File: t_heap.ml

package info (click to toggle)
ocaml-containers 3.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 2,412 kB
  • sloc: ml: 33,221; sh: 122; makefile: 32
file content (239 lines) | stat: -rw-r--r-- 7,428 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
open CCHeap
module T = (val Containers_testlib.make ~__FILE__ ())
include T

(* A QCheck generator for natural numbers that are not too large (larger than
 * [small_nat] but smaller than [big_nat]), with a bias towards smaller numbers.
 * This also happens to be what QCheck uses for picking a length for a list
 * generated by [QCheck.list].
 * QCheck defines this generator under the name [nat] but does not expose it. *)
let medium_nat =
  Q.make ~print:Q.Print.int ~shrink:Q.Shrink.int
    ~small:(fun _ -> 1)
    (fun st ->
      let p = Random.State.float st 1. in
      if p < 0.5 then
        Random.State.int st 10
      else if p < 0.75 then
        Random.State.int st 100
      else if p < 0.95 then
        Random.State.int st 1_000
      else
        Random.State.int st 10_000)

let list_delete_first (x0 : int) (xs : int list) : int list =
  let rec aux acc xs =
    match xs with
    | [] -> List.rev acc
    | x :: xs' when x = x0 -> List.rev_append acc xs'
    | x :: xs' -> aux (x :: acc) xs'
  in
  aux [] xs

module H = CCHeap.Make (struct
  type t = int

  let leq x y = x <= y
end)
;;

t ~name:"of_list, find_min_exn, take_exn" @@ fun () ->
let h = H.of_list [ 5; 4; 3; 4; 1; 42; 0 ] in
assert_equal ~printer:string_of_int 0 (H.find_min_exn h);
let h, x = H.take_exn h in
assert_equal ~printer:string_of_int 0 x;
assert_equal ~printer:string_of_int 1 (H.find_min_exn h);
let h, x = H.take_exn h in
assert_equal ~printer:string_of_int 1 x;
assert_equal ~printer:string_of_int 3 (H.find_min_exn h);
let h, x = H.take_exn h in
assert_equal ~printer:string_of_int 3 x;
assert_equal ~printer:string_of_int 4 (H.find_min_exn h);
let h, x = H.take_exn h in
assert_equal ~printer:string_of_int 4 x;
assert_equal ~printer:string_of_int 4 (H.find_min_exn h);
let h, x = H.take_exn h in
assert_equal ~printer:string_of_int 4 x;
assert_equal ~printer:string_of_int 5 (H.find_min_exn h);
let h, x = H.take_exn h in
assert_equal ~printer:string_of_int 5 x;
assert_equal ~printer:string_of_int 42 (H.find_min_exn h);
let h, x = H.take_exn h in
assert_equal ~printer:string_of_int 42 x;
assert_raises (( = ) H.Empty) (fun () -> H.find_min_exn h);
assert_raises (( = ) H.Empty) (fun () -> H.take_exn h);
true
;;

q ~name:"of_list, to_list" ~count:30
  Q.(list medium_nat)
  (fun l ->
    l |> H.of_list |> H.to_list |> List.sort CCInt.compare
    = (l |> List.sort CCInt.compare))
;;

q ~name:"of_list, to_list_sorted" ~count:30
  Q.(list medium_nat)
  (fun l -> l |> H.of_list |> H.to_list_sorted = (l |> List.sort CCInt.compare))
;;

(* The remaining tests assume the correctness of
   [of_list], [to_list], [to_list_sorted]. *)

q ~name:"size" ~count:30
  Q.(list_of_size Gen.small_nat medium_nat)
  (fun l -> l |> H.of_list |> H.size = (l |> List.length))
;;

q ~name:"insert"
  Q.(pair medium_nat (list medium_nat))
  (fun (x, l) ->
    l |> H.of_list |> H.insert x |> H.to_list_sorted
    = (x :: l |> List.sort CCInt.compare))
;;

q ~name:"merge"
  Q.(pair (list medium_nat) (list medium_nat))
  (fun (l1, l2) ->
    H.merge (H.of_list l1) (H.of_list l2)
    |> H.to_list_sorted
    = (l1 @ l2 |> List.sort CCInt.compare))
;;

q ~name:"add_list"
  Q.(pair (list medium_nat) (list medium_nat))
  (fun (l1, l2) ->
    H.add_list (H.of_list l1) l2
    |> H.to_list_sorted
    = (l1 @ l2 |> List.sort CCInt.compare))
;;

q ~name:"delete_one"
  Q.(pair medium_nat (list medium_nat))
  (fun (x, l) ->
    l |> H.of_list |> H.delete_one ( = ) x |> H.to_list_sorted
    = (l |> list_delete_first x |> List.sort CCInt.compare))
;;

