File: atd-language-reference.rst

package info (click to toggle)
ocaml-atd 2.16.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,768 kB
  • sloc: ml: 45,944; python: 827; sh: 339; makefile: 306; cpp: 195; java: 76
file content (578 lines) | stat: -rw-r--r-- 19,218 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
=========================
ATD core syntax reference
=========================

Introduction
------------

ATD stands for Adjustable Type Definitions.

.. code-block:: ocaml

  (* This is a sample ATD file *)

  type profile = {
    id : string;
    email : string;
    ~email_validated : bool;
    name : string;
    ?real_name : string option;
    ~about_me : string list;
    ?gender : gender option;
    ?date_of_birth : date option;
  }

  type gender = [ Female | Male ]

  type date = {
    year : int;
    month : int;
    day : int;
  }

ATD is a language for defining data types across multiple programming languages
and multiple data formats. That's it.

We provide an OCaml library that provides a parser and a collection of tools
that make it easy to write data validators and code generators based on ATD
definitions.

Unlike big frameworks that provide everything in one monolithic package, we
split the problem of data exchange into logical modules and ATD is one of them.
In particular, we acknowledge that the following pieces have little in common
and should be defined and implemented separately:


* data type specifications
* transport protocols
* serialization formats

Ideally we want just one single language for defining data types and it should
accomodate all programming languages and data formats. ATD can play this role,
but its OCaml implementation makes it particularly easy to translate ATD
specifications into other interface definition languages if needed.

It is however much harder to imagine that a single transport protocol and a
single serialization format would ever become the only ones used. A reader from
the future might wonder why we are even considering defining a transport
protocol and a serialization format together. This has been a widespread
practice at least until the beginning of the 21st century (ONC RPC, ICE, Thrift,
etc.). For mysterious reasons, people somehow became convinced that calls to
remote services should be made to mimic internal function calls, pretending that
nothing really bad could happen on the way between the caller and the remote
service. Well, I don't let my 3-old daughter go to school by herself because the
definition of the external world is precisely that it is unsafe.

Data input is by definition unsafe. A program whose internal data is corrupted
should abort but a failed attempt to read external data should not cause a
program to abort. On the contrary, a program should be very resistent to all
forms of data corruption and attacks and provide the best diagnosis possible
when problems with external data occur.

Because data exchange is critical and involves multiple partners, we depart from
magic programming language-centric or company-centric approaches. We define ATD,
a data type definition language designed for maximum expressivity, compatibility
across languages and static type checking of programs using such data.

Scope
^^^^^

ATD offers a core syntax for type definitions, i.e. an idealized view of the
structure of data. Types are mapped to each programming language or data format
using language-specific conventions. Annotations can complete the type
definitions in order to specify options for a particular language. Annotations
are placed in angle brackets after the element they refer to:

.. code-block:: ocaml

  type profile = {
    id : int <ocaml repr="int64">;
      (*
        An int here will map to an OCaml int64 instead of
        OCaml's default int type.
        Other languages than OCaml will use their default int type.
      *)

    age : int;
      (* No annotation here, the default int type will be used. *)
  }

ATD supports:

* the following atomic types: bool, int, float, string and unit;
* built-in list and option types;
* records aka structs with a syntax for optional fields with or
  without default;
* tuples;
* sum types aka variant types, algebraic data types or tagged unions;
* parametrized types;
* inheritance for both records and sum types;
* abstract types;
* arbitrary annotations.


ATD by design does not support:

* function types, function signatures or method signatures;
* a syntax to represent values;
* a syntax for submodules.

Language overview
^^^^^^^^^^^^^^^^^

ATD was strongly inspired by the type system of ML and OCaml. Such a
type system allows static type checking and type inference, properties
which contribute to the safety and conciseness of the language.

Unlike mainstream languages like Java, C++, C# or Python to name a
few, languages such as Haskell or OCaml offer sum types,
also known as algebraic data types or variant types. These allow to
specify that an object is of one kind or another without ever
performing dynamic casts.

