ~min ~max ~sat s]} *)

  val cut : ?rev:bool -> sep:string -> string -> (string * string) option
  (** [cut ~sep s] is either the pair [Some (l,r)] of the two
      (possibly empty) substrings of [s] that are delimited by the
      first match of the non empty separator string [sep] or [None] if
      [sep] can't be matched in [s]. Matching starts from the
      beginning of [s] ([rev] is [false], default) or the end ([rev]
      is [true]).

      The invariant [l ^ sep ^ r = s] holds.

      @raise Invalid_argument if [sep] is the empty string. *)

  val cuts : ?rev:bool -> ?empty:bool -> sep:string -> string -> string list
  (** [cuts sep s] is the list of all substrings of [s] that are
      delimited by matches of the non empty separator string
      [sep]. Empty substrings are omitted in the list if [empty] is
      [false] (defaults to [true]).

      Matching separators in [s] starts from the beginning of [s]
      ([rev] is [false], default) or the end ([rev] is [true]). Once
      one is found, the separator is skipped and matching starts
      again, that is separator matches can't overlap. If there is no
      separator match in [s], the list [[s]] is returned.

      The following invariants hold:
      {ul
      {- [concat ~sep (cuts ~empty:true ~sep s) = s]}
      {- [cuts ~empty:true ~sep s <> []]}}

      @raise Invalid_argument if [sep] is the empty string. *)

  val fields : ?empty:bool -> ?is_sep:(char -> bool) -> string -> string list
  (** [fields ~empty ~is_sep s] is the list of (possibly empty)
      substrings that are delimited by bytes for which [is_sep] is
      [true].  Empty substrings are omitted in the list if [empty] is
      [false] (defaults to [true]). [is_sep] defaults to
      {!Char.Ascii.is_white}. *)

  (** {1:subs Substrings} *)

  type sub
  (** The type for {{!Sub}substrings}. *)

  val sub : ?start:int -> ?stop:int -> string -> sub
  (** [sub] is {!Sub.v}. *)

  val sub_with_range : ?first:int -> ?len:int -> string -> sub
  (** [sub_with_range] is like {!with_range} but returns a substring
      value. If [first] is smaller than [0] the empty string at the start
      of [s] is returned. If [first] is greater than the last index of [s]
      the empty string at the end of [s] is returned. *)

  val sub_with_index_range : ?first:int -> ?last:int -> string -> sub
  (** [sub_with_index_range] is like {!with_index_range} but returns
      a substring value. If [first] and [last] are smaller than [0]
      the empty string at the start of [s] is returned. If [first] and
      is greater than the last index of [s] the empty string at
      the end of [s] is returned. If [first > last] and [first] is an
      index of [s] the empty string at [first] is returned. *)

  (** Substrings.

      A substring defines a possibly empty subsequence of bytes in
      a {e base} string.

      The positions of a string [s] of length [l] are the slits found
      before each byte and after the last byte of the string. They
      are labelled from left to right by increasing number in the
      range \[[0];[l]\].
{v
positions  0   1   2   3   4    l-1    l
           +---+---+---+---+     +-----+
  indices  | 0 | 1 | 2 | 3 | ... | l-1 |
           +---+---+---+---+     +-----+
v}

      The [i]th byte index is between positions [i] and [i+1].

      Formally we define a substring of [s] as being a subsequence
      of bytes defined by a {e start} and a {e stop} position. The
      former is always smaller or equal to the latter. When both
      positions are equal the substring is {e empty}. Note that for a
      given base string there are as many empty substrings as there
      are positions in the string.

      Like in strings, we index the bytes of a substring using
      zero-based indices.

      See how to {{!examples}use} substrings to parse data. *)
  module Sub : sig

    (** {1 Substrings} *)

    type t = sub
    (** The type for substrings. *)

    val empty : sub
    (** [empty] is the empty substring of the empty string {!String.empty}. *)

    val v : ?start:int -> ?stop:int -> string -> sub
    (** [v ~start ~stop s] is the substring of [s] that starts
        at position [start] (defaults to [0]) and stops at position
        [stop] (defaults to [String.length s]).

        @raise Invalid_argument if [start] or [stop] are not positions of
        [s] or if [stop < start]. *)

    val start_pos : sub -> int
    (** [start_pos s] is [s]'s start position in the base string. *)

    val stop_pos : sub -> int
    (** [stop_pos s] is [s]'s stop position in the base string. *)

    val base_string : sub -> string
    (** [base_string s] is [s]'s base string. *)

    val length : sub -> int
    (** [length s] is the number of bytes in [s]. *)

    val get : sub -> int -> char
    (** [get s i] is the byte of [s] at its zero-based index [i].

