File: cstruct.mli

package info (click to toggle)
ocaml-cstruct 6.2.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 968 kB
  • sloc: ml: 3,676; ansic: 56; javascript: 21; makefile: 18
file content (838 lines) | stat: -rw-r--r-- 31,840 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
(*
 * Copyright (c) 2012-2014 Anil Madhavapeddy <anil@recoil.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *)

(** Manipulate external memory buffers as C-like structures.

Cstruct is a library and ppx rewriter to make it easier to access C-like
structures directly from OCaml.  It supports both reading and writing to these
memory buffers, and they are accessed via the [Bigarray] module.

The library interface below is intended to be used in conjunction with the
ppx rewriter that is also supplied with this library (in the [cstruct-ppx]
ocamlfind package).

An example description for the pcap packet format is:

{[
[%%cstruct
type pcap_header = {
  magic_number:  uint32_t; (* magic number *)
  version_major: uint16_t; (* major version number *)
  version_minor: uint16_t; (* minor version number *)
  thiszone:      uint32_t; (* GMT to local correction *)
  sigfigs:       uint32_t; (* accuracy of timestamps *)
  snaplen:       uint32_t; (* max length of captured packets, in octets *)
  network:       uint32_t; (* data link type *)
} [@@little_endian]
]
[%%cstruct
type pcap_packet = {
  ts_sec:   uint32_t; (* timestamp seconds *)
  ts_usec:  uint32_t; (* timestamp microseconds *)
  incl_len: uint32_t; (* number of octets of packet saved in file *)
  orig_len: uint32_t; (* actual length of packet *)
} [@@little_endian]
]
[%%cstruct
type ethernet = {
  dst:       uint8_t;  [@len 6];
  src:       uint8_t;  [@len 6];
  ethertype: uint16_t;
} [@@big_endian]
]
[%%cstruct
type ipv4 = {
  hlen_version: uint8_t;
  tos:          uint8_t;
  len:          uint16_t;
  id:           uint16_t;
  off:          uint16_t;
  ttl:          uint8_t;
  proto:        uint8_t;
  csum:         uint16_t;
  src:          uint8_t;  [@len 4];
  dst:          uint8_t;  [@len 4]
} [@@big_endian]
]
]}

These will expand to get and set functions for every field, with types
appropriate to the particular definition.  For instance:

{[
val get_pcap_packet_ts_sec : Cstruct.t -> Cstruct.uint32
val set_pcap_packet_ts_sec : Cstruct.t -> Cstruct.uint32 -> unit
val get_pcap_packet_ts_usec : Cstruct.t -> Cstruct.uint32
val set_pcap_packet_ts_usec : Cstruct.t -> Cstruct.uint32 -> unit
val get_pcap_packet_incl_len : Cstruct.t -> Cstruct.uint32
val set_pcap_packet_incl_len : Cstruct.t -> Cstruct.uint32 -> unit
val get_pcap_packet_orig_len : Cstruct.t -> Cstruct.uint32
val set_pcap_packet_orig_len : Cstruct.t -> Cstruct.uint32 -> unit
val hexdump_pcap_packet_to_buffer : Buffer.t -> Cstruct.t -> unit
]}

The buffers generate a different set of functions. For the  [ethernet]
definitions, we have:

{[
val sizeof_ethernet : int
val get_ethernet_dst : Cstruct.t -> Cstruct.t
val copy_ethernet_dst : Cstruct.t -> string
val set_ethernet_dst : string -> int -> Cstruct.t -> unit
val blit_ethernet_dst : Cstruct.t -> int -> Cstruct.t -> unit
val get_ethernet_src : Cstruct.t -> Cstruct.t
val copy_ethernet_src : Cstruct.t -> string
]}

You can also declare C-like enums:

{[
[%%cenum
type foo32 =
  | ONE32
  | TWO32     [@id 0xfffffffel]
  | THREE32
[@@uint32_t]
]
[%%cenum
type bar16 =
  | ONE  [@id 1]
  | TWO
  | FOUR [@id 4
  | FIVE
[@@uint16_t]
]
]}

This generates signatures of the form:

{[
type foo32 = | ONE32 | TWO32 | THREE32
val int_to_foo32 : int32 -> foo32 option
val foo32_to_int : foo32 -> int32
val foo32_to_string : foo32 -> string
val string_to_foo32 : string -> foo32 option
type bar16 = | ONE | TWO | FOUR | FIVE
val int_to_bar16 : int -> bar16 option
val bar16_to_int : bar16 -> int
val bar16_to_string : bar16 -> string
val string_to_bar16 : string -> bar16 option
]}

*)

(** {2 Base types } *)

type buffer = (char, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t
(** Type of a buffer. A cstruct is composed of an underlying buffer
    and position/length within this buffer. *)

type t = private {
  buffer: buffer;
  off   : int;
  len   : int;
}
(** Type of a cstruct. *)

type byte = char
(** A single byte type *)

val byte : int -> byte
(** [byte v] convert [v] to a single byte.
    @raise Invalid_argument if [v] is negative or greater than 255. *)

type uint8 = int
(** 8-bit unsigned integer.  The representation is currently an
    unboxed OCaml integer. *)

type uint16 = int
(** 16-bit unsigned integer.  The representation is currently an
    unboxed OCaml integer. *)

type uint32 = int32
(** 32-bit unsigned integer.  The representation is currently a
    boxed OCaml int32. *)

type uint64 = int64
(** 64-bit unsigned integer.  The representation is currently a
    boxed OCaml int64. *)

(** {2 Creation and conversion} *)

val empty : t
(** [empty] is the cstruct of length 0. *)

val of_bigarray: ?off:int -> ?len:int -> buffer -> t
(** [of_bigarray ~off ~len b] is the cstruct contained in [b] starting
    at offset [off] (default [0]) of length [len]
    (default [Bigarray.Array1.dim b - off]). *)

val to_bigarray: t -> buffer
(** [to_bigarray t] converts a {!t} into a {!type:buffer} Bigarray, using
    the Bigarray slicing to allocate a fresh array that preserves
    sharing of the underlying buffer. *)

val create : int -> t
(** [create len] is a fresh cstruct of size [len] with an offset of 0,
    filled with zero bytes. *)

val create_unsafe : int -> t
(** [create_unsafe len] is a cstruct of size [len] with an offset of 0.

    Note that the returned cstruct will contain arbitrary data,
    likely including the contents of previously-deallocated cstructs.

    Beware!

    Forgetting to replace this data could cause your application
    to leak sensitive information.
*)

val of_string: ?allocator:(int -> t) -> ?off:int -> ?len:int -> string -> t
(** [of_string ~allocator ~off ~len str] is the cstruct representation of [str]
    slice located at offset [off] (default [0]) and of length [len] (default
    [String.length str - off]),
    with the underlying buffer allocated by [alloc]. If [allocator] is not
    provided, [create] is used.

    @raise Invalid_argument if [off] or [len] is negative, or
    [String.length str - off] < [len].
*)

val of_bytes: ?allocator:(int -> t) -> ?off:int -> ?len:int -> bytes -> t
(** [of_bytes ~allocator byt] is the cstruct representation of [byt]
    slice located at offset [off] (default [0]) and of length [len] (default
    [Bytes.length byt - off]),
    with the underlying buffer allocated by [alloc]. If [allocator] is not
    provided, [create] is used.

    @raise Invalid_argument if [off] or [len] is negative, or
    [Bytes.length str - off] < [len]. *)

val of_hex: ?off:int -> ?len:int -> string -> t
(** [of_hex ~off ~len str] is the cstruct [cs].  Every pair of hex-encoded
    characters in [str] starting at offset [off] (default [0]) of length [len]
    (default [String.length str - off]) are converted to one byte in [cs].
    Whitespaces (space, newline, tab, carriage return) in [str] are skipped.

