File: deriving_Pickle.ml

package info (click to toggle)
ocaml-deriving-ocsigen 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 628 kB
  • ctags: 1,159
  • sloc: ml: 6,334; makefile: 63; sh: 18
file content (501 lines) | stat: -rw-r--r-- 16,600 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
(* Copyright Jeremy Yallop 2007.
   This file is free software, distributed under the MIT license.
   See the file COPYING for details.
*)

(*
  Idea: 
  1. every object receives a serializable id.
  2. an object is serialized using the ids of its subobjects
*)

open Deriving_Typeable
open Deriving_Eq
open Deriving_Dump

module Deriving_Pickle =
struct
exception UnknownTag of int * string
exception UnpicklingError of string

module Id :
sig
  type t deriving (Show, Dump, Eq)
  val initial : t
  val compare : t -> t -> int
  val next : t -> t  
end =
struct
  type t = int deriving (Show, Dump, Eq)
  let initial = 0
  let compare = compare
  let next = succ
end
module IdMap = Map.Make (Id)
type id = Id.t deriving (Show, Dump)

module Repr : sig
  (* Break abstraction for the sake of efficiency for now *)
  type t = Bytes of string | CApp of (int option * Id.t list) deriving (Dump, Show)
  val of_string : string -> t
  val to_string : t -> string
  val make : ?constructor:int -> id list -> t
  val unpack_ctor : t -> int option * id list
end =
struct
  type t = Bytes of string | CApp of (int option * Id.t list) deriving (Dump, Show)
  let of_string s = Bytes s
  let to_string = function
    | Bytes s -> s
    | _ -> invalid_arg "string_of_repr"
  let make ?constructor ids = 
    match constructor with
      | Some n -> CApp (Some n, ids)
      | None   -> CApp (None, ids)
  let unpack_ctor = function 
    | CApp arg -> arg
    | _ -> raise (UnpicklingError "Error unpickling constructor")
end
type repr = Repr.t

module Write : sig
  type s = {
    nextid : Id.t;
    obj2id : Id.t Deriving_dynmap.DynMap.t;
    id2rep : repr IdMap.t;
  }
  val initial_output_state : s
  include Deriving_monad.Monad_state_type with type state = s

  module Utils (T : Typeable) (E : Eq with type a = T.a) : sig
    val allocate : T.a -> (id -> unit m) -> id m
    val store_repr : id -> Repr.t -> unit m
  end
end =
struct
  type s = {
    nextid : Id.t; (* the next id to be allocated *)
    obj2id : Id.t Deriving_dynmap.DynMap.t; (* map from typerep to id cache for the corresponding type *)
    id2rep : repr IdMap.t;
  }
  let initial_output_state = {
    nextid = Id.initial;
    obj2id = Deriving_dynmap.DynMap.empty;
    id2rep = IdMap.empty;
  }
  include Deriving_monad.Monad_state (struct type state = s end)
  module Utils (T : Typeable) (E : Eq with type a = T.a) =
  struct
    module C = Deriving_dynmap.Comp(T)(E)
    let comparator = C.eq

    let allocate o f =
      let obj = T.make_dynamic o in
      get >>= fun ({nextid=nextid;obj2id=obj2id} as t) ->
        match Deriving_dynmap.DynMap.find obj obj2id with
          | Some id -> return id
          | None -> 
              let id, nextid = nextid, Id.next nextid in
                put {t with
                       obj2id=Deriving_dynmap.DynMap.add obj id comparator obj2id;
                       nextid=nextid} >>
                  f id >> return id
                  
    let store_repr id repr =
      get >>= fun state ->
        put {state with id2rep = IdMap.add id repr state.id2rep}
  end
end

module Read : sig
  type s = (repr * (dynamic option)) IdMap.t
  include Deriving_monad.Monad_state_type with type state = s
  val find_by_id : id -> (Repr.t * dynamic option) m
  module Utils (T : Typeable) : sig
    val sum    : (int * id list -> T.a m)  -> id -> T.a m
    val tuple  : (id list -> T.a m)        -> id -> T.a m
    val record : (T.a -> id list -> T.a m) -> int -> id -> T.a m
    val update_map : id -> (T.a -> unit m)
  end
end =
struct
  type s = (repr * (dynamic option)) IdMap.t
  include Deriving_monad.Monad_state (struct type state = s end)

  let find_by_id id =
    get >>= fun state ->
    return (IdMap.find id state)

