1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
|
(* Copyright Jeremy Yallop 2007.
Copyright Grégoire Henry 2011.
This file is free software, distributed under the MIT license.
See the file COPYING for details.
*)
open Utils
open Type
open Defs
open Camlp4.PreCast
exception Underivable of string
exception NoSuchClass of string
let fatal_error loc msg =
Syntax.print_warning loc msg;
exit 1
let display_errors loc f p =
try
f p
with
Underivable msg | Failure msg -> fatal_error loc msg
(** *)
let instantiate, instantiate_repr =
let o lookup = object
inherit transform as super
method expr = function
| `Param (name, _) -> lookup name
| `GParam ((name, _), e) ->
if not (contains_tvars e) then e else lookup name
| e -> super # expr e
end in
(fun (lookup : name -> expr) -> (o lookup)#expr),
(fun (lookup : name -> expr) -> (o lookup)#repr)
let instantiate_modargs, instantiate_modargs_repr =
let lookup argmap var =
try `Constr (NameMap.find var argmap @ ["a"], [])
with NameMap.Not_found _ ->
`Param (var, None)
in (fun argmap -> instantiate (lookup argmap)),
(fun argmap -> instantiate_repr (lookup argmap))
module AstHelpers(Loc : Loc) = struct
open Loc
module Loc = Loc
module Untranslate = Type.Untranslate(Loc)
(** Expression sequences *)
let seq l r = <:expr< $l$ ; $r$ >>
let rec seq_list = function
| [] -> <:expr< () >>
| [e] -> e
| e::es -> seq e (seq_list es)
(** Record *)
let record_pattern ?(prefix="") (fields : Type.field list) : Ast.patt =
<:patt<{$list:
(List.map (fun (label,_,_) -> <:patt< $lid:label$ = $lid:prefix ^ label$ >>)
fields) $}>>
let record_expr : (string * Ast.expr) list -> Ast.expr =
fun fields ->
let fs =
List.fold_left1
(fun l r -> <:rec_binding< $l$ ; $r$ >>)
(List.map (fun (label, exp) -> <:rec_binding< $lid:label$ = $exp$ >>)
fields) in
Ast.ExRec (_loc, fs, Ast.ExNil _loc)
let record_expression ?(prefix="") : Type.field list -> Ast.expr =
fun fields ->
let es = List.fold_left1
(fun l r -> <:rec_binding< $l$ ; $r$ >>)
(List.map (fun (label,_,_) -> <:rec_binding< $lid:label$ = $lid:prefix ^ label$ >>)
fields) in
Ast.ExRec (_loc, es, Ast.ExNil _loc)
(** Record *)
let expr_list : Ast.expr list -> Ast.expr =
(fun exprs ->
List.fold_right
(fun car cdr -> <:expr< $car$ :: $cdr$ >>)
exprs
<:expr< [] >>)
let patt_list : Ast.patt list -> Ast.patt =
(fun patts ->
List.fold_right
(fun car cdr -> <:patt< $car$ :: $cdr$ >>)
patts
<:patt< [] >>)
(** Tuple *)
let tuple_expr : Ast.expr list -> Ast.expr = function
| [] -> <:expr< () >>
| [x] -> x
| x::xs -> Ast.ExTup (_loc, List.fold_left (fun e t -> Ast.ExCom (_loc, e,t)) x xs)
let tuple_patt : Ast.patt list -> Ast.patt = function
| [] -> <:patt< () >>
| [x] -> x
| x::xs -> Ast.PaTup (_loc, List.fold_left (fun e t -> Ast.PaCom (_loc, e,t)) x xs)
let tuple ?(param="v") n : string list * Ast.patt * Ast.expr =
let v n = Printf.sprintf "%s%d" param n in
match n with
| 0 -> [], <:patt< () >>, <:expr< () >>
| 1 -> [v 0], <:patt< $lid:v 0$ >>, <:expr< $lid:v 0$ >>
| n ->
let patts, exprs =
(* At time of writing I haven't managed to write anything
using quotations that generates an n-tuple *)
List.fold_left
(fun (p, e) (patt, expr) -> Ast.PaCom (_loc, p, patt), Ast.ExCom (_loc, e, expr))