    @raise Invalid_argument if the input string contains invalid characters or
    has an odd numbers of non-whitespace characters, or if [off] or [len] are
    negative, or [String.length str - off] < [len]. *)

(** {2 Comparison } *)

val equal : t -> t -> bool
(** [equal t1 t2] is [true] iff [t1] and [t2] correspond to the same sequence of
    bytes. *)

val compare : t -> t -> int
(** [compare t1 t2] gives an unspecified total ordering over {!t}. *)

(** {2 Getters and Setters } *)

val byte_to_int : byte -> int
(** Convert a byte to an integer *)

val check_bounds : t -> int -> bool
(** [check_bounds cstr len] is [true] if [len] is a non-negative integer and
    [cstr.buffer]'s size is greater or equal than [len] [false] otherwise.*)

val check_alignment : t -> int -> bool
(** [check_alignment cstr alignment] is [true] if the first byte stored
    within [cstr] is at a memory address where [address mod alignment = 0],
    [false] otherwise.
    Typical uses are to check a buffer is aligned to a page or disk sector
    boundary.
    @raise Invalid_argument if [alignment] is not a positive integer. *)

val get_char: t -> int -> char
(** [get_char t off] returns the character contained in the cstruct
    at offset [off].
    @raise Invalid_argument if the offset exceeds cstruct length. *)

val get_uint8: t -> int -> uint8
(** [get_uint8 t off] returns the byte contained in the cstruct
    at offset [off].
    @raise Invalid_argument if the offset exceeds cstruct length. *)

val set_char: t -> int -> char -> unit
(** [set_char t off c] sets the byte contained in the cstruct
    at offset [off] to character [c].
    @raise Invalid_argument if the offset exceeds cstruct length. *)

val set_uint8: t -> int -> uint8 -> unit
(** [set_uint8 t off c] sets the byte contained in the cstruct
    at offset [off] to byte [c].
    @raise Invalid_argument if the offset exceeds cstruct length. *)

val sub: t -> int -> int -> t
(** [sub cstr off len] is [{ t with off = t.off + off; len }]
    @raise Invalid_argument if the offset exceeds cstruct length. *)

val sub_copy: t -> int -> int -> t
(** [sub_copy cstr off len] is a new copy of [sub cstr off len],
    that does not share the underlying buffer of [cstr].
    @raise Invalid_argument if the offset exceeds cstruct length. *)

val shift: t -> int -> t
(** [shift cstr len] is [{ cstr with off=t.off+len; len=t.len-len }]
    @raise Invalid_argument if the offset exceeds cstruct length. *)

val copy: t -> int -> int -> string
[@@ocaml.alert deprecated "this is just like [to_string] without defaults, were you looking for [sub_copy]?"]
(** [copy cstr off len] is the string representation of the segment of
    [t] starting at [off] of size [len]. It is equivalent to
    [Cstruct.to_string cstr ~off ~len].
    @raise Invalid_argument if [off] and [len] do not designate a
    valid segment of [t]. *)

val blit: t -> int -> t -> int -> int -> unit
(** [blit src srcoff dst dstoff len] copies [len] characters from
    cstruct [src], starting at index [srcoff], to cstruct [dst],
    starting at index [dstoff]. It works correctly even if [src] and
    [dst] are the same string, and the source and destination
    intervals overlap.

    @raise Invalid_argument if [srcoff] and [len] do not designate a
    valid segment of [src], or if [dstoff] and [len] do not designate
    a valid segment of [dst]. *)

val blit_from_string: string -> int -> t -> int -> int -> unit
(** [blit_from_string src srcoff dst dstoff len] copies [len]
    characters from string [src], starting at index [srcoff], to
    cstruct [dst], starting at index [dstoff].

    @raise Invalid_argument if [srcoff] and [len] do not designate a
    valid substring of [src], or if [dstoff] and [len] do not
    designate a valid segment of [dst]. *)

val blit_from_bytes: bytes -> int -> t -> int -> int -> unit
(** [blit_from_bytes src srcoff dst dstoff len] copies [len]
    characters from bytes [src], starting at index [srcoff], to
    cstruct [dst], starting at index [dstoff].

    @raise Invalid_argument if [srcoff] and [len] do not designate a
    valid subsequence of [src], or if [dstoff] and [len] do not
    designate a valid segment of [dst]. *)

val blit_to_bytes: t -> int -> bytes -> int -> int -> unit
(** [blit_to_bytes src srcoff dst dstoff len] copies [len] characters
    from cstruct [src], starting at index [srcoff], to the [dst] buffer,
    starting at index [dstoff].