        @raise Invalid_argument if [i] is not an index of [s]. *)

    val get_byte : sub -> int -> int
    (** [get_byte s i] is [Char.to_int (get s i)]. *)

    (**/**)
    val unsafe_get : sub -> int -> char
    val unsafe_get_byte : sub -> int -> int
    (**/**)

    val head : ?rev:bool -> sub -> char option
    (** [head s] is [Some (get s h)] with [h = 0] if [rev = false] (default) or
        [h = length s - 1] if [rev = true]. [None] is returned if [s] is
        empty. *)

    val get_head : ?rev:bool -> sub -> char
    (** [get_head s] is like {!head} but @raise Invalid_argument if [s]
        is empty. *)

    val of_string : string -> sub
    (** [of_string s] is [v s] *)

    val to_string : sub -> string
    (** [to_string s] is the bytes of [s] as a string. *)

    val rebase : sub -> sub
    (** [rebase s] is [v (to_string s)]. This puts [s] on a base
        string made solely of its bytes. *)

    val hash : sub -> int
    (** [hash s] is {!Hashtbl.hash s}. *)

    (** {1:stretch Stretching substrings}

        See the {{!fig}graphical guide}. *)

    val start : sub -> sub
    (** [start s] is the empty substring at the start position of [s]. *)

    val stop : sub -> sub
    (** [stop s] is the empty substring at the stop position of [s]. *)

    val base : sub -> sub
    (** [base s] is a substring that spans the whole base string of [s]. *)

    val tail : ?rev:bool -> sub -> sub
    (** [tail s] is [s] without its first ([rev] is [false], default)
        or last ([rev] is [true]) byte or [s] if it is empty. *)

    val extend : ?rev:bool -> ?max:int -> ?sat:(char -> bool) -> sub -> sub
    (** [extend ~rev ~max ~sat s] extends [s] by at most [max]
        consecutive [sat] satisfiying bytes of the base string located
        after [stop s] ([rev] is [false], default) or before [start s]
        ([rev] is [true]). If [max] is unspecified the extension is
        limited by the extents of the base string of [s].  [sat]
        defaults to [fun _ -> true].

        @raise Invalid_argument if [max] is negative. *)

    val reduce : ?rev:bool -> ?max:int -> ?sat:(char -> bool) -> sub -> sub
    (** [reduce ~rev ~max ~sat s] reduces [s] by at most [max]
        consecutive [sat] satisfying bytes of [s] located before [stop
        s] ([rev] is [false], default) or after [start s] ([rev] is
        [true]). If [max] is unspecified the reduction is limited by
        the extents of the substring [s]. [sat] defaults to [fun _ ->
        true].

        @raise Invalid_argument if [max] is negative. *)

    val extent : sub -> sub -> sub
    (** [extent s s'] is the smallest substring that includes all the
        positions of [s] and [s'].

        @raise Invalid_argument if [s] and [s'] are not on the same base
        string according to physical equality. *)

    val overlap : sub -> sub -> sub option
    (** [overlap s s'] is the smallest substring that includes all the
        positions common to [s] and [s'] or [None] if there are no
        such positions. Note that the overlap substring may be empty.

        @raise Invalid_argument if [s] and [s'] are not on the same base
        string according to physical equality. *)

    (** {1:append Appending substrings} *)

    val append : sub -> sub -> sub
    (** [append s s'] is like {!String.append}. The substrings can be
        on different bases and the result is on a base string that holds
        exactly the appended bytes. *)

    val concat : ?sep:sub -> sub list -> sub
    (** [concat ~sep ss] is like {!String.concat}. The substrings can
        all be on different bases and the result is on a base string that
        holds exactly the concatenated bytes. *)

    (** {1:pred Predicates} *)

    val is_empty : sub -> bool
    (** [is_empty s] is [length s = 0]. *)

    val is_prefix : affix:sub -> sub -> bool
    (** [is_prefix] is like {!String.is_prefix}. Only bytes
        are compared, [affix] can be on a different base string. *)

    val is_infix : affix:sub -> sub -> bool
    (** [is_infix] is like {!String.is_infix}. Only bytes
        are compared, [affix] can be on a different base string. *)

    val is_suffix : affix:sub -> sub -> bool
    (** [is_suffix] is like {!String.is_suffix}. Only bytes
        are compared, [affix] can be on a different base string. *)

    val for_all : (char -> bool) -> sub -> bool
    (** [for_all] is like {!String.for_all} on the substring. *)

    val exists : (char -> bool) -> sub -> bool
    (** [exists] is like {!String.exists} on the substring. *)

    val same_base : sub -> sub -> bool
    (** [same_base s s'] is [true] iff the substrings [s] and [s']
        have the same base string according to physical equality. *)

    val equal_bytes : sub -> sub -> bool
    (** [equal_bytes s s'] is [true] iff the substrings [s] and [s'] have
        exactly the same bytes. The substrings can be on a different
        base string. *)

    val compare_bytes : sub -> sub -> int
    (** [compare_bytes s s'] compares the bytes of [s] and [s]' in
        lexicographical order. The substrings can be on a different
        base string. *)

    val equal : sub -> sub -> bool
    (** [equal s s'] is [true] iff [s] and [s'] have the same positions.

        @raise Invalid_argument if [s] and [s'] are not on the same base
        string according to physical equality. *)

    val compare : sub -> sub -> int
    (** [compare s s'] compares the positions of [s] and [s'] in
        lexicographical order.