(<:patt< >>, <:expr< >>)
(List.map (fun n -> <:patt< $lid:v n$ >>, <:expr< $lid:v n $ >>)
(List.range 0 n))
in
List.map v (List.range 0 n), Ast.PaTup (_loc, patts), Ast.ExTup (_loc, exprs)
(** *)
let rec lident qname =
match qname with
| [] -> invalid_arg "ident"
| [t] -> <:ident< $lid:t$ >>
| t::ts -> <:ident< $uid:t$.$lident ts$ >>
let cast_pattern argmap ?(param="x") ty =
match ty with
| `Constr (id, _) ->
(<:patt< #$id:lident id$ as $lid:param$ >>,
<:expr< >>,
<:expr< $lid:param$ >>)
| ty ->
let ty = Untranslate.expr (instantiate_modargs argmap ty) in
(<:patt< $lid:param$ >>,
<:expr<
let module M =
struct
type $Ast.TyDcl (_loc, "t", [], ty, [])$
let test = function #t -> true | _ -> false
end in M.test $lid:param$ >>,
<:expr<
(let module M =
struct
type $Ast.TyDcl (_loc, "t", [], ty, [])$
let cast = function #t as t -> t | _ -> assert false
end in M.cast $lid:param$ )>>)
(** *)
let atype_expr argmap ty =
let ty = instantiate_modargs argmap ty in
match ty with
| `Constr(["a"],_) ->
raise (Underivable ("deriving: types called `a' are not allowed.\n"
^ "Please change the name of your type and try again."));
| ty -> Untranslate.expr ty
let rec modname_from_qname ~qname ~classname =
match qname with
| [] -> invalid_arg "modname_from_qname"
| [t] -> <:ident< $uid:classname ^ "_"^ t$ >>
| t::ts -> <:ident< $uid:t$.$modname_from_qname ~qname:ts ~classname$ >>
let mproject mexpr (name:string) =
match mexpr with
| <:module_expr< $id:m$ >> -> <:expr< $id:m$.$lid:name$ >>
| _ -> <:expr< let module M = $mexpr$ in M.$lid:name$ >>
let mProject mexpr name =
match mexpr with
| <:module_expr< $uid:m$ >> -> <:module_expr< $uid:m$.$uid:name$ >>
| _ -> <:module_expr< struct module M = $mexpr$ include M.$uid:name$ end >>
end
module type InnerClassDescription = sig
include ClassDescription
val find_predefined: Type.qname -> Type.qname
val depends: (module DepClassBuilder) list
end
module InnerGenerator(Loc: Loc)(Desc : InnerClassDescription) = struct
(** How does it works ?
For each type declaration, we generate a functor taking as
parameters the class instances for the type parameters.
For (mutually) recursive type declaration(s), we compute the
(finite) set of required recursive class instances (see
"cluster.mli") and generate a functor containing all these
class instances. Then we generate a non-recursive functor for
each type declaration.
For the set of recursive class instances we use "lazy
first-order module" instead of "recursive modules" to be
compatible with 'js_of_ocaml' (that do not allow recursive
modules). E.g. for two mutually recursive type 'a t and 'a t2:
module Show_RandomId(M_a: Show) = struct
let rec make_t =
lazy (module struct ... end : Show with type a = M_a.a t)
and make_t2 =
lazy (module struct ... end : Show with type a = M_a.a t2)
end
module Show_t(M_a: Show) = struct
module Show_RandomId = Show_RandomId(M_a)
type a = M_a.a t
let show =
let module M = (val Lazy.force Show_RandomId.make_t) in
M.show
...
end
module Show_t2(M_a: Show) =
module Show_RandomId = Show_RandomId(M_a)
type a = M_a.a t2
let show =
let module M = (val Lazy.force Show_RandomId.make_t2) in
M.show
...