    @raise Invalid_argument if [srcoff] and [len] do not designate a
    valid segment of [src], or if [dstoff] and [len] do not designate
    a valid segment of [dst]. *)

val memset: t -> int -> unit
(** [memset t x] sets all the bytes of [t] to [x land 0xff]. *)

val split: ?start:int -> t -> int -> t * t
(** [split ~start cstr len] is a tuple containing the cstruct
    extracted from [cstr] at offset [start] (default: 0) of length
    [len] as first element, and the rest of [cstr] as second
    element.
    @raise Invalid_argument if [start] exceeds the cstruct length,
    or if there is a bounds violation of the cstruct via [len+start]. *)

val to_string: ?off:int -> ?len:int -> t -> string
(** [to_string ~off ~len t] will allocate a fresh OCaml [string] and copy the
    contents of the cstruct starting at offset [off] (default [0]) of length
    [len] (default [Cstruct.length t - off]) into it, and return that string.

    @raise Invalid_argument if [off] or [len] is negative, or
    [Cstruct.length t - off] < [len]. *)

val to_hex_string : ?off:int -> ?len:int -> t -> string
(** [to_hex_string ~off ~len t] is a fresh OCaml [string] containing
    the hex representation of [sub t off len]. It is therefore of length
    [2 * len]. This string can be read back into a Cstruct using {!of_hex}.
    @raise Invalid_argument if [off] or [len] is negative, or
      if [Cstruct.length t - off < len].
    @since 6.2 *)

val to_bytes: ?off:int -> ?len:int -> t -> bytes
(** [to_bytes ~off ~len t] will allocate a fresh OCaml [bytes] and copy the
    contents of the cstruct starting at offset [off] (default [0]) of length
    [len] (default [Cstruct.length t - off]) into it, and return that bytes.

    @raise Invalid_argument if [off] or [len] is negative, or
    [Cstruct.length str - off] < [len]. *)

module BE : sig

  (** Get/set big-endian integers of various sizes. The second
      argument of those functions is the position relative to the
      current offset of the cstruct. *)

  val get_uint16: t -> int -> uint16
  (** [get_uint16 cstr off] is the 16 bit long big-endian unsigned
      integer stored in [cstr] at offset [off].
      @raise Invalid_argument if the buffer is too small. *)

  val get_uint32: t -> int -> uint32
  (** [get_uint32 cstr off] is the 32 bit long big-endian unsigned
      integer stored in [cstr] at offset [off].
      @raise Invalid_argument if the buffer is too small. *)

  val get_uint64: t -> int -> uint64
  (** [get_uint64 cstr off] is the 64 bit long big-endian unsigned
      integer stored in [cstr] at offset [off].
      @raise Invalid_argument if the buffer is too small. *)

  val set_uint16: t -> int -> uint16 -> unit
  (** [set_uint16 cstr off i] writes the 16 bit long big-endian
      unsigned integer [i] at offset [off] of [cstr].
      @raise Invalid_argument if the buffer is too small. *)

  val set_uint32: t -> int -> uint32 -> unit
  (** [set_uint32 cstr off i] writes the 32 bit long big-endian
      unsigned integer [i] at offset [off] of [cstr].
      @raise Invalid_argument if the buffer is too small. *)

  val set_uint64: t -> int -> uint64 -> unit
  (** [set_uint64 cstr off i] writes the 64 bit long big-endian
      unsigned integer [i] at offset [off] of [cstr].
      @raise Invalid_argument if the buffer is too small. *)
end

module LE : sig

  (** Get/set little-endian integers of various sizes. The second
      argument of those functions is the position relative to the
      current offset of the cstruct. *)

  val get_uint16: t -> int -> uint16
  (** [get_uint16 cstr off] is the 16 bit long little-endian unsigned
      integer stored in [cstr] at offset [off].
      @raise Invalid_argument if the buffer is too small. *)

  val get_uint32: t -> int -> uint32
  (** [get_uint32 cstr off] is the 32 bit long little-endian unsigned
      integer stored in [cstr] at offset [off].
      @raise Invalid_argument if the buffer is too small. *)

  val get_uint64: t -> int -> uint64
  (** [get_uint64 cstr off] is the 64 bit long little-endian unsigned
      integer stored in [cstr] at offset [off].
      @raise Invalid_argument if the buffer is too small. *)