        @raise Invalid_argument if [s] and [s'] are not on the same base
        string according to physical equality. *)

    (** {1:extract Extracting substrings}

        Extracted substrings are always on the same base string as the
        substring [s] acted upon. *)

    val with_range : ?first:int -> ?len:int -> sub -> sub
    (** [with_range] is like {!String.sub_with_range}. The indices are the
        substring's zero-based ones, not those in the base string. *)

    val with_index_range : ?first:int -> ?last:int -> sub -> sub
    (** [with_index_range] is like {!String.sub_with_index_range}. The
        indices are the substring's zero-based ones, not those in the
        base string. *)

    val trim : ?drop:(char -> bool) -> sub -> sub
    (** [trim] is like {!String.trim}. If all bytes are dropped returns
        an empty string located in the middle of the argument. *)

    val span : ?rev:bool -> ?min:int -> ?max:int -> ?sat:(char -> bool) ->
      sub -> (sub * sub)
    (** [span] is like {!String.span}. For a substring [s] a left
        empty span is [start s] and a right empty span is [stop s]. *)

    val take : ?rev:bool -> ?min:int -> ?max:int -> ?sat:(char -> bool) ->
      sub -> sub
    (** [take] is like {!String.take}. *)

    val drop : ?rev:bool -> ?min:int -> ?max:int -> ?sat:(char -> bool) ->
      sub -> sub
    (** [drop] is like {!String.drop}. *)

    val cut : ?rev:bool -> sep:sub -> sub -> (sub * sub) option
    (** [cut] is like {!String.cut}. [sep] can be on a different base string *)

    val cuts : ?rev:bool -> ?empty:bool -> sep:sub -> sub -> sub list
    (** [cuts] is like {!String.cuts}. [sep] can be on a different base
        string *)

    val fields : ?empty:bool -> ?is_sep:(char -> bool) -> sub -> sub list
    (** [fields] is like {!String.fields}. *)

    (** {1:traverse Traversing substrings} *)

    val find : ?rev:bool -> (char -> bool) -> sub -> sub option
    (** [find ~rev sat s] is the substring of [s] (if any) that spans the
        first byte that satisfies [sat] in [s] after position [start s]
        ([rev] is [false], default) or before [stop s] ([rev] is [true]).
        [None] is returned if there is no matching byte in [s]. *)

    val find_sub :?rev:bool -> sub:sub -> sub -> sub option
    (** [find_sub ~rev ~sub s] is the substring of [s] (if any) that
        spans the first match of [sub] in [s] after position [start s]
        ([rev] is [false], default) or before [stop s] ([rev] is
        [true]). Only bytes are compared and [sub] can be on a
        different base string. [None] is returned if there is no match of
        [sub] in [s]. *)

    val filter : (char -> bool) -> sub -> sub
    (** [filter sat s] is like {!String.filter}. The result is on a
        base string that holds only the filtered bytes. *)

    val filter_map : (char -> char option) -> sub -> sub
    (** [filter_map f s] is like {!String.filter_map}. The result is on a
        base string that holds only the filtered bytes. *)

    val map : (char -> char) -> sub -> sub
    (** [map] is like {!String.map}. The result is on a base string that
        holds only the mapped bytes. *)

    val mapi : (int -> char -> char) -> sub -> sub
    (** [mapi] is like {!String.mapi}. The result is on a base string that
        holds only the mapped bytes. The indices are the substring's
        zero-based ones, not those in the base string. *)

    val fold_left : ('a -> char -> 'a) -> 'a -> sub -> 'a
    (** [fold_left] is like {!String.fold_left}. *)

    val fold_right : (char -> 'a -> 'a) -> sub -> 'a -> 'a
    (** [fold_right] is like {!String.fold_right}. *)

    val iter : (char -> unit) -> sub -> unit
    (** [iter] is like {!String.iter}. *)

    val iteri : (int -> char -> unit) -> sub -> unit
    (** [iteri] is like {!String.iteri}. The indices are the
        substring's zero-based ones, not those in the base string.  *)

    (** {1:pp Pretty printing} *)

    val pp : Format.formatter -> sub -> unit
    (** [pp ppf s] prints [s]'s bytes on [ppf]. *)

    val dump : Format.formatter -> sub -> unit
    (** [dump ppf s] prints [s] as a syntactically valid OCaml string
        on [ppf] using {!Ascii.escape_string}. *)

    val dump_raw : Format.formatter -> sub -> unit
    (** [dump_raw ppf s] prints an unspecified raw internal
        representation of [s] on ppf. *)