end
*)
module Loc = Loc
module AstHelpers = AstHelpers(Loc)
module Helpers = AstHelpers
module Untranslate = Helpers.Untranslate
open Loc
type context = {
(* Maps type expression to name of a module's value inside the
cluster's functor. *)
mod_insts : Ast.module_expr Type.EMap.t;
(* Maps name of type's parameter name to module name of functor's
parameters *)
argmap : Type.qname Type.NameMap.t;
}
let make_argmap params =
List.fold_left
(fun params (name, _) -> NameMap.add name (["M_" ^ name]) params)
NameMap.empty
params
let cast_pattern ctxt ?param ty =
Helpers.cast_pattern ctxt.argmap ?param ty
let instantiate_modargs_repr ctxt = instantiate_modargs_repr ctxt.argmap
let instantiate_gparam e =
let map = object (self)
inherit Type.transform as super
method expr e = match e with
| `GParam (p, e) ->
if Type.contains_tvars e then
`Param p
else
e
| e -> super#expr e
end in
map#expr e
let import_depend ctxt ty depend =
let module Dep = (val depend : DepClassBuilder)(Loc) in
let argmap =
NameMap.map (fun qname -> qname @ [Dep.classname]) ctxt.argmap
and mod_insts =
EMap.map (fun m -> Helpers.mProject m Dep.classname) ctxt.mod_insts
in
let mod_insts = match ty with
| `Constr ([tname],params) ->
EMap.remove (tname,params) mod_insts
| _ -> mod_insts
in
<:str_item<
module $uid:Dep.classname$ =
$Dep.generate_expr mod_insts argmap ty$
>>
let import_depends ctxt ty =
List.map (import_depend ctxt ty) Desc.depends
class virtual generator = object (self)
(* *)
method call_expr ctxt ty name = Helpers.mproject (self#expr ctxt ty) name
method call_poly_expr ctxt (params, ty : Type.poly_expr) name =
match Desc.alpha with
| None when params <> [] ->
raise (Underivable
(Desc.classname ^ " cannot be derived for record types "
^ "with polymorphic fields"))
| None -> self#call_expr ctxt ty name
| Some mod_name ->
let ctxt =
{ ctxt with
argmap = List.fold_left
(fun argmap (pname, _) -> NameMap.add pname ["M_"^pname] argmap)
ctxt.argmap params}
in
let expr = self#call_expr ctxt ty name in
List.fold_right
(fun (pname,_) expr ->
(* This is not a function... much more a scope for a type variable... *)
<:expr< fun (type t) ->
let module $uid:"M_"^pname$ =
$uid:Desc.runtimename$.$uid:mod_name$(struct type a = t end) in
$expr$ >>)
params
expr
(* *)
method class_sig argmap ty =
<:module_type<
$uid:Desc.runtimename$.$uid:Desc.classname$
with type a = $Helpers.atype_expr argmap ty$
>>
method pack argmap ty m =
match m with
| <:module_expr< (val $e$) >> -> e
| _ ->
(* <:expr< (module $m$ : $class_sig ctxt decl) >> *)
Ast.ExPkg (_loc, (Ast.MeTyc (_loc, m, self#class_sig argmap ty)))
method unpack argmap ty e =
match e with
| <:expr< (module $m$) >> -> m
| _ ->
(* (val $e$ : $class_sig gen argmap decl$) *)
Ast.MePkg (_loc,
Ast.ExTyc (_loc, e,
Ast.TyPkg (_loc, self#class_sig argmap ty)))
(** *)
method wrap ctxt ?(default = Desc.default_module) ty items =
let mexpr =
<:module_expr< struct
type a = ($Helpers.atype_expr ctxt.argmap ty$)
$list:import_depends ctxt ty$
$list:items$
end >> in
match default with
| None -> mexpr
| Some name ->
<:module_expr< $uid:Desc.runtimename$.$uid:name$($mexpr$) >>
(** *)
method expr ctxt (ty: Type.expr) =
match ty with
| `Param p -> (self#param ctxt p)
| `GParam p -> (self#gparam ctxt p)
| `Object o -> self#wrap ctxt ty (self#object_ ctxt o)
| `Class c -> self#wrap ctxt ty (self#class_ ctxt c)
| `Label l -> self#wrap ctxt ty (self#label ctxt l)
| `Function f -> self#wrap ctxt ty (self#function_ ctxt f)
| `Constr c -> (self#constr ctxt c)
| `Tuple t -> self#wrap ctxt ty (self#tuple ctxt t)