  module Utils (T : Typeable) = struct
    let decode_repr_ctor c = match Repr.unpack_ctor c with
      | (Some c, ids) -> (c, ids)
      | _ -> invalid_arg "decode_repr_ctor"

    let decode_repr_noctor c = match Repr.unpack_ctor c with
      | (None, ids) -> ids
      | _ -> invalid_arg "decode_repr_ctor"

    let update_map id obj =
      let dynamic = T.make_dynamic obj in
      get >>= fun state -> 
        match IdMap.find id state with 
          | (repr, None) ->     
              put (IdMap.add id (repr, Some dynamic) state)
          | (_, Some _) -> 
              return ()
                (* Checking for id already present causes unpickling to fail 
                   when there is circularity involving immutable values (even 
                   if the recursion wholly depends on mutability).

                   For example, consider the code

                   type t = A | B of t ref deriving (Typeable, Eq, Pickle)
                   let s = ref A in
                   let r = B s in
                   s := r;
                   let pickled = Pickle_t.pickleS r in
                   Pickle_t.unpickleS r

                   which results in the value
                   B {contents = B {contents = B { ... }}}

                   During deserialization the following steps occur:
                   1. lookup "B {...}" in the dictionary (not there)
                   2. unpickle the contents of B:
                   3. lookup the contents in the dictionary (not there)
                   4. create a blank reference, insert it into the dictionary
                   5. unpickle the contents of the reference:
                   6. lookup ("B {...}") in the dictionary (not there)
                   7. unpickle the contents of B:
                   8. lookup the contents in the dictionary (there)
                   9. insert "B{...}" into the dictionary.
                   10. insert "B{...}" into the dictionary.
                *)


    let whizzy f id decode =
      find_by_id id >>= fun (repr, dynopt) ->
      match dynopt with 
        | None ->
            f (decode repr) >>= fun obj ->
            update_map id obj >>
            return obj
        | Some obj -> return (T.throwing_cast obj)

    let sum f id = whizzy f id decode_repr_ctor
    let tuple f id = whizzy f id decode_repr_noctor
    let record_tag = 0
    let record f size id =
      find_by_id id >>= fun (repr, obj) ->
        match obj with
          | None ->
              let this = Obj.magic  (Obj.new_block record_tag size) in
                update_map id this >>
                f this (decode_repr_noctor repr) >>
                return this
          | Some obj -> return (T.throwing_cast obj)


  end
end


module type Pickle =
sig
  type a
  module Typeable : Typeable with type a = a
  module Eq : Eq with type a = a
  val pickle : a -> id Write.m
  val unpickle : id -> a Read.m
  val to_buffer : Buffer.t -> a -> unit
  val to_string : a -> string
  val to_channel : out_channel -> a -> unit
  val from_stream : char Stream.t -> a
  val from_string : string -> a
  val from_channel : in_channel -> a
end

module Defaults
  (S : sig
     type a
     module Typeable : Typeable with type a = a
     module Eq : Eq with type a = a
     val pickle : a -> id Write.m
     val unpickle : id -> a Read.m
   end) : Pickle with type a = S.a =
struct
  include S

  type ids = (Id.t * Repr.t) list
      deriving (Dump, Show)

  type dumpable = id * ids
      deriving (Show, Dump)

  type ('a,'b) pair = 'a * 'b deriving (Dump)
  type capp = int option * Id.t list deriving (Dump)

  (* We don't serialize ids of each object at all: we just use the
     ordering in the output file to implicitly record the ids of
     objects.

     Also, we don't serialize the repr constructors.  All values with
     a particular constructor are grouped in a single list.

     This can (and should) all be written much more efficiently.
  *)
  type discriminated = 
      (Id.t * string) list
    * (Id.t * (int * Id.t list)) list
    * (Id.t * (Id.t list)) list
        deriving (Dump, Show)

  type discriminated_ordered = 
      string list
      * (int * Id.t list) list
      * (Id.t list) list
        deriving (Dump, Show)

  let reorder : Id.t * discriminated -> Id.t * discriminated_ordered =
    fun (root,(a,b,c)) ->
      let collect_ids items (map,counter) =
        List.fold_left 
          (fun (map,counter) (id,_) ->
             IdMap.add id counter map, Id.next counter) 
          (map,counter) items in

      let map, _ = 
        collect_ids c
          (collect_ids b
             (collect_ids a
                (IdMap.empty, Id.initial))) in
      let lookup id = IdMap.find id map in
        (lookup root,
         (List.map snd a,
          List.map (fun (_,(c,l)) -> c, List.map lookup l) b,
          List.map (fun (_,l) -> List.map lookup l) c))