    (** {1:convert OCaml base type conversions} *)

    val of_char : char -> sub
    (** [of_char c] is a string that contains the byte [c]. *)

    val to_char : sub -> char option
    (** [to_char s] is the single byte in [s] or [None] if there is no byte
        or more than one in [s]. *)

    val of_bool : bool -> sub
    (** [of_bool b] is a string representation for [b]. Relies on
        {!Stdlib.string_of_bool}. *)

    val to_bool : sub -> bool option
    (** [to_bool s] is a [bool] from [s], if any. Relies on
        {!Stdlib.bool_of_string}. *)

    val of_int : int -> sub
    (** [of_int i] is a string representation for [i]. Relies on
        {!Stdlib.string_of_int}. *)

    val to_int : sub -> int option
    (** [to_int] is an [int] from [s], if any. Relies on
        {!Stdlib.int_of_string}. *)

    val of_nativeint : nativeint -> sub
    (** [of_nativeint i] is a string representation for [i]. Relies on
        {!Nativeint.of_string}. *)

    val to_nativeint : sub -> nativeint option
    (** [to_nativeint] is an [nativeint] from [s], if any. Relies on
        {!Nativeint.to_string}. *)

    val of_int32 : int32 -> sub
    (** [of_int32 i] is a string representation for [i]. Relies on
        {!Int32.of_string}. *)

    val to_int32 : sub -> int32 option
    (** [to_int32] is an [int32] from [s], if any. Relies on
        {!Int32.to_string}. *)

    val of_int64 : int64 -> sub
    (** [of_int64 i] is a string representation for [i]. Relies on
        {!Int64.of_string}. *)

    val to_int64 : sub -> int64 option
    (** [to_int64] is an [int64] from [s], if any. Relies on
        {!Int64.to_string}. *)

    val of_float : float -> sub
    (** [of_float f] is a string representation for [f]. Relies on
        {!Stdlib.string_of_float}. *)

    val to_float : sub -> float option
    (** [to_float s] is a [float] from [s], if any. Relies
        on {!Stdlib.float_of_string}. *)

    (** {1:fig Substring stretching graphical guide}

{v
+---+---+---+---+---+---+---+---+---+---+---+
| R | e | v | o | l | t |   | n | o | w | ! |
+---+---+---+---+---+---+---+---+---+---+---+
        |---------------|                      a
        |                                      start a
                        |                      stop a
            |-----------|                      tail a
        |-----------|                          tail ~rev:true a
        |-----------------------------------|  extend a
|-----------------------|                      extend ~rev:true a
|-------------------------------------------|  base a
|-----------|                                  b
|                                              start b
            |                                  stop b
    |-------|                                  tail b
|-------|                                      tail ~rev:true b
|-------------------------------------------|  extend b
|-----------|                                  extend ~rev:true b
|-------------------------------------------|  base b
|-----------------------|                      extent a b
        |---|                                  overlap a b
                            |                  c
                            |                  start c
                            |                  stop c
                            |                  tail c
                            |                  tail ~rev:true c
                            |---------------|  extend c
|---------------------------|                  extend ~rev:true c
|-------------------------------------------|  base c
        |-------------------|                  extent a c
                                         None  overlap a c
                            |---------------|  d
                            |                  start d
                                            |  stop d
                                |-----------|  tail d
                            |-----------|      tail ~rev:true d
                            |---------------|  extend d
|-------------------------------------------|  extend ~rev:true d
|-------------------------------------------|  base d
                            |---------------|  extent d c
                            |                  overlap d c
v} *)
  end

  (** {1:traverse Traversing strings} *)

  val find : ?rev:bool -> ?start:int -> (char -> bool) -> string -> int option
  (** [find ~rev ~start sat s] is:
      {ul
      {- If [rev] is [false] (default). The smallest index [i], if any,
         greater or equal to [start] such that [sat s.[i]] is [true].
         [start] defaults to [0].}
      {- If [rev] is [true]. The greatest index [i], if any, smaller or equal
         to [start] such that [sat s.[i]] is [true].
         [start] defaults to [String.length s - 1].}}
      Note that [start] can be any integer. *)

  val find_sub :?rev:bool -> ?start:int -> sub:string -> string -> int option
  (** [find_sub ~rev ~start ~sub s] is:
      {ul
      {- If [rev] is [false] (default). The smallest index [i], if any,
         greater or equal to [start] such that [sub] can be found starting
         at [i] in [s] that is [s.[i] = sub.[0]], [s.[i+1] = sub.[1]], ...
         [start] defaults to [0].}
      {- If [rev] is [true]. The greatest index [i], if any, smaller
         or equal to [start] such that [sub] can be found starting at
         [i] in [s] that is [s.[i] = sub.[0]], [s.[i+1] = sub.[1]], ...
         [start] defaults to [String.length s - 1].}}
      Note that [start] can be any integer. *)

  val filter : (char -> bool) -> string -> string
  (** [filter sat s] is the string made of the bytes of [s] that satisfy [sat],
      in the same order. *)

  val filter_map : (char -> char option) -> string -> string
  (** [filter_map f s] is the string made of the bytes of [s] as mapped by
      [f], in the same order. *)

  val map : (char -> char) -> string -> string
  (** [map f s] is [s'] with [s'.[i] = f s.[i]] for all indices [i]
      of [s]. [f] is invoked in increasing index order. *)