method rhs ctxt subst (tname, params, rhs, constraints, _ : Type.decl) =
let params =
List.map (substitute_expr subst) (List.map (fun p -> `Param p) params)
in
let ty = `Constr([tname], params) in
let rhs = substitute_rhs subst rhs in
match rhs with
| `Fresh (_, _, `Private) when not Desc.allow_private ->
raise (Underivable ("The class " ^ Desc.classname
^ " cannot be derived for private types"))
| `Fresh (eq, Sum summands, _) ->
self#wrap ctxt ty (self#sum ?eq ctxt tname params constraints summands)
| `Fresh (eq, GSum (tname', summands), _) ->
self#wrap ctxt ty (self#gsum ?eq ctxt tname params constraints summands)
| `Fresh (eq, Record fields, _) ->
self#wrap ctxt ty (self#record ?eq ctxt tname params constraints fields)
| `Expr e -> self#expr ctxt e
| `Variant ((var, _ as v),p) ->
if p = `Private && var = `Gt then
failwith "Private row is only allowed in signature";
self#wrap ctxt ty (self#variant ctxt tname params constraints v)
| `Nothing -> <:module_expr< >>
method param ctxt (name, _) =
<:module_expr< $id:Untranslate.qName (NameMap.find name ctxt.argmap)$ >>
method gparam ctxt (p, e) =
if Type.contains_tvars e then self#param ctxt p else self#expr ctxt e
method constr ctxt (qname, params) =
match qname with
| [tname] when EMap.mem (tname,params) ctxt.mod_insts ->
(* Instance in the current cluster. *)
EMap.find (tname, params) ctxt.mod_insts
| _ ->
(* External module: apply classical functor. *)
let qname =
try Desc.find_predefined qname
with Not_found -> qname in
List.fold_left
(fun m p -> <:module_expr< $m$ ($self#expr ctxt p$) >>)
<:module_expr<
$id:Helpers.modname_from_qname
~qname ~classname:Desc.classname$ >>
params
method virtual proxy: unit -> Type.name option * Ast.ident list
(* *)
method virtual variant:
context ->
Type.name -> Type.expr list -> Type.constraint_ list ->
variant -> Ast.str_item list
method virtual sum:
?eq:expr -> context ->
Type.name -> Type.expr list -> Type.constraint_ list ->
summand list -> Ast.str_item list
method virtual record:
?eq:expr -> context ->
Type.name -> Type.expr list -> Type.constraint_ list ->
field list -> Ast.str_item list
method virtual tuple: context -> expr list -> Ast.str_item list
method gsum ?eq ctxt tname params constraints gsummands =
raise (Underivable (Desc.classname ^ " cannot be derived for GADT"))
method object_ _ o =
raise (Underivable (Desc.classname ^ " cannot be derived for object types"))
method class_ _ c =
raise (Underivable (Desc.classname ^ " cannot be derived for class types"))
method label _ l =
raise (Underivable (Desc.classname ^ " cannot be derived for label types"))
method function_ _ f =
raise (Underivable (Desc.classname ^ " cannot be derived for function types"))
end
let add_functor_param argmap (pname,_) body =
match NameMap.find pname argmap with
| [name] ->
<:module_expr<
functor ( $uid:name$
: $uid:Desc.runtimename$.$uid:Desc.classname$)
-> $body$ >>
| _ -> assert false
let add_functor_param_sig argmap (pname,_) body =
match NameMap.find pname argmap with
| [name] ->
<:module_type<
functor ( $uid:name$
: $uid:Desc.runtimename$.$uid:Desc.classname$)
-> $body$ >>
| _ -> assert false
let create_subst params eparams =
List.fold_right2 NameMap.add
(* (fun p ep map -> *)
(* match ep with *)
(* | `Param (p',_ ) when p' = p -> map *)
(* | _ -> NameMap.add p ep map) *)
(List.map fst params) eparams
NameMap.empty
(** ... *)
let generate (gen : generator) decls =
let generate_cluster cluster =
let cluster_name =
let id = random_id 32 in
Printf.sprintf "%s_%s" Desc.classname id in
let fun_names =
let cpt = ref 0 in
