1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="hevea 1.06">
<TITLE>
Extending the syntax of OCaml
</TITLE>
</HEAD>
<BODY TEXT=black BGCOLOR=white>
<A HREF="tutorial006.html"><IMG SRC ="previous_motif.gif" ALT="Previous"></A>
<A HREF="index.html"><IMG SRC ="contents_motif.gif" ALT="Up"></A>
<A HREF="tutorial008.html"><IMG SRC ="next_motif.gif" ALT="Next"></A>
<HR>
<TABLE CELLPADDING=0 CELLSPACING=0 WIDTH="100%">
<TR><TD BGCOLOR="#2de52d"><DIV ALIGN=center><TABLE>
<TR><TD><A NAME="htoc56"><B><FONT SIZE=6>Chapter 7</FONT></B></A></TD>
<TD WIDTH="100%" ALIGN=center><B><FONT SIZE=6>Extending the syntax of OCaml</FONT></B></TD>
</TR></TABLE></DIV></TD>
</TR></TABLE>
<A NAME="c:tutext"></A>
<A NAME="toc48"></A><TABLE CELLPADDING=0 CELLSPACING=0 WIDTH="100%">
<TR><TD BGCOLOR="#66ff66"><DIV ALIGN=center><TABLE>
<TR><TD><A NAME="htoc57"><B><FONT SIZE=5>7.1</FONT></B></A></TD>
<TD WIDTH="100%" ALIGN=center><B><FONT SIZE=5>Introduction</FONT></B></TD>
</TR></TABLE></DIV></TD>
</TR></TABLE><BR>
Syntax extensions in <CODE>OCaml</CODE> can be done by extending the
grammars entries of the OCaml syntax. All grammars entries are defined
in the module named <CODE>Pcaml</CODE>. They all return values of types
defined in the module <CODE>MLast</CODE>: nodes of these types can be
created using the predefined quotation expansion <CODE>q_MLast.cmo</CODE>.<BR>
<BR>
The entries in <CODE>Pcaml</CODE> are:
<UL><LI><CODE>expr</CODE> for expressions, returning values of type
<CODE>MLast.expr</CODE>.<BR>
<BR>
<LI><CODE>patt</CODE> for patterns, returning values of type
<CODE>MLast.patt</CODE>.<BR>
<BR>
<LI><CODE>ctyp</CODE> for types, returning values of type
<CODE>MLast.ctyp</CODE>.<BR>
<BR>
<LI><CODE>module_type</CODE> for module types, returning values of type
<CODE>MLast.module_type</CODE>.<BR>
<BR>
<LI><CODE>module_expr</CODE> for module expressions, returning values of type
<CODE>MLast.module_expr</CODE>.<BR>
<BR>
<LI><CODE>sig_item</CODE> for signature items, returning values of type
<CODE>MLast.sig_item</CODE>.<BR>
<BR>
<LI><CODE>str_item</CODE> for structure items, returning values of type
<CODE>MLast.str_item</CODE>.</UL>
Most of these entries are generally defined (``extended'') with
several ``levels'' (see chapter <A HREF="tutorial003.html#c:tutgram">3</A>). Some of them
are labelled, in order to be able to extend them or to insert other
levels.<BR>
<BR>
The levels and their possible labels are not predefined. It depend on
how the syntax define them. To see which labels are defined and which
rule they contain, enter the toplevel and type for the normal syntax:
<PRE>
#load "camlp4o.cma";;
Grammar.Entry.print Pcaml.expr;; (* for the expressions *)
Grammar.Entry.print Pcaml.patt;; (* for the patterns *)
(* ... and so on *)
</PRE>
For the revised syntax, load <CODE>"camlp4r.cma"</CODE> instead. If you
defined another syntax of the whole language or want to see the other
syntaxes provided, load it before, and call <CODE>Grammar.Entry.print</CODE>
of the desired grammar entry. Look at the manual page
(<CODE>man camlp4</CODE> in the shell) to see all available syntaxes and
extensions.<BR>
<BR>
Once you have the list of the grammar entry you want to extend and the
possible level label, you can do your extension.<BR>
<BR>
<A NAME="toc49"></A><TABLE CELLPADDING=0 CELLSPACING=0 WIDTH="100%">
<TR><TD BGCOLOR="#66ff66"><DIV ALIGN=center><TABLE>
<TR><TD><A NAME="htoc58"><B><FONT SIZE=5>7.2</FONT></B></A></TD>
<TD WIDTH="100%" ALIGN=center><B><FONT SIZE=5>Example: ``repeat until'' like in Pascal</FONT></B></TD>
</TR></TABLE></DIV></TD>