  let unorder : Id.t * discriminated_ordered -> Id.t * discriminated
    = fun (root,(a,b,c)) ->
      let number_sequentially id items =
        List.fold_left
          (fun (id,items) item -> 
             (Id.next id, (id,item)::items))
          (id,[]) items in
      let id = Id.initial in
      let id, a = number_sequentially id a in
      let id, b = number_sequentially id b in
      let  _, c = number_sequentially id c in
        (root, (a,b,c))

  type ('a,'b) either = Left of 'a | Right of 'b
  let either_partition (f : 'a -> ('b, 'c) either) (l : 'a list)
      : 'b list * 'c list =
    let rec aux (lefts, rights) = function
      | [] -> (List.rev lefts, List.rev rights)
      | x::xs ->
          match f x with 
            | Left l  -> aux (l :: lefts, rights) xs
            | Right r -> aux (lefts, r :: rights) xs
    in aux ([], []) l

  type discriminated_dumpable = Id.t * discriminated deriving (Dump) 

  let discriminate : (Id.t * Repr.t) list -> discriminated
    = fun input ->
      let bytes, others = 
        either_partition
          (function
             | id, (Repr.Bytes s) -> Left (id,s)
             | id, (Repr.CApp c) -> Right (id,c))
          input in
      let ctors, no_ctors =
        either_partition
          (function
             | id, (Some c, ps) -> Left (id, (c,ps))
             | id, (None, ps) -> Right (id,ps))
          others in
        (bytes, ctors, no_ctors)

  let undiscriminate : discriminated -> (Id.t * Repr.t) list
    = fun (a,b,c) ->
      List.map (fun (id,s) -> (id,Repr.Bytes s)) a
      @ List.map (fun (id,(c,ps)) -> (id,Repr.CApp (Some c,ps))) b
      @ List.map (fun (id,(ps)) -> (id,Repr.CApp (None,ps))) c

  type do_pair = Id.t * discriminated_ordered 
      deriving (Show, Dump)

  let write_discriminated f
    = fun (root,map) ->
      let dmap = discriminate map in
      let rmap = reorder (root,dmap) in
        f rmap

  let read_discriminated (f : 'b -> 'a) : 'b -> Id.t * (Id.t * Repr.t) list
    = fun s -> 
      let rmap = f s in
      let (root,dmap) = unorder rmap in
        (root, undiscriminate dmap)

  open Write

  let decode_pickled_string (f : 'a -> Id.t * discriminated_ordered) : 'b -> Id.t * Read.s =
    fun s -> 
      let (id, state : dumpable) = 
        read_discriminated f s
      in
        id, (List.fold_right 
               (fun (id,repr) map -> IdMap.add id (repr,None) map)
               state
               IdMap.empty)

  let encode_pickled_string f =
    fun (id,state) ->
      let input_state =
        id, IdMap.fold (fun id repr output -> (id,repr)::output)
          state.id2rep [] in
        write_discriminated f input_state

  let doPickle f v : 'a = 
    let id, state = runState (S.pickle v) initial_output_state in
      encode_pickled_string f (id, state)

  let doUnpickle f input = 
    let id, initial_input_state = decode_pickled_string f input in  
    let value, _ = Read.runState (S.unpickle id) initial_input_state in
      value

  let from_channel = doUnpickle Dump.from_channel<do_pair>
  let from_string = doUnpickle Dump.from_string<do_pair>
  let from_stream = doUnpickle Dump.from_stream<do_pair>
  let to_channel channel = doPickle (Dump.to_channel<do_pair> channel)
  let to_buffer buffer = doPickle (Dump.to_buffer<do_pair> buffer)
  let to_string = doPickle Dump.to_string<do_pair>
end

module Pickle_from_dump
  (P : Dump)
  (E : Eq with type a = P.a)
  (T : Typeable with type a = P.a)
  : Pickle with type a = P.a
           and type a = E.a
           and type a = T.a = Defaults
  (struct
     type a = T.a
     module Typeable = T
     module Eq = E
     module Comp = Deriving_dynmap.Comp(T)(E)
     open Write
     module W = Utils(T)(E)
     let pickle obj = 
       W.allocate obj 
         (fun id -> W.store_repr id (Repr.of_string (P.to_string obj)))
     open Read
     module U = Utils(T)
     let unpickle id = 
       find_by_id id >>= fun (repr, dynopt) ->
         match dynopt with
           | None -> 
               let obj : a = P.from_string (Repr.to_string repr) in
                 U.update_map id obj >> 
                   return obj
           | Some obj -> return (T.throwing_cast obj)
   end)