q ~name:"delete_all"
  Q.(pair medium_nat (list medium_nat))
  (fun (x, l) ->
    l |> H.of_list |> H.delete_all ( = ) x |> H.to_list_sorted
    = (l |> List.filter (( <> ) x) |> List.sort CCInt.compare))
;;

q ~name:"filter"
  Q.(list medium_nat)
  (fun l ->
    let p x = x mod 2 = 0 in
    let l' = l |> H.of_list |> H.filter p |> H.to_list in
    List.for_all p l' && List.length l' = List.length (List.filter p l))
;;

t ~name:"physical equality" @@ fun () ->
let h = H.of_list [ 5; 4; 3; 4; 1; 42; 0 ] in
assert_bool "physical equality of merge with left empty"
  (CCEqual.physical h (H.merge H.empty h));
assert_bool "physical equality of merge with right empty"
  (CCEqual.physical h (H.merge h H.empty));
assert_bool "physical equality of delete_one with element lesser than min"
  (CCEqual.physical h (H.delete_one ( = ) (-999) h));
assert_bool "physical equality of delete_one with element between min and max"
  (CCEqual.physical h (H.delete_one ( = ) 2 h));
assert_bool "physical equality of delete_one with element greater than max"
  (CCEqual.physical h (H.delete_one ( = ) 999 h));
assert_bool "physical equality of delete_all with element lesser than min"
  (CCEqual.physical h (H.delete_all ( = ) (-999) h));
assert_bool "physical equality of delete_all with element between min and max"
  (CCEqual.physical h (H.delete_all ( = ) 2 h));
assert_bool "physical equality of delete_all with element greater than max"
  (CCEqual.physical h (H.delete_all ( = ) 999 h));
assert_bool "physical equality of filter"
  (CCEqual.physical h (H.filter (fun _ -> true) h));
true
;;

q ~name:"fold"
  Q.(list_of_size Gen.small_nat medium_nat)
  (fun l -> l |> H.of_list |> H.fold ( + ) 0 = (l |> List.fold_left ( + ) 0))
;;

q ~name:"of_iter"
  Q.(list_of_size Gen.small_nat medium_nat)
  (fun l ->
    l |> CCList.to_iter |> H.of_iter |> H.to_list_sorted
    = (l |> List.sort CCInt.compare))
;;

q ~name:"of_seq"
  Q.(list_of_size Gen.small_nat medium_nat)
  (fun l ->
    l |> CCList.to_seq |> H.of_seq |> H.to_list_sorted
    = (l |> List.sort CCInt.compare))
;;

q ~name:"of_gen"
  Q.(list_of_size Gen.small_nat medium_nat)
  (fun l ->
    l |> CCList.to_gen |> H.of_gen |> H.to_list_sorted
    = (l |> List.sort CCInt.compare))
;;

q ~name:"to_iter"
  Q.(list_of_size Gen.small_nat medium_nat)
  (fun l ->
    l |> H.of_list |> H.to_iter |> CCList.of_iter |> List.sort CCInt.compare
    = (l |> List.sort CCInt.compare))
;;

q ~name:"to_seq"
  Q.(list_of_size Gen.small_nat medium_nat)
  (fun l ->
    l |> H.of_list |> H.to_seq |> CCList.of_seq |> List.sort CCInt.compare
    = (l |> List.sort CCInt.compare))
;;

q ~name:"to_gen"
  Q.(list_of_size Gen.small_nat medium_nat)
  (fun l ->
    l |> H.of_list |> H.to_gen |> CCList.of_gen |> List.sort CCInt.compare
    = (l |> List.sort CCInt.compare))
;;

q ~name:"to_iter_sorted"
  Q.(list_of_size Gen.small_nat medium_nat)
  (fun l ->
    l |> H.of_list |> H.to_iter_sorted |> Iter.to_list
    = (l |> List.sort CCInt.compare))
;;

q ~name:"to_seq_sorted"
  Q.(list_of_size Gen.small_nat medium_nat)
  (fun l ->
    l |> H.of_list |> H.to_seq_sorted |> CCList.of_seq
    |> List.sort CCInt.compare
    = (l |> List.sort CCInt.compare))
;;

q ~name:"to_string with default sep"
  Q.(list_of_size Gen.small_nat medium_nat)
  (fun l ->
    l |> H.of_list |> H.to_string string_of_int
    = (l |> List.sort CCInt.compare |> List.map string_of_int
     |> String.concat ","))
;;

q ~name:"to_string with space as sep"
  Q.(list_of_size Gen.small_nat medium_nat)
  (fun l ->
    l |> H.of_list
    |> H.to_string ~sep:" " string_of_int
    = (l |> List.sort CCInt.compare |> List.map string_of_int
     |> String.concat " "))
;;

q ~name:"Make_from_compare"
  Q.(list_of_size Gen.small_nat medium_nat)
  (fun l ->
    let module H' = Make_from_compare (CCInt) in
    l |> H'.of_list |> H'.to_list_sorted = (l |> List.sort CCInt.compare))