  val mapi : (int -> char -> char) -> string -> string
  (** [mapi f s] is [s'] with [s'.[i] = f i s.[i]] for all indices [i]
      of [s]. [f] is invoked in increasing index order. *)

  val fold_left : ('a -> char -> 'a) -> 'a -> string -> 'a
  (** [fold_left f acc s] is
      [f (]...[(f (f acc s.[0]) s.[1])]...[) s.[m]]
      with [m = String.length s - 1]. *)

  val fold_right : (char -> 'a -> 'a) -> string -> 'a -> 'a
  (** [fold_right f s acc] is
      [f s.[0] (f s.[1] (]...[(f s.[m] acc) )]...[)]
      with [m = String.length s - 1]. *)

  val iter : (char -> unit) -> string -> unit
  (** [iter f s] is [f s.[0]; f s.[1];] ...
      [f s.[m]] with [m = String.length s - 1]. *)

  val iteri : (int -> char -> unit) -> string -> unit
  (** [iteri f s] is [f 0 s.[0]; f 1 s.[1];] ...
      [f m s.[m]] with [m = String.length s - 1]. *)

  (** {1:unique Uniqueness} *)

  val uniquify : string list -> string list
  (** [uniquify ss] is [ss] without duplicates, the list order is
      preserved. *)

  (** {1:ascii Strings as US-ASCII character sequences} *)

  (** US-ASCII string support.

      {b References.}
      {ul
      {- Vint Cerf.
      {{:http://tools.ietf.org/html/rfc20}
      {e ASCII format for Network Interchange}}. RFC 20, 1969.}} *)
  module Ascii : sig

    (** {1:pred Predicates} *)

    val is_valid : string -> bool
    (** [is_valid s] is [true] iff only for all indices [i] of [s],
        [s.[i]] is an US-ASCII character, i.e. a byte in the range
        \[[0x00];[0x7F]\]. *)

    (** {1:case Casing transforms}

        The following functions act only on US-ASCII code points that
        is on bytes in range \[[0x00];[0x7F]\], leaving any other byte
        intact. The functions can be safely used on UTF-8 encoded
        strings; they will of course only deal with US-ASCII
        casings. *)

    val uppercase : string -> string
    (** [uppercase s] is [s] with US-ASCII characters ['a'] to ['z'] mapped
        to ['A'] to ['Z']. *)

    val lowercase : string -> string
    (** [lowercase s] is [s] with US-ASCII characters ['A'] to ['Z'] mapped
        to ['a'] to ['z']. *)

    val capitalize : string -> string
    (** [capitalize s] is like {!uppercase} but performs the map only
        on [s.[0]]. *)

    val uncapitalize : string -> string
    (** [uncapitalize s] is like {!lowercase} but performs the map only
        on [s.[0]]. *)

    (** {1:esc Escaping to printable US-ASCII} *)

    val escape : string -> string
    (** [escape s] is [s] with:
        {ul
        {- Any ['\\'] ([0x5C]) escaped to the sequence
           ["\\\\"] ([0x5C],[0x5C]).}
        {- Any byte in the ranges \[[0x00];[0x1F]\] and
           \[[0x7F];[0xFF]\] escaped by an {e hexadecimal} ["\xHH"]
           escape with [H] a capital hexadecimal number. These bytes
           are the US-ASCII control characters and non US-ASCII bytes.}
        {- Any other byte is left unchanged.}} *)

    val unescape : string -> string option
    (** [unescape s] unescapes what {!escape} did. The letters of hex
        escapes can be upper, lower or mixed case, and any two letter
        hex escape is decoded to its corresponding byte. Any other
        escape not defined by {!escape} or truncated escape makes the
        function return [None].

        The invariant [unescape (escape s) = Some s] holds. *)

    val escape_string : string -> string
    (** [escape_string s] is like {!escape} except it escapes [s]
        according to OCaml's lexical conventions for strings with:
        {ul
        {- Any ['\b'] ([0x08]) escaped to the sequence ["\\b"] ([0x5C,0x62]).}
        {- Any ['\t'] ([0x09]) escaped to the sequence ["\\t"] ([0x5C,0x74]).}
        {- Any ['\n'] ([0x0A]) escaped to the sequence ["\\n"] ([0x5C,0x6E]).}
        {- Any ['\r'] ([0x0D]) escaped to the sequence ["\\r"] ([0x5C,0x72]).}
        {- Any ['\"'] ([0x22]) escaped to the sequence ["\\\""] ([0x5C,0x22]).}
        {- Any other byte follows the rules of {!escape}}} *)

    val unescape_string : string -> string option
    (** [unescape_string] is to {!escape_string} what {!unescape}
        is to {!escape} and also additionally unescapes
        the sequence ["\\'"] ([0x5C,0x27]) to ["'"] ([0x27]). *)
  end

  (** {1:pp Pretty printing} *)

  val pp : Format.formatter -> string -> unit
  (** [pp ppf s] prints [s]'s bytes on [ppf]. *)

  val dump : Format.formatter -> string -> unit
  (** [dump ppf s] prints [s] as a syntactically valid OCaml string on
      [ppf] using {!Ascii.escape_string}. *)