  val set_uint16: t -> int -> uint16 -> unit
  (** [set_uint16 cstr off i] writes the 16 bit long little-endian
      unsigned integer [i] at offset [off] of [cstr].
      @raise Invalid_argument if the buffer is too small. *)

  val set_uint32: t -> int -> uint32 -> unit
  (** [set_uint32 cstr off i] writes the 32 bit long little-endian
      unsigned integer [i] at offset [off] of [cstr].
      @raise Invalid_argument if the buffer is too small. *)

  val set_uint64: t -> int -> uint64 -> unit
  (** [set_uint64 cstr off i] writes the 64 bit long little-endian
      unsigned integer [i] at offset [off] of [cstr].
      @raise Invalid_argument if the buffer is too small. *)
end

module HE : sig

  (** Get/set host-endian integers of various sizes. The second
      argument of those functions is the position relative to the
      current offset of the cstruct. *)

  val get_uint16: t -> int -> uint16
  (** [get_uint16 cstr off] is the 16 bit long host-endian unsigned
      integer stored in [cstr] at offset [off].
      @raise Invalid_argument if the buffer is too small. *)

  val get_uint32: t -> int -> uint32
  (** [get_uint32 cstr off] is the 32 bit long host-endian unsigned
      integer stored in [cstr] at offset [off].
      @raise Invalid_argument if the buffer is too small. *)

  val get_uint64: t -> int -> uint64
  (** [get_uint64 cstr off] is the 64 bit long host-endian unsigned
      integer stored in [cstr] at offset [off].
      @raise Invalid_argument if the buffer is too small. *)

  val set_uint16: t -> int -> uint16 -> unit
  (** [set_uint16 cstr off i] writes the 16 bit long host-endian
      unsigned integer [i] at offset [off] of [cstr].
      @raise Invalid_argument if the buffer is too small. *)

  val set_uint32: t -> int -> uint32 -> unit
  (** [set_uint32 cstr off i] writes the 32 bit long host-endian
      unsigned integer [i] at offset [off] of [cstr].
      @raise Invalid_argument if the buffer is too small. *)

  val set_uint64: t -> int -> uint64 -> unit
  (** [set_uint64 cstr off i] writes the 64 bit long host-endian
      unsigned integer [i] at offset [off] of [cstr].
      @raise Invalid_argument if the buffer is too small. *)
end

(** {2 Debugging } *)

val hexdump: t -> unit
(** When the going gets tough, the tough hexdump their cstructs
    and peer at it until the bug disappears.  This will directly
    prettyprint the contents of the cstruct to the standard output. *)

val hexdump_to_buffer: Buffer.t -> t -> unit
(** [hexdump_to_buffer buf c] will append the pretty-printed hexdump
    of the cstruct [c] to the buffer [buf]. *)

val hexdump_pp: Format.formatter -> t -> unit
(** [hexdump_pp f c] pretty-prints a hexdump of [c] to [f]. *)

val debug: t -> string
(** [debug t] will print out the internal details of a cstruct such
    as its base offset and the length, and raise an assertion failure
    if invariants have been violated.  Not intended for casual use. *)

(** {2 List of buffers} *)

val lenv: t list -> int
(** [lenv cstrs] is the combined length of all cstructs in [cstrs].
    @raise Invalid_argument if computing the sum overflows. *)

val copyv: t list -> string
(** [copyv cstrs] is the string representation of the concatenation of
    all cstructs in [cstrs].
    @raise Invalid_argument if the length of the result would
    exceed [Sys.max_string_length]. *)

val fillv: src:t list -> dst:t -> int * t list
(** [fillv ~src ~dst] copies from [src] to [dst] until [src] is exhausted or [dst] is full.
    Returns the number of bytes copied and the remaining data from [src], if any.
    This is useful if you want buffer data into fixed-sized chunks. *)

val shiftv: t list -> int -> t list
(** [shiftv ts n] is [ts] without the first [n] bytes.
    It has the property that [equal (concat (shiftv ts n)) (shift (concat ts) n)].
    This operation is fairly fast, as it will share the tail of the list.
    The first item in the returned list is never an empty cstruct,
    so you'll get [[]] if and only if [lenv ts = n]. *)