.. code-block:: ocaml

  (* Example of a sum type in ATD. The vertical bar reads `or'. *)
  type shape = [
      Square of float               (* argument: side length *)
    | Rectangle of (float * float)  (* argument: width and height *)
    | Circle of float               (* argument: radius *)
    | Dot                           (* no argument *)
  ]

A notable example of sum types is the predefined option type.
An object of an option type contains either one value of a given type
or nothing. We could define our own `int_option` type as follows:

.. code-block:: ocaml

  type int_option = [ None | Some of int ]

ATD supports parametrized types also known as generics in Java or
templates in C++.  We could define our own generic option type as
follows:

.. code-block:: ocaml

  type 'a opt = [ None | Some of 'a ]
    (* 'a denotes a type parameter. *)

  type opt_int = int opt
    (* equivalent to int_option defined in the previous example *)

  type opt_string = string opt
    (* same with string instead of int *)

In practice we shall use the predefined option type.
The option type is fundamentally different from nullable objects since
the latter don't allow values that would have type `'a option option`.

ATD also support product types. They come in two forms: tuples and
records:

.. code-block:: ocaml

  type tuple_example = (string * int)

  type record_example = {
    name : string;
    age : int;
  }

Although tuples in theory are not more expressive than records, they are much
more concise and languages that support them natively usually do not require
type definitions.

Finally, ATD supports multiple inheritance which is a simple mechanism for
adding fields to records or variants to sum types:

.. code-block:: ocaml

  type builtin_color = [
      Red | Green | Blue | Yellow
    | Purple | Black | White
  ]

  type rgb = (float * float * float)
  type cmyk = (float * float * float * float)

  (* Inheritance of variants *)
  type color = [
      inherit builtin_color
    | Rgb of rgb
    | Cmyk of cmyk
  ]

.. code-block:: ocaml

  type basic_profile = {
    id : string;
    name : string;
  }

  (* Inheritance of record fields *)
  type full_profile = {
    inherit basic_profile;
    date_of_birth : (int * int * int) option;
    street_address1 : string option;
    street_address2 : string option;
    city : string option;
    zip_code : string option;
    state : string option;
  }


Editing and validating ATD files
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The extension for ATD files is ``.atd``. Editing ATD files is best achieved
using an OCaml-friendly editor since the ATD syntax is vastly compatible with
OCaml and uses a subset of OCaml's keywords.

Emacs users can use caml-mode or tuareg-mode to edit ATD files. Adding the
following line to the ``~/.emacs`` file will automatically use tuareg-mode when
opening a file with a ``.atd`` extension:

.. code-block:: lisp

  (add-to-list 'auto-mode-alist '("\\.atd\\'" . tuareg-mode))

The syntax of an ATD file can be checked with the program ``atdcat`` provided with
the OCaml library ``atd``. ``atdcat`` pretty-prints its input data, optionally after
some transformations such as monomorphization or inheritance. Here is the output
of ``atdcat -help``:

::

  Usage: _build/install/default/bin/atdcat FILE
    -o <path>
            write to this file instead of stdout
    -x 
            make type expressions monomorphic
    -xk 
            keep parametrized type definitions and imply -x.
            Default is to return only monomorphic type definitions
    -xd 
            debug mode implying -x
    -i 
            expand all 'inherit' statements
    -if 
            expand 'inherit' statements in records
    -iv 
            expand 'inherit' statements in sum types
    -jsonschema <root type name>
            translate the ATD file to JSON Schema.
    -jsonschema-no-additional-properties 
            emit a JSON Schema that doesn't tolerate extra fields on JSON
            objects.
    -jsonschema-version { draft-2019-09 | draft-2020-12 }
            specify which version of the JSON Schema standard to target.
            Default: latest supported version, which is currently
            'draft-2020-12  '.
    -ml <name>
            output the ocaml code of the ATD abstract syntax tree
    -html-doc 
            replace directly <doc html="..."> by (*html ... *)
            or replace <doc text="..."> by (*html ... *)
            where the contents are formatted as HTML
            using <p>, <code> and <pre>.
            This is suitable input for "caml2html -ext html:cat"
            which converts ATD files into HTML.
    -strip NAME1[,NAME2,...]
            remove all annotations of the form <NAME1 ...>,
            <NAME2 ...>, etc.
    -strip-all 
            remove all annotations
    -version 
            print the version of atd and exit
    -help  Display this list of options
    --help  Display this list of options