module Pickle_unit : Pickle with type a = unit = Pickle_from_dump(Dump_unit)(Eq_unit)(Typeable_unit)
module Pickle_bool = Pickle_from_dump(Dump_bool)(Eq_bool)(Typeable_bool)
module Pickle_int = Pickle_from_dump(Dump_int)(Eq_int)(Typeable_int)
module Pickle_char = Pickle_from_dump(Dump_char)(Eq_char)(Typeable_char)
module Pickle_float = Pickle_from_dump(Dump_float)(Eq_float)(Typeable_float)
module Pickle_string = Pickle_from_dump(Dump_string)(Eq_string)(Typeable_string)
module Pickle_int32 = Pickle_from_dump(Dump_int32)(Eq_int32)(Typeable_int32)
module Pickle_int64 = Pickle_from_dump(Dump_int64)(Eq_int64)(Typeable_int64)
module Pickle_nativeint = Pickle_from_dump(Dump_nativeint)(Eq_nativeint)(Typeable_nativeint)

module Pickle_option (V0 : Pickle) : Pickle with type a = V0.a option = Defaults(
  struct
    module Typeable = Typeable_option (V0.Typeable)
    module Eq = Eq_option (V0.Eq)
    module Comp = Deriving_dynmap.Comp (Typeable) (Eq)
    open Write
    type a = V0.a option
    let rec pickle =
      let module W = Utils(Typeable)(Eq) in
      function
          None as obj ->
            W.allocate obj
              (fun id -> W.store_repr id (Repr.make ~constructor:0 []))
        | Some v0 as obj ->
            W.allocate obj
              (fun thisid ->
                 V0.pickle v0 >>= fun id0 ->
                   W.store_repr thisid (Repr.make ~constructor:1 [id0]))
    open Read
    let unpickle = 
      let module W = Utils(Typeable) in
      let f = function
        | 0, [] -> return None
        | 1, [id] -> V0.unpickle id >>= fun obj -> return (Some obj)
        | n, _ -> raise (UnpicklingError
                           ("Unexpected tag encountered unpickling "
                            ^"option : " ^ string_of_int n)) in
        W.sum f
  end)


module Pickle_list (V0 : Pickle)
  : Pickle with type a = V0.a list = Defaults (
struct
  module Typeable = Typeable_list (V0.Typeable)
  module Eq = Eq_list (V0.Eq)
  module Comp = Deriving_dynmap.Comp (Typeable) (Eq)
  type a = V0.a list
  open Write
  module U = Utils(Typeable)(Eq)
  let rec pickle = function
      [] as obj ->
        U.allocate obj
          (fun this -> U.store_repr this (Repr.make ~constructor:0 []))
    | (v0::v1) as obj ->
        U.allocate obj
          (fun this -> V0.pickle v0 >>= fun id0 ->
                          pickle v1 >>= fun id1 ->
                            U.store_repr this (Repr.make ~constructor:1 [id0; id1]))
  open Read
  module W = Utils (Typeable)
  let rec unpickle id = 
    let f = function
      | 0, [] -> return []
      | 1, [car;cdr] -> 
          V0.unpickle car >>= fun car ->
             unpickle cdr >>= fun cdr ->
               return (car :: cdr)
      | n, _ -> raise (UnpicklingError
                         ("Unexpected tag encountered unpickling "
                          ^"option : " ^ string_of_int n)) in
      W.sum f id
end)
end
include Deriving_Pickle  

type 'a ref = 'a Pervasives.ref = { mutable contents : 'a }
    deriving (Eq,Typeable,Pickle)

(* Idea: keep pointers to values that we've serialized in a global
   weak hash table so that we can share structure with them if we
   deserialize any equal values in the same process *)

(* Idea: serialize small objects (bools, chars) in place rather than
   using the extra level of indirection (and space) introduced by ids
*)

(* Idea: bitwise output instead of bytewise.  Probably a bit much to
   implement now, but should have a significant impact (e.g. one using
   bit instead of one byte for two-constructor sums) *)

(* Should we use a different representation for lists?  i.e. write out
   the length followed by the elements?  we could no longer claim
   sharing maximization, but it would actually be more efficient in
   most cases.
*)