  (** {1 String sets and maps} *)

  type set
  (** The type for string sets. *)

  (** String sets. *)
  module Set : sig

    (** {1 String sets} *)

    include Set.S with type elt := string
                   and type t := set

    type t = set

    val min_elt : set -> string option
    (** Exception safe {!Set.S.min_elt}. *)

    val get_min_elt : set -> string
    (** [get_min_elt] is like {!min_elt} but @raise Invalid_argument
        on the empty set. *)

    val max_elt : set -> string option
    (** Exception safe {!Set.S.max_elt}. *)

    val get_max_elt : set -> string
    (** [get_max_elt] is like {!max_elt} but @raise Invalid_argument
        on the empty set. *)

    val choose : set -> string option
    (** Exception safe {!Set.S.choose}. *)

    val get_any_elt : set -> string
    (** [get_any_elt] is like {!choose} but @raise Invalid_argument on the
        empty set. *)

    val find : string -> set -> string option
    (** Exception safe {!Set.S.find}. *)

    val get : string -> set -> string
    (** [get] is like {!Set.S.find} but @raise Invalid_argument if
        [elt] is not in [s]. *)

    val of_list : string list -> set
    (** [of_list ss] is a set from the list [ss]. *)

    val of_stdlib_set : Set.Make(String).t -> set
    (** [of_stdlib_set s] is a set from the stdlib-compatible set [s]. *)

    val to_stdlib_set : set -> Set.Make(String).t
    (** [to_stdlib_set s] is the stdlib-compatible set equivalent to [s]. *)

    val pp : ?sep:(Format.formatter -> unit -> unit) ->
      (Format.formatter -> string -> unit) ->
        Format.formatter -> set -> unit
    (** [pp ~sep pp_elt ppf ss] formats the elements of [ss] on
        [ppf]. Each element is formatted with [pp_elt] and elements
        are separated by [~sep] (defaults to
        {!Format.pp_print_cut}. If the set is empty leaves [ppf]
        untouched. *)

    val dump : Format.formatter -> set -> unit
    (** [dump ppf ss] prints an unspecified representation of [ss] on
        [ppf]. *)
  end

  (** String maps. *)
  module Map : sig

    (** {1 String maps} *)

    include Map.S with type key := string

    val min_binding : 'a t -> (string * 'a) option
    (** Exception safe {!Map.S.min_binding}. *)

    val get_min_binding : 'a t -> (string * 'a)
    (** [get_min_binding] is like {!min_binding} but @raise Invalid_argument
        on the empty map. *)

    val max_binding : 'a t -> (string * 'a) option
    (** Exception safe {!Map.S.max_binding}. *)

    val get_max_binding : 'a t -> string * 'a
    (** [get_max_binding] is like {!max_binding} but @raise Invalid_argument
        on the empty map. *)

    val choose : 'a t -> (string * 'a) option
    (** Exception safe {!Map.S.choose}. *)

    val get_any_binding : 'a t -> (string * 'a)
    (** [get_any_binding] is like {!choose} but @raise Invalid_argument
        on the empty map. *)

    val find : string -> 'a t -> 'a option
    (** Exception safe {!Map.S.find}. *)

    val get : string -> 'a t -> 'a
    (** [get k m] is like {!Map.S.find} but raises [Invalid_argument] if
        [k] is not bound in [m]. *)

    val dom : 'a t -> set
    (** [dom m] is the domain of [m]. *)

    val of_list : (string * 'a) list -> 'a t
    (** [of_list bs] is [List.fold_left (fun m (k, v) -> add k v m) empty
        bs]. *)

    val of_stdlib_map : 'a Map.Make(String).t -> 'a t
    (** [of_stdlib_map m] is a map from the stdlib-compatible map [m]. *)

    val to_stdlib_map : 'a t -> 'a Map.Make(String).t
    (** [to_stdlib_map m] is the stdlib-compatible map equivalent to [m]. *)

    val pp : ?sep:(Format.formatter -> unit -> unit) ->
      (Format.formatter -> string * 'a -> unit) -> Format.formatter ->
      'a t -> unit
    (** [pp ~sep pp_binding ppf m] formats the bindings of [m] on
        [ppf]. Each binding is formatted with [pp_binding] and
        bindings are separated by [sep] (defaults to
        {!Format.pp_print_cut}). If the map is empty leaves [ppf]
        untouched. *)

    val dump : (Format.formatter -> 'a -> unit) -> Format.formatter ->
      'a t -> unit
    (** [dump pp_v ppf m] prints an unspecified representation of [m] on
        [ppf] using [pp_v] to print the map codomain elements. *)

    val dump_string_map : Format.formatter -> string t -> unit
    (** [dump_string_map ppf m] prints an unspecified representation of the
        string map [m] on [ppf]. *)
  end

  type +'a map = 'a Map.t
  (** The type for maps from strings to values of type 'a. *)