(** {2 Iterations} *)

type 'a iter = unit -> 'a option
(** Type of an iterator. *)

val iter: (t -> int option) -> (t -> 'a) -> t -> 'a iter
(** [iter lenf of_cstr cstr] is an iterator over [cstr] that returns
    elements of size [lenf cstr] and type [of_cstr cstr]. *)

val fold: ('b -> 'a -> 'b) -> 'a iter -> 'b -> 'b
(** [fold f iter acc] is [(f iterN accN ... (f iter acc)...)]. *)

val append: t -> t -> t
(** [append t1 t2] is the concatenation [t1 || t2]. *)

val concat: t list -> t
(** [concat ts] is the concatenation of all the [ts]. It is not guaranteed that
 * the result is a newly created [t] in the zero- and one-element cases. *)

val rev: t -> t
(** [rev t] is [t] in reverse order. The return value is a freshly allocated
    cstruct, and the argument is not modified. *)

(** {1 Helpers to parse.}

    [Cstruct] is used to manipulate {i payloads} which can be formatted
   according an {{:https://perdu.com/}RFC} or an user-defined format. In such context, this module
   provides utilities to be able to easily {i parse} {i payloads}.

    Due to the type {!Cstruct.t}, no copy are done when you use these utilities
   and you are able to extract your information without a big performance cost.

    More precisely, each values returned by these utilities will be located into
   the minor-heap where the base buffer will never be copied or relocated.

    For instance, to parse a Git tree object:

{v
  entry := perm ' ' name '\000' 20byte
  tree  := entry *
v}

    {[
      open Cstruct

      let ( >>= ) = Option.bind

      let rec hash_of_name ~name payload =
        if is_empty payload then raise Not_found
        else
          cut ~sep:(v " ") payload >>= fun (_, payload) ->
          cut ~sep:(v "\000") payload >>= fun (name', payload) ->
          if name = name' then with_range ~len:20 payload
          else hash_of_name ~name (shift payload 20)
    ]}

    A [Cstruct] defines a possibly empty subsequence of bytes in a {e base}
   buffer (a {!Bigarray.Array1.t}).

    The positions of a buffer [b] of length [l] are the slits found
   before each byte and after the last byte of the buffer. They are
   labelled from left to right by increasing number in the range \[[0];[l]\].

{v
positions  0   1   2   3   4    l-1    l
           +---+---+---+---+     +-----+
  indices  | 0 | 1 | 2 | 3 | ... | l-1 |
           +---+---+---+---+     +-----+
v}

    The [i]th byte index is between positions [i] and [i+1].

    Formally we define a subbuffer of [b] as being a subsequence
   of bytes defined by a {e off} position and a {e len} number. When
   [len] is [0] the subbuffer is {e empty}. Note that for a given
   base buffer there are as many empty subbuffers as there are positions
   in the buffer.

    Like in strings, we index the bytes of a subbuffer using zero-based
   indices.
*)

val get : t -> int -> char
(** [get cs zidx] is the byte of [cs] at its zero-based index [zidx].
    It's an alias of {!get_char}.

    @raise Invalid_argument if [zidx] is not an index of [cs]. *)

val get_byte : t -> int -> int
(** [get_byte cs zidx] is [Char.code (get cs zidx)]. It's an alias of {!get_uint8}. *)

val string : ?off:int -> ?len:int -> string -> t
(** [string ~off ~len str] is the subbuffer of [str] that starts at position [off]
   (defaults to [0]) and stops at position [off + len] (defaults to
   [String.length str]). [str] is fully-replaced by an fresh allocated
   {!type:buffer}.

    @raise Invalid_argument if [off] or [off + len] are not positions of [str].
*)

val buffer : ?off:int -> ?len:int -> buffer -> t
(** [buffer ~off ~len buffer] is the sub-part of [buffer] that starts at
   position [off] (default to [0]) and stops at position [off + len] (default to
   [Bigarray.Array1.dim buffer]). [buffer] is used as the base buffer of the
   returned value (no major-heap allocation are performed).