ATD language
------------

This is a precise description of the syntax of the ATD language, not a
tutorial.

Notations
^^^^^^^^^^

Lexical and grammatical rules are expressed using a BNF-like syntax.
Graphical terminal symbols use `unquoted strings in typewriter font`.
Non-graphical characters use their official uppercase ASCII name such
as LF for the newline character or SPACE for the space character.
Non-terminal symbols use the regular font and link to their
definition.  Parentheses are used for grouping.

The following postfix operators are used to specify repeats:

====== =================================
x*     0, 1 or more occurrences of x
x?     0 or 1 occurrence of x
x+     1 or more occurrences of x
====== =================================


Lexical rules
^^^^^^^^^^^^^

ATD does not enforce a particular character encoding other than ASCII
compatibility. Non-ASCII text and data found in annotations and
in comments may contain arbitrary bytes in the non-ASCII range 128-255
without escaping. The UTF-8 encoding is however strongly recommended
for all text. The use of hexadecimal or decimal escape sequences is
recommended for binary data.

An ATD lexer splits its input into a stream of tokens,
discarding whitespace and comments.

.. table::

   ============= ======================================== ====================
       token ::= keyword

              \| lident

              \| uident

              \| tident

              \| string

   ignorable ::= space                                    discarded

              \| comment

       space ::= SPACE | TAB | CR | LF

       blank ::= SPACE | TAB

     comment ::= ``(*`` (comment | string | byte)* ``*)``

      lident ::= (lower | ``_`` identchar) identchar*     lowercase
                                                          identifier

      uident ::= upper identchar*                         uppercase
                                                          identifier

      tident ::= ``'`` lident                             type parameter

       lower ::= ``a``...``z``

       upper ::= ``A``...``Z``

   identchar ::= upper | lower | digit | ``_`` | ``'``

      string ::= ``"`` (substring | ``'``)* ``"``         double-quoted
                                                          string literal,
                                                          used in
                                                          annotations

              \| ``'`` (substring | ``"``)* ``'``         single-quoted
                                                          string literal,
                                                          used in
                                                          annotations

   substring ::= ``\\``                                   single backslash

              \| ``\"``                                   double quote

              \| ``\'``                                   single quote

              \| ``\x`` hex hex                           single byte
                                                          in hexadecimal
                                                          notation

              \| ``\`` digit digit digit                  single byte
                                                          in decimal
                                                          notation

              \| ``\n``                                   LF

              \| ``\r``                                   CR

              \| ``\t``                                   TAB

              \| ``\b``                                   BS

              \| ``\`` CR? LF blank*                      discarded

              \| not-backslash                            any byte
                                                          except ``\``
                                                          or ``"`` or ``'``

       digit ::= ``0`` ... ``9``

         hex ::= ``0`` ... ``9``

              \| ``a``... ``f``

              \| ``A`` ... ``F``

     keyword ::= ``(`` | ``)`` | ``[``                    all keywords

              \| ``]`` | ``{`` | ``}``

              \| ``<`` | ``>``

              \| ``;`` | ``,`` | ``:`` | ``*``

              \| ``|`` | ``=`` | ``?`` | ``~``

              \| ``type`` | ``of`` | ``inherit``
   ============= ======================================== ====================


Grammar
^^^^^^^

.. table::