  (** {1:convert OCaml base type conversions} *)

  val of_char : char -> string
  (** [of_char c] is a string that contains the byte [c]. *)

  val to_char : string -> char option
  (** [to_char s] is the single byte in [s] or [None] if there is no byte
      or more than one in [s]. *)

  val of_bool : bool -> string
  (** [of_bool b] is a string representation for [b]. Relies on
      {!Stdlib.string_of_bool}. *)

  val to_bool : string -> bool option
  (** [to_bool s] is a [bool] from [s], if any. Relies on
      {!Stdlib.bool_of_string}. *)

  val of_int : int -> string
  (** [of_int i] is a string representation for [i]. Relies on
      {!Stdlib.string_of_int}. *)

  val to_int : string -> int option
  (** [to_int] is an [int] from [s], if any. Relies on
      {!Stdlib.int_of_string}. *)

  val of_nativeint : nativeint -> string
  (** [of_nativeint i] is a string representation for [i]. Relies on
      {!Nativeint.of_string}. *)

  val to_nativeint : string -> nativeint option
  (** [to_nativeint] is an [nativeint] from [s], if any. Relies on
      {!Nativeint.to_string}. *)

  val of_int32 : int32 -> string
  (** [of_int32 i] is a string representation for [i]. Relies on
      {!Int32.of_string}. *)

  val to_int32 : string -> int32 option
  (** [to_int32] is an [int32] from [s], if any. Relies on
      {!Int32.to_string}. *)

  val of_int64 : int64 -> string
  (** [of_int64 i] is a string representation for [i]. Relies on
      {!Int64.of_string}. *)

  val to_int64 : string -> int64 option
  (** [to_int64] is an [int64] from [s], if any. Relies on
      {!Int64.to_string}. *)

  val of_float : float -> string
  (** [of_float f] is a string representation for [f]. Relies on
      {!Stdlib.string_of_float}. *)

  val to_float : string -> float option
  (** [to_float s] is a [float] from [s], if any. Relies
      on {!Stdlib.float_of_string}. *)
end

(** {1:diff Differences with the OCaml [String] module}

    First note that it is not a goal of {!Astring} to maintain
    compatibility with the OCaml {{!Stdlib.String}[String]} module.

    In [Astring]:
    {ul
    {- Strings are assumed to be immutable.}
    {- Deprecated functions are not included.}
    {- Some rarely used functions are dropped, some signatures and names
       are altered, a few often needed functions are added.}
    {- Scanning functions are not doubled for supporting forward and
       reverse directions. Both directions are supported via a single
       function and an optional [rev] argument.}
    {- Functions do not raise [Not_found]. They return [option] values
       instead.}
    {- Functions escaping bytes to printable US-ASCII characters use
       capital hexadecimal escapes rather than decimal ones.}
    {- US-ASCII string support is collected in the {!Char.Ascii} and
       {!String.Ascii} submodules.  The functions make sure to operate
       only on the US-ASCII code points (rather than
       {{:http://www.ecma-international.org/publications/standards/Ecma-094.htm}ISO/IEC
       8859-1} code points). This means they can safely be used on
       UTF-8 encoded strings, they will of course only deal with the
       US-ASCII subset U+0000 to U+007F of
       {{:http://unicode.org/glossary/#unicode_scalar_value} Unicode
       scalar values}.}
     {- The module has pre-applied exception safe {!String.Set}
        and {!String.Map} submodules.}}

    {1:port Porting guide}

    Opening [Astring] at the top of a module that uses the OCaml
    standard library in a project that compiles with [-safe-string]
    will either result in typing errors or compatible behaviour except
    for uses of the {!String.trim} function, {{!porttrim}see below}.

    If for some reason you can't compile your project with
    [-safe-string] this {b may} not be a problem. However you have to
    make sure that your code does not depend on fresh strings being
    returned by functions of the [String] module. The functions of
    {!Astring.String} assume strings to be immutable and thus do not
    always allocate fresh strings for their results. This is the case
    for example for the {!( ^ )} operator redefinition: no string is
    allocated whenever one of its arguments is an empty string. That
    being said it is still better to first make your project compile
    with [-safe-string] and then port to [Astring].

    The
    {{:http://caml.inria.fr/pub/docs/manual-ocaml/libref/String.html#VALsub}[String.sub]} function
    is renamed to {!String.with_range}. If you are working with
    {!String.find} you may find it easier to use
    {!String.with_index_range} which takes indices as arguments and is thus
    directly usable with the result of {!String.find}. But in general
    index based string processing should be frowned upon and replaced
    by {{!String.extract} substring extraction} combinators.

    {2:porttrim Porting [String.trim] usages}

    The standard OCaml [String.trim] function only trims the
    characters [' '], ['\t'], ['\n'], ['\012'], ['\r']. In
    [Astring] the {{!Char.Ascii.is_white}default set} adds
    vertical tab ([0x0B]) to the set to match the behaviour of
    the C [isspace(3)] function.