    @raise Invalid_argument if [off] or [off + len] are not positions of
   [buffer]. *)

val start_pos : t -> int
(** [start_pos cs] is [cs]'s start position in the base {!type:buffer}. *)

val stop_pos : t -> int
(** [stop_pos cs] is [cs]'s stop position in the base {!type:buffer}. *)

val length : t -> int
(** Returns the length of the current cstruct view.  Note that this
    length is potentially smaller than the actual size of the underlying
    buffer, as the [sub] function can construct a smaller view. *)

val head : ?rev:bool -> t -> char option
(** [head cs] is [Some (get cs h)] with [h = 0] if [rev = false] (default) or [h
   = length cs - 1] if [rev = true]. [None] is returned if [cs] is empty. *)

val tail : ?rev:bool -> t -> t
(** [tail cs] is [cs] without its first ([rev] is [false], default) or last
   ([rev] is [true]) byte or [cs] is empty. *)

val is_empty : t -> bool
(** [is_empty cs] is [length cs = 0]. *)

val is_prefix : affix:t -> t -> bool
(** [is_prefix ~affix cs] is [true] iff [affix.[zidx] = cs.[zidx]] for all
   indices [zidx] of [affix]. *)

val is_suffix : affix:t -> t -> bool
(** [is_suffix ~affix cs] is [true] iff [affix.[n - zidx] = cs.[m - zidx]] for
   all indices [zidx] of [affix] with [n = length affix - 1] and [m = length cs
   - 1]. *)

val is_infix : affix:t -> t -> bool
(** [is_infix ~affix cs] is [true] iff there exists an index [z] in [cs] such
   that for all indices [zidx] of [affix] we have [affix.[zidx] = cs.[z +
   zidx]]. *)

val for_all : (char -> bool) -> t -> bool
(** [for_all p cs] is [true] iff for all indices [zidx] of [cs], [p cs.[zidx] =
   true]. *)

val exists : (char -> bool) -> t -> bool
(** [exists p cs] is [true] iff there exists an index [zidx] of [cs] with [p
   cs.[zidx] = true]. *)

val start : t -> t
(** [start cs] is the empty sub-part at the start position of [cs]. *)

val stop : t -> t
(** [stop cs] is the empty sub-part at the stop position of [cs]. *)

val trim : ?drop:(char -> bool) -> t -> t
(** [trim ~drop cs] is [cs] with prefix and suffix bytes satisfying [drop] in
   [cs] removed. [drop] defaults to [function ' ' | '\r' .. '\t' -> true | _ ->
   false]. *)

val span : ?rev:bool -> ?min:int -> ?max:int -> ?sat:(char -> bool) -> t -> t * t
(** [span ~rev ~min ~max ~sat cs] is [(l, r)] where:

    {ul
    {- if [rev] is [false] (default), [l] is at least [min] and at most
       [max] consecutive [sat] satisfying initial bytes of [cs] or {!empty}
       if there are no such bytes. [r] are the remaining bytes of [cs].}
    {- if [rev] is [true], [r] is at least [min] and at most [max]
       consecutive [sat] satisfying final bytes of [cs] or {!empty}
       if there are no such bytes. [l] are the remaining bytes of [cs].}}

    If [max] is unspecified the span is unlimited. If [min] is unspecified
    it defaults to [0]. If [min > max] the condition can't be satisfied and
    the left or right span, depending on [rev], is always empty. [sat]
    defaults to [(fun _ -> true)].

    The invariant [l ^ r = s] holds.

    For instance, the {i ABNF} expression:

{v
  time := 1*10DIGIT
v}

    can be translated to:

    {[
      let (time, _) = span ~min:1 ~max:10 is_digit cs in
    ]}

    @raise Invalid_argument if [max] or [min] is negative. *)

val take : ?rev:bool -> ?min:int -> ?max:int -> ?sat:(char -> bool) -> t -> t
(** [take ~rev ~min ~max ~sat cs] is the matching span of {!span} without the remaining one.
    In other words:

    {[(if rev then snd else fst) @@ span ~rev ~min ~max ~sat cs]} *)

val drop : ?rev:bool -> ?min:int -> ?max:int -> ?sat:(char -> bool) -> t -> t
(** [drop ~rev ~min ~max ~sat cs] is the remaining span of {!span} without the matching one.
    In other words:

    {[(if rev then fst else snd) @@ span ~rev ~min ~max ~sat cs]} *)

val cut : ?rev:bool -> sep:t -> t -> (t * t) option
(** [cut ~sep cs] is either the pair [Some (l, r)] of the two
    (possibly empty) sub-buffers of [cs] that are delimited by the first
    match of the non empty separator string [sep] or [None] if [sep] can't
    be matched in [cs]. Matching starts from the beginning of [cs] ([rev] is
    [false], default) or the end ([rev] is [true]).