</TR></TABLE><BR>
If you read all this tutorial, you are able to understand this
complete example. If you did not, just create the files and type the
indicated commands.<BR>
<BR>
Write first a file named <CODE>foo.ml</CODE> containing:
<PRE>
open Pcaml;;
EXTEND
expr: LEVEL "expr1"
[[ "repeat"; e1 = expr; "until"; e2 = expr ->
<:expr< do { $e1$; while not $e2$ do { $e1$; } } >> ]];
END;;
</PRE>
The compilation of this file can be done by typing under the shell
(the dollar is the shell prompt):
<PRE>
$ ocamlc -pp "camlp4o pa_extend.cmo q_MLast.cmo" -I +camlp4 \
-c foo.ml
</PRE>
Here is the file <CODE>bar.ml</CODE> containing a <CODE>repeat..until</CODE> statement:
<PRE>
let main () =
let i = ref 0 in
repeat print_int !i; incr i until !i = 10;
print_newline ()
let _ = main ()
</PRE>
You can compile it by typing:
<PRE>
$ ocamlc -pp "camlp4o ./foo.cmo" bar.ml
</PRE>
And run it:
<PRE>
$ ./a.out
0123456789
</PRE>
Or just pretty print the program with the expanded syntax:
<PRE>
$ camlp4o ./foo.cmo pr_o.cmo bar.ml
let main () =
let i = ref 0 in
begin
begin print_int !i; incr i end;
while not (!i = 10) do print_int !i; incr i done;
end;
print_newline ()
;;
main ();;
</PRE>
<A NAME="toc50"></A><TABLE CELLPADDING=0 CELLSPACING=0 WIDTH="100%">
<TR><TD BGCOLOR="#66ff66"><DIV ALIGN=center><TABLE>
<TR><TD><A NAME="htoc59"><B><FONT SIZE=5>7.3</FONT></B></A></TD>
<TD WIDTH="100%" ALIGN=center><B><FONT SIZE=5>Example: a constant</FONT></B></TD>
</TR></TABLE></DIV></TD>
</TR></TABLE><BR>
If you want to have the equivalent of a <CODE>#define</CODE> of C, you can
write for example, if you want <CODE>FOO</CODE> to be replaced by <CODE>54</CODE>
in expressions and patterns:
<PRE>
open Pcaml;;
EXTEND
expr: LEVEL "simple"
[[ UIDENT "FOO" -> <:expr< 54 >> ]];
patt: LEVEL "simple"
[[ UIDENT "FOO" -> <:patt< 54 >> ]];
END;;
</PRE>
The compilation of this file can be done by typing:
<PRE>
$ ocamlc -pp "camlp4o pa_extend.cmo q_MLast.cmo" -I +camlp4 \
-c foo.ml
</PRE>
Here is the file <CODE>bar.ml</CODE> containing <CODE>FOO</CODE> constants:
<PRE>
FOO;;
function FOO -> 22;;
</PRE>
You can compile it by typing:
<PRE>
$ ocamlc -pp "camlp4o ./foo.cmo" bar.ml
</PRE>
You can just pretty print the program with the expanded syntax:
<PRE>
$ camlp4o ./foo.cmo pr_o.cmo bar.ml
54;;
function 54 -> 22;;
</PRE>
<A NAME="toc51"></A><TABLE CELLPADDING=0 CELLSPACING=0 WIDTH="100%">
<TR><TD BGCOLOR="#66ff66"><DIV ALIGN=center><TABLE>
<TR><TD><A NAME="htoc60"><B><FONT SIZE=5>7.4</FONT></B></A></TD>
<TD WIDTH="100%" ALIGN=center><B><FONT SIZE=5>Example: a ``for'' loop like in C</FONT></B></TD>
</TR></TABLE></DIV></TD>
</TR></TABLE><BR>
Here is an example of an syntax extension allowing to write a ``for''
loop like in C. A construction is added with the loop variable and 3
parameters, simple expressions: the first one is the initial value,
the second the test, the third the way to change the loop variable.<BR>
<BR>
Note that we use here the directives <CODE>#load</CODE> inside the source of
the syntax extension, allowing to parse it with <CODE>camlp4o</CODE> without
having to specify these files in the command line.<BR>
<BR>
File ``cloop.ml'':
<PRE>
#load "q_MLast.cmo";;
#load "pa_extend.cmo";;
open Pcaml
let gensym =
let cnt = ref 0 in
fun var ->
let x = incr cnt; !cnt in
var ^ "_gensym" ^ string_of_int x
let gen_for loc v iv wh nx e =
let loop_fun = gensym "iter" in
<:expr<
let rec $lid:loop_fun$ $lid:v$ =
if $wh$ then do { $e$; $lid:loop_fun$ $nx$ } else ()
in
$lid:loop_fun$ $iv$ >>
EXTEND
expr: LEVEL "expr1"
[ [ "for"; v = LIDENT; iv = expr LEVEL "simple";