List.fold_left
(fun map (tname, _ as inst) ->
incr cpt;
EMap.add inst (Printf.sprintf "make_%s_%d" tname !cpt) map)
EMap.empty
cluster.Clusters.instances in
let cluster_argmap = make_argmap cluster.Clusters.params in
let rec wrap_local_types (args : expr list) body =
#if ocaml_version < (4, 00)
body
#else
match args with
| [] -> body
| `Param (arg, _) :: args
| `GParam ((arg, _),_) :: args ->
let id = "deriving_" ^ random_id 8 ^ "_" ^ arg in
let pat =
(* (module $M_arg$ : $class_sig ...$ ) *)
Ast.PaTyc(_loc, Ast.PaMod (_loc, "M_" ^ arg),
Ast.TyPkg(_loc,
gen#class_sig NameMap.empty (`Constr ([id], []))))
in
wrap_local_types args
<:expr< (fun (type $lid:id$) -> (function $pat$ -> $body$))
(module $uid:"M_"^arg$) >>
| _ -> assert false
#endif
in
let generate_instance (tname, eparams as inst) =
let mod_insts =
EMap.mapi
(fun (tname, params) fname ->
gen#unpack cluster_argmap (`Constr ([tname], params))
(<:expr< Lazy.force $lid:fname$ >>))
fun_names
in
let ctxt = { argmap = cluster_argmap; mod_insts; } in
let ty = `Constr([tname], eparams) in
let (_,params,_,_,_ as decl) =
List.find (fun (tn,_,_,_,_) -> tname = tn) decls in
let subst = create_subst params eparams in
let body = gen#pack ctxt.argmap ty (gen#rhs ctxt subst decl) in
let id = EMap.find inst fun_names in
id, <:expr< lazy (ignore($lid:id$); $body$) >>
in
let generate_functor (tname,params,_,_,_ as decl) =
let argmap = make_argmap params in
let mod_insts =
EMap.mapi
(fun (tname, params) fname ->
let e =
Helpers.mproject
(List.fold_left
(fun m (pname,_) ->
let p = NameMap.find pname argmap in
<:module_expr< $m$ ($id:Untranslate.qName p$) >>)
(<:module_expr< $uid:cluster_name$ >>)
cluster.Clusters.params)
fname
in
let ty = `Constr ([tname], params) in
gen#unpack argmap ty (<:expr< Lazy.force $e$ >>))
fun_names
in
let ctxt = { argmap; mod_insts; } in
let body =
let params = List.map (fun p -> `Param p) params in
let ty = `Constr ([tname], params) in
try
let tfname = EMap.find (tname, params) fun_names in
let default, ids = gen#proxy () in
let m =
List.fold_left
(fun m p -> <:module_expr< $m$ ($gen#expr ctxt p$) >>)
<:module_expr< $uid:cluster_name$ >>
params in
let items =
<:str_item< module M = $m$ >> ::
(let m = Helpers.mproject <:module_expr< M >> tfname in
let m = gen#unpack argmap ty <:expr< Lazy.force $m$ >> in
List.map
(fun id ->
<:str_item< let $id:id$ = let module M = $m$ in M.$id:id$ >>)
ids)
in
(gen#wrap ~default ctxt ty items)
with EMap.Not_found _ -> gen#rhs ctxt NameMap.empty decl
in
let body =
let ty = `Constr ([tname], List.map (fun p -> `Param p) params) in
<:module_expr< ($body$ : $gen#class_sig argmap ty$) >> in
let body =
List.fold_right
(add_functor_param argmap)
params
body
in
<:str_item<
module $uid:Printf.sprintf "%s_%s" Desc.classname tname$ =
$body$
>>
in
let is_gadt = function
| (_,_,`Fresh(_,GSum _,_),_,_) -> true
| _ -> false in
let contains_gadt c = List.exists is_gadt c.Clusters.decls in
if cluster.Clusters.instances <> [] then
let inst_exprs = List.map generate_instance cluster.Clusters.instances in
let bindings =
List.map (fun (id, e) -> <:binding< $lid:id$ = $e$ >>) inst_exprs in
let items =
if not (contains_gadt cluster) then
<:str_item< let rec $list:bindings$ >>
else
let e = List.map (fun (id, _) -> <:expr< $lid:id$ >>) inst_exprs in
let p = List.map (fun (id, _) -> <:patt< $lid:id$ >>) inst_exprs in
let body =
wrap_local_types
(List.map (fun p -> `Param p) cluster.Clusters.params)
<:expr< let rec $list:bindings$ in $Helpers.tuple_expr e$ >> in
<:str_item< let $Helpers.tuple_patt p$ = $body$ >>
in