    The invariant [l ^ sep ^ r = s] holds.

    For instance, the {i ABNF} expression:

{v
  field_name := *PRINT
  field_value := *ASCII
  field := field_name ":" field_value
v}

    can be translated to:

    {[
      match cut ~sep:":" value with
      | Some (field_name, field_value) -> ...
      | None -> invalid_arg "invalid field"
    ]}

    @raise Invalid_argument if [sep] is the empty buffer. *)

val cuts : ?rev:bool -> ?empty:bool -> sep:t -> t -> t list
(** [cuts ~sep cs] is the list of all sub-buffers of [cs] that are
    delimited by matches of the non empty separator [sep]. Empty sub-buffers are
    omitted in the list if [empty] is [false] (default to [true]).

    Matching separators in [cs] starts from the beginning of [cs]
    ([rev] is [false], default) or the end ([rev] is [true]). Once
    one is found, the separator is skipped and matching starts again,
    that is separator matches can't overlap. If there is no separator
    match in [cs], the list [[cs]] is returned.

    The following invariants hold:
    {ul
    {- [concat ~sep (cuts ~empty:true ~sep cs) = cs]}
    {- [cuts ~empty:true ~sep cs <> []]}}

    For instance, the {i ABNF} expression:

{v
  arg := *(ASCII / ",") ; any characters exclude ","
  args := arg *("," arg)
v}

    can be translated to:

    {[
      let args = cuts ~sep:"," buffer in
    ]}

    @raise Invalid_argument if [sep] is the empty buffer. *)

val fields : ?empty:bool -> ?is_sep:(char -> bool) -> t -> t list
(** [fields ~empty ~is_sep cs] is the list of (possibly empty)
    sub-buffers that are delimited by bytes for which [is_sep] is
    [true]. Empty sub-buffers are omitted in the list if [empty] is
    [false] (defaults to [true]). [is_sep c] if it's not define by the
    user is [true] iff [c] is an US-ASCII white space character,
    that is one of space [' '] ([0x20]), tab ['\t'] ([0x09]), newline
    ['\n'] ([0x0a]), vertical tab ([0x0b]), form feed ([0x0c]), carriage
    return ['\r'] ([0x0d]). *)

val find : ?rev:bool -> (char -> bool) -> t -> t option
(** [find ~rev sat cs] is the sub-buffer of [cs] (if any) that spans
    the first byte that satisfies [sat] in [cs] after position [start cs]
    ([rev] is [false], default) or before [stop cs] ([rev] is [true]).
    [None] is returned if there is no matching byte in [s]. *)

val find_sub : ?rev:bool -> sub:t -> t -> t option
(** [find_sub ~rev ~sub cs] is the sub-buffer of [cs] (if any) that spans
    the first match of [sub] in [cs] after position [start cs]
    ([rev] is [false], default) or before [stop cs] ([rev] is [true]).
    Only bytes are compared and [sub] can be on a different base buffer.
    [None] is returned if there is no match of [sub] in [s]. *)

val filter : (char -> bool) -> t -> t
(** [filter sat cs] is the buffer made of the bytes of [cs] that satisfy [sat],
    in the same order. *)

val filter_map : (char -> char option) -> t -> t
(** [filter_map f cs] is the buffer made of the bytes of [cs] as mapped by
    [f], in the same order. *)

val map : (char -> char) -> t -> t
(** [map f cs] is [cs'] with [cs'.[i] = f cs.[i]] for all indices [i]
    of [cs]. [f] is invoked in increasing index order. *)

val mapi : (int -> char -> char) -> t -> t
(** [map f cs] is [cs'] with [cs'.[i] = f i cs.[i]] for all indices [i]
    of [cs]. [f] is invoked in increasing index order. *)

(**/**)
val sum_lengths : caller:string -> t list -> int
(** [sum_lengths ~caller acc l] is [acc] plus the sum of the lengths
    of the elements of [l].  Raises [Invalid_argument caller] if
    arithmetic overflows. *)