wh = expr LEVEL "simple"; nx = expr LEVEL "simple";
"do"; e = expr; "done" ->
gen_for loc v iv wh nx e ] ]
;
END
</PRE>
Compile this file with:
<PRE>
$ ocamlc -pp camlp4o -I +camlp4 -c cloop.ml
</PRE>
Example under the toplevel:
<PRE>
$ ocaml
Objective Caml version 3.02+7 (2001-09-29)
# #load "camlp4o.cma";;
Camlp4 Parsing version 3.02+7 (2001-09-29)
# #load "cloop.cmo";;
# for i = 0 to 10 do print_int i; done;; (* normal loop *)
012345678910- : unit = ()
# for c 0 (c<10) (c+1) do print_int c; done;;
0123456789- : unit = ()
# for c 0 (c<10) (c+3) do print_int c; done;;
0369- : unit = ()
</PRE>
Exemple of compilation of a program using this construction:
<PRE>
$ cat foo.ml
for c 0 (c<10) (c+2) do print_int c; done
$ ocamlc -pp "camlp4o ./cloop.cmo" -c foo.ml
</PRE>
And if you want to see the generated program (for example to check
that the extension is correct):
<PRE>
$ camlp4o ./cloop.cmo pr_o.cmo foo.ml
let rec iter_gensym1 c =
if c < 10 then begin print_int c; iter_gensym1 (c + 2) end
in
iter_gensym1 0;;
</PRE>
<A NAME="toc52"></A><TABLE CELLPADDING=0 CELLSPACING=0 WIDTH="100%">
<TR><TD BGCOLOR="#66ff66"><DIV ALIGN=center><TABLE>
<TR><TD><A NAME="htoc61"><B><FONT SIZE=5>7.5</FONT></B></A></TD>
<TD WIDTH="100%" ALIGN=center><B><FONT SIZE=5>Example: generating printers of types</FONT></B></TD>
</TR></TABLE></DIV></TD>
</TR></TABLE><BR>
We are going to define a syntax extension, so that for all types
definitions, the definition of printers of the values of this types
is automatically added. In this example, we limit to sum types (types
with constructors), but it can be easily extensible for record types,
abstract types, types renaming.<BR>
<BR>
<TABLE CELLPADDING=0 CELLSPACING=0 WIDTH="100%">
<TR><TD BGCOLOR="#7fff7f"><DIV ALIGN=center><TABLE>
<TR><TD><A NAME="htoc62"><B><FONT SIZE=4>7.5.1</FONT></B></A></TD>
<TD WIDTH="100%" ALIGN=center><B><FONT SIZE=4>First version: monomorphic sum types with constant constructors</FONT></B></TD>
</TR></TABLE></DIV></TD>
</TR></TABLE><BR>
The example, which is going to be our test, is the following file
``<CODE>col.ml</CODE>'':
<PRE>
type colour = Red | Green | Blue
</PRE>
We want that, when preprocessed with the correct syntax extension,
this file be interpreted like this:
<PRE>
type colour = Red | Green | Blue
let print_colour =
function
Red -> print_string "Red"
| Green -> print_string "Green"
| Blue -> print_string "Blue"
</PRE>
The syntax extension will be defined in the following file
``<CODE>pa_type.ml</CODE>''. As a beginning, let us just see how we insert
the grammar rule. The function ``<CODE>gen_print_funs</CODE>'' generating
the printer functions just generates a phony statement:
<PRE>
#load "pa_extend.cmo";;
#load "q_MLast.cmo";;
let gen_print_funs loc tdl =
<:str_item< not yet implemented >>
let _ =
EXTEND
Pcaml.str_item:
[ [ "type"; tdl = LIST1 Pcaml.type_declaration SEP "and" ->
let si1 = <:str_item< type $list:tdl$ >> in
let si2 = gen_print_funs loc tdl in
<:str_item< declare $si1$; $si2$; end >> ] ]
;
END
</PRE>
Remark the ``<CODE>declare</CODE>'' statement in the ``<CODE>str_item</CODE>''
syntax tree at the end of this file, destinated to group two structure
items together: 1/ the type definition 2/ the printer.<BR>
<BR>
This file can be compiled like this:
<PRE>
$ ocamlc -pp camlp4o -I +camlp4 -c pa_type.ml
</PRE>
We can test the example file, ``<CODE>col.ml</CODE>'', but not yet with the
compiler, since it would generate semantic error because of the ``not
yet implemented'' statement. Let us test it therefore with a pretty
printer:
<PRE>
$ camlp4o ./pa_type.cmo pr_o.cmo col.ml
<W> Grammar extension: in [str_item], some rule has been masked
type colour =
Red
| Green
| Blue
let _ = not yet implemented
</PRE>
See the extra generated statement ``not yet implemented''. You remark,
also, that there is a warning in the beginning: it means that the
syntax rule we added in <CODE>str_item</CODE> was already present in the
grammar we used.<BR>
<BR>
To avoid such a warning message, the solution is to add, before the
<CODE>EXTEND</CODE> statement, a <CODE>DELETE_RULE</CODE> statement:
<PRE>
DELETE_RULE
Pcaml.str_item: "type"; LIST1 Pcaml.type_declaration SEP "and"
END;
</PRE>
Let us attack now the function <CODE>gen_print_funcs</CODE>. It receives a
list (since the ``<CODE>type</CODE>'' declaration can define several types,
possibly mutually recursive) of types definitions. We know that we
have to generate a definition, recursive, with as many printing
functions as types. The following function,
<CODE>gen_one_type_print_fun</CODE>, will generate the printer for one type
definition. For the moment, the body is a ``not yet implemented''
statement:
<PRE>
let fun_name n = "print_" ^ n
let gen_one_print_fun loc ((loc, n), tpl, tk, cl) =
<:patt< $lid:fun_name n$ >>, <:expr< not yet implemented >>
let gen_print_funs loc tdl =
let pel = List.map (gen_one_print_fun loc) tdl in
<:str_item< value rec $list:pel$ >>
</PRE>
Recompile the syntax expander file with these functions and test with
``<CODE>col.ml</CODE>'': you can see a function named ``<CODE>print_colour</CODE>''.<BR>
<BR>
Let use improve now ``<CODE>gen_one_print_fun</CODE>''. It has to generate a
let binding definition, composed of the couple of a pattern (the name
of the function) and an expression. Our function receives as parameter
a type definition which is a t-uple of 4 values: 1/ the type name
(with his location), 2/ the list of its possible parameters, 3/ the
type kind (a type, actually) and 4/ a list of possible constraints.<BR>
<BR>
In a first version, we are going to ignore the type parameters
``<CODE>tpl</CODE>'': we see later how they intervene in the generated
function and our code will work, for the moment, only for monomorphic
types.<BR>
<BR>
We limit also to the ``sum'' types (i.e. types with constructors); for
other types kinds, we shall generate a function which fails.<BR>
<BR>
We added the function ``<CODE>gen_print_sum</CODE>'' which treats a sum type
by generating a match association for each constructor (function
``<CODE>gen_print_cons</CODE>'') and building the function with the
resulting list.<BR>
<BR>
That function ``<CODE>gen_print_cons</CODE>'' gets a constructor definition,
i.e. a tuple with: 1/ a location, 2/ a string (the constructor name)
and 3/ a list of types parameters (ctyp list). We ignore for the
moments the constructors parameters. The function
``<CODE>gen_print_cons_patt</CODE>'' generates the pattern part of the case,
and ``<CODE>gen_print_cons_expr</CODE>'' the expression part of the
function, the print statement:<BR>
<BR>
Here is a first (but complete) version of our syntax extension (file
``<CODE>pa_type.ml</CODE>''):
<PRE>
#load "pa_extend.cmo";;
#load "q_MLast.cmo";;
let fun_name n = "print_" ^ n
let gen_print_cons_patt loc c tl =
<:patt< $uid:c$ >>
let gen_print_cons_expr loc c tl =
<:expr< print_string $str:c$ >>
let gen_print_cons (loc, c, tl) =
let p = gen_print_cons_patt loc c tl in
let e = gen_print_cons_expr loc c tl in
p, None, e
let gen_print_sum loc cdl =
let pwel = List.map gen_print_cons cdl in
<:expr< fun [ $list:pwel$ ] >>