   =============== ======================================== =================
        module ::= annot* typedef*                          entry point

         annot ::= ``<`` lident annot-field* ``>``          annotation

   annot-field ::= (lident (``=`` string)?)

       typedef ::= ``type`` params? lident annot            type definition
                   ``=`` expr

        params ::= tident                                   one parameter

                \| ``(`` tident (``,`` tident)+ ``)``       two or more
                                                            parameters

          expr ::= expr-body annot*                         type expression

                \| tident

     expr-body ::= args? lident

                \| ``(``                                    tuple type
                   (cell (``*`` cell)*)?
                   ``)``

                \| ``{``                                    record type
                   ((field (``;`` field)*) ``;``?)?
                   ``}``

                \| ``[``                                    sum type
                   (``|``? variant (``|`` variant)*)?
                   ``]``

          args ::= expr                                     one argument

                \| ``(`` expr (``,`` expr)+ ``)``           two or more
                                                            arguments

          cell ::= (annot+ ``:``)? expr

         field ::= (``?`` | ``~``)? lident ``=`` expr

                \| ``inherit`` expr

       variant ::= uident annot* ``of`` expr

                \| uident annot*

                \| ``inherit`` expr
   =============== ======================================== =================



Predefined type names
^^^^^^^^^^^^^^^^^^^^^

The following types are considered predefined and may not be
redefined.

================== =========================================================
Type name          Intended use
================== =========================================================
``unit``           Type of just one value, useful with parametrized types

``bool``           Boolean

``int``            Integer

``float``          Floating-point number

``string``         Sequence of bytes or characters

``'a option``      Container of zero or one element of type `'a`.
                   See also `'a nullable`.

``'a list``        Collection or sequence of elements of type `'a`

``'a nullable``    Extend type `'a` with an extra conventional value,
                   typically called "null". The operation is idempotent,
                   i.e. `'a nullable` is equivalent to
                   `'a nullable nullable`.

``'a shared``      Values of type `'a` for which sharing must be preserved

``'a wrap``        Values on which a custom, reversible transformation
                   may be applied, as specified by
                   language-specific annotations.

``abstract``       Unspecified type. By default, this is meant to
                   accept any data that is syntactically valid, such as
                   any JSON data that could be parsed successfully.
                   With the help of ATD annotations, this can be
                   used to express types not supported by the ATD
                   language such as "either a boolean or a string".
================== =========================================================


Shared values (deprecated)
^^^^^^^^^^^^^^^^^^^^^^^^^^

ATD supports a special type ``x shared`` where ``x`` can be
any monomorphic type expression.
It allows notably to represent cyclic values and to enforce that cycles
are preserved during transformations such as serialization.

.. code-block:: ocaml

  (* Example of a simple graph type *)
  type shared_node = node shared (* sharing point *)
  type graph = shared_node list
  type node = {
    label : string;
    neighbors : shared_node list;
  }

Two shared values that are physically identical must remain physically
identical after any translation from one data format to another.

Each occurrence of a ``shared`` type expression in the ATD
source definition defines its own sharing point.
Therefore the following attempt at defining a graph type will not
preserve cycles because two sharing points are defined:

.. code-block:: ocaml

  (* Incorrect definition of a graph type *)
  type node = {
    label : string;
    neighbors : node shared (* sharing point 1 *) list;
  }

  (* Second occurrence of "shared", won't preserve cycles! *)
  type graph = node shared (* sharing point 2 *) list

There is actually a way of having multiple ``shared`` type expressions using the
same sharing point but this feature is designed for code generators and should
not be used in handwritten ATD definitions. The technique consists in providing
an annotation of the form ``<share id=x>`` where ``x`` is any string
identifying the sharing point. The graph example can be rewritten correctly as:

.. code-block:: ocaml

  type node = {
    label : string;
    neighbors : node shared <share id="1"> list;
  }

  type graph = node shared <share id="1"> list