    If you want to preserve the behaviour of the original function you
    can replace any use of [String.trim] with the following
    [std_ocaml_trim] function:
{[
let std_ocaml_trim s =
  let drop = function
  | ' ' | '\n' | '\012' | '\r' | '\t' -> true
  | _ -> false
  in
  String.trim ~drop s
]}

   {1:examples Examples}

   We show how to use {{!String.Sub}substrings} to quickly devise LL(1)
   parsers. To keep it simple we do not implement precise error
   report, but note that it would be easy to add it by replacing the
   [raise Exit] calls by an exception with more information: we have
   everything at hand at these call points to report good error
   messages.

   The first example parses version numbers structured as follows:
{[
[v|V]major.minor[.patch][(+|-)info]
]}
   an unreadable {!Str} regular expression for this would be:
{[
  "[vV]?\\([0-9]+\\)\\.\\([0-9]+\\)\\(\\.\\([0-9]+\\)\\)?\\([+-]\\(.*\\)\\)?"
]}
Using substrings is certainly less terse but note that the parser is
made of reusable sub-functions.
{[
let parse_version : string -> (int * int * int * string option) option =
fun s -> try
  let parse_opt_v s = match String.Sub.head s with
  | Some ('v'|'V') -> String.Sub.tail s
  | Some _ -> s
  | None -> raise Exit
  in
  let parse_dot s = match String.Sub.head s with
  | Some '.' -> String.Sub.tail s
  | Some _ | None -> raise Exit
  in
  let parse_int s =
    match String.Sub.span ~min:1 ~sat:Char.Ascii.is_digit s with
    | (i, _) when String.Sub.is_empty i -> raise Exit
    | (i, s) ->
        match String.Sub.to_int i with
        | None -> raise Exit | Some i -> i, s
  in
  let maj, s = parse_int (parse_opt_v (String.sub s)) in
  let min, s = parse_int (parse_dot s) in
  let patch, s = match String.Sub.head s with
  | Some '.' -> parse_int (parse_dot s)
  | _ -> 0, s
  in
  let info = match String.Sub.head s with
  | Some ('+' | '-') -> Some (String.Sub.(to_string (tail s)))
  | Some _ -> raise Exit
  | None -> None
  in
  Some (maj, min, patch, info)
with Exit -> None
]}

The second example parses space separated key-value bindings
environments of the form:
{[
key0 = value0 key2 = value2 ...]}
To support values with spaces, values can be quoted between two
['"'] characters. If they are quoted then any ["\\\""] subsequence
([0x2F],[0x22]) is interpreted as the character ['"'] ([0x22]) and
["\\\\"] ([0x2F],[0x2F]) is interpreted as the character ['\\']
([0x22]).

{[
let parse_env : string -> string String.map option =
fun s -> try
  let skip_white s = String.Sub.drop ~sat:Char.Ascii.is_white s in
  let parse_key s =
    let id_char c = Char.Ascii.is_letter c || c = '_' in
    match String.Sub.span ~min:1 ~sat:id_char s with
    | (key, _) when String.Sub.is_empty key -> raise Exit
    | (key, rem) -> (String.Sub.to_string key), rem
  in
  let parse_eq s = match String.Sub.head s with
  | Some '=' -> String.Sub.tail s
  | Some _ | None -> raise Exit
  in
  let parse_value s = match String.Sub.head s with
  | Some '"' -> (* quoted *)
      let is_data = function '\\' | '"' -> false | _ -> true in
      let rec loop acc s =
        let data, rem = String.Sub.span ~sat:is_data s in
        match String.Sub.head rem with
        | Some '"' ->
            let acc = List.rev (data :: acc) in
            String.Sub.(to_string @@ concat acc), (String.Sub.tail rem)
        | Some '\\' ->
            let rem = String.Sub.tail rem in
            begin match String.Sub.head rem with
            | Some ('"' | '\\' as c) ->
                let acc = String.(sub (of_char c)) :: data :: acc in
                loop acc (String.Sub.tail rem)
            | Some _ | None -> raise Exit
            end
        | None | Some _ -> raise Exit
      in
      loop [] (String.Sub.tail s)
  | Some _ ->
      let is_data c = not (Char.Ascii.is_white c) in
      let data, rem = String.Sub.span ~sat:is_data s in
      String.Sub.to_string data, rem
  | None -> "", s
  in
  let rec parse_bindings acc s =
    if String.Sub.is_empty s then acc else
    let key, s = parse_key s in
    let value, s = s |> skip_white |> parse_eq |> skip_white |> parse_value in
    parse_bindings (String.Map.add key value acc) (skip_white s)
  in
  Some (String.sub s |> skip_white |> parse_bindings String.Map.empty)
with Exit -> None
]}

*)

(*---------------------------------------------------------------------------
   Copyright (c) 2015 The astring programmers

   Permission to use, copy, modify, and/or distribute this software for any
   purpose with or without fee is hereby granted, provided that the above
   copyright notice and this permission notice appear in all copies.

   THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  ---------------------------------------------------------------------------*)