let mod_expr =
List.fold_right
(add_functor_param cluster_argmap)
cluster.Clusters.params
<:module_expr< struct $items$ end >>
in
<:str_item<
module $uid:cluster_name$ = $mod_expr$
$list:List.map generate_functor cluster.Clusters.decls$
>>
else
<:str_item< $list:List.map generate_functor cluster.Clusters.decls$ >>
in
<:str_item< $list:List.map generate_cluster (Clusters.make decls)$ >>
(** ... *)
let generate_sigs (gen:generator) decls =
let generate_sig (tname,params,rhs,_,generated) =
if generated then
<:sig_item< >>
else
let argmap = make_argmap params in
let ty =
match rhs with
| `Fresh _ | `Variant _ | `Nothing ->
`Constr ([tname], List.map (fun p -> `Param p) params)
| `Expr e -> e
in
let body =
List.fold_right
(add_functor_param_sig argmap)
params
(gen#class_sig argmap ty)
in
<:sig_item<
module $uid:Printf.sprintf "%s_%s" Desc.classname tname$ : $body$
>>
in
<:sig_item< $list:List.map generate_sig decls$ >>
let generate_expr (gen:generator) mod_insts argmap ty =
gen#expr { argmap; mod_insts; } ty
end
let derive_str _loc decls class_builder =
let module Loc = struct let _loc = _loc end in
let module Class = (val class_builder : InnerClassBuilder)(Loc) in
display_errors _loc Class.generate decls
let derive_sig _loc decls class_builder =
let module Loc = struct let _loc = _loc end in
let module Class = (val class_builder : InnerClassBuilder)(Loc) in
display_errors _loc Class.generate_sigs decls
let generators : (string, (module ClassDescription) * (module InnerClassBuilder)) Hashtbl.t =
Hashtbl.create 15
let hashtbl_add desc deriver =
let module Desc = (val desc : ClassDescription) in
Hashtbl.add generators Desc.classname (desc, deriver)
let register_hook = ref [hashtbl_add]
let add_register_hook (f : ((module ClassDescription) -> generator -> unit)) =
Hashtbl.iter (fun _ (desc, deriver) -> f desc deriver) generators;
register_hook := f :: !register_hook
let register desc deriver =
List.iter (fun f -> f desc deriver) !register_hook
let find classname =
try snd (Hashtbl.find generators classname)
with Not_found -> raise (NoSuchClass classname)
let is_registered classname = Hashtbl.mem generators classname
module MakeInnerDesc(Desc : Defs.ClassDescription) =
struct
include Desc
let predefs_tbl : (Type.qname, Type.qname) Hashtbl.t = Hashtbl.create 17
let find_predefined qname = Hashtbl.find predefs_tbl qname
let register_predefined ty instance = Hashtbl.add predefs_tbl ty instance
let () = List.iter (fun (a, b) -> register_predefined a b) predefs
end
module RegisterClass
(Desc : Defs.ClassDescription)
(MakeClass : ClassBuilder) = struct
module InnerDesc = MakeInnerDesc(Desc)
module Builder(Loc: Loc) = MakeClass(InnerGenerator(Loc)(InnerDesc))
let _ = register (module Desc : Defs.ClassDescription) (module Builder : InnerClassBuilder)
let register_predefs = InnerDesc.register_predefined
end
module RegisterFullClass
(Desc : Defs.ClassDescription)
(MakeClass : FullBuilder) = struct
module InnerDesc = MakeInnerDesc(Desc)
module Builder(Loc: Loc) = MakeClass(InnerGenerator(Loc)(InnerDesc))
let _ = register (module Desc : Defs.ClassDescription) (module Builder : InnerClassBuilder)
let depends = (module Builder : DepClassBuilder)
let register_predefs = InnerDesc.register_predefined
end
(* Compat with <= 0.4-ocsigen *)
module Register
(Desc : Defs.ClassDescription)
(MakeClass : InnerClassBuilder) = struct
let _ = register (module Desc : Defs.ClassDescription) (module MakeClass : InnerClassBuilder)
end
module Generator(Loc : Loc)(Desc : ClassDescription) =
InnerGenerator(Loc)(MakeInnerDesc(Desc))
|