let gen_one_print_fun loc ((loc, n), tpl, tk, cl) =
let body =
match tk with
<:ctyp< [ $list:cdl$ ] >> -> gen_print_sum loc cdl
| _ -> <:expr< fun _ -> failwith $str:fun_name n$ >>
in
<:patt< $lid:fun_name n$ >>, body
let gen_print_funs loc tdl =
let pel = List.map (gen_one_print_fun loc) tdl in
<:str_item< value rec $list:pel$ >>
let _ =
DELETE_RULE
Pcaml.str_item: "type"; LIST1 Pcaml.type_declaration SEP "and"
END;
EXTEND
Pcaml.str_item:
[ [ "type"; tdl = LIST1 Pcaml.type_declaration SEP "and" ->
let si1 = <:str_item< type $list:tdl$ >> in
let si2 = gen_print_funs loc tdl in
<:str_item< declare $si1$; $si2$; end >> ] ]
;
END
</PRE>
We can recompile this version, and test on the example file
``<CODE>col.ml</CODE>'' by pretty printing the result:
<PRE>
$ ocamlc -pp camlp4o -I +camlp4 -c pa_type.ml
$ camlp4o ./pa_type.cmo pr_o.cmo col.ml
type colour =
Red
| Green
| Blue
let rec print_colour =
function
Red -> print_string "Red"
| Green -> print_string "Green"
| Blue -> print_string "Blue"
</PRE>
It is what we wanted! This can be used, now, directly with the
compiler without the pretty printing phase:
<PRE>
$ ocamlc -pp "camlp4o ./pa_type.cmo" -c col.ml
</PRE>
We could also add the directive ``<CODE>#load "./pa_type.cmo";;</CODE>'' in
the beginning of ``<CODE>col.ml</CODE>'' and just compile with:
<PRE>
$ ocamlc -pp camlp4o -c col.ml
</PRE>
but it is not a good idea, since we may want to use the same source
with the preprocessing or without it.<BR>
<BR>
<TABLE CELLPADDING=0 CELLSPACING=0 WIDTH="100%">
<TR><TD BGCOLOR="#7fff7f"><DIV ALIGN=center><TABLE>
<TR><TD><A NAME="htoc63"><B><FONT SIZE=4>7.5.2</FONT></B></A></TD>
<TD WIDTH="100%" ALIGN=center><B><FONT SIZE=4>Second version: constructors with parameters</FONT></B></TD>
</TR></TABLE></DIV></TD>
</TR></TABLE><BR>
Let us add the case of sum types having constructors with
parameters. Our example for testing that will be the definition of
lambda terms of section <A HREF="tutorial004.html#lambda terms">4.7</A>. File ``<CODE>term.ml</CODE>'':
<PRE>
type term =
Var of string
| Func of string * term
| Appl of term * term
</PRE>
The desired result should be something like this:
<PRE>
type term =
Var of string
| Func of string * term
| Appl of term * term
let rec print_term =
function
Var x1 ->
print_string "Var"; print_string " ("; print_string x1;
print_string ")"
| Func (x1, x2) ->
print_string "Func"; print_string " ("; print_string x1
print_string ", "; print_term x2; print_string ")"
| Appl (x1, x2) ->
print_string "Appl"; print_string " ("; print_term x1
print_string ", "; print_term x2; print_string ")"
</PRE>
Like in the above desired result, we decide to name the parameters
with ``<CODE>x</CODE>'' followed by the number of the parameter, defined by
the following function ``<CODE>param_name</CODE>'':
<PRE>
let param_name cnt = "x" ^ string_of_int cnt
</PRE>
We need a function ``<CODE>list_mapi</CODE>'', which is like
``<CODE>List.map</CODE>'' but the function applied receives the number of
the list element as first parameter. This allows us to generate the
name of the constructor parameter while exploring the type list:
<PRE>
let list_mapi f l =
let rec loop cnt =
function
x :: l -> f cnt x :: loop (cnt + 1) l
| [] -> []
in
loop 1 l
</PRE>
The function ``<CODE>gen_print_cons_patt</CODE>'' which treats the pattern
part of the match association, is changed like this:
<PRE>
let gen_print_cons_patt loc c tl =
let pl =
list_mapi (fun n _ -> <:patt< $lid:param_name n$ >>)
tl
in
List.fold_left (fun p1 p2 -> <:patt< $p1$ $p2$ >>)
<:patt< $uid:c$ >> pl
</PRE>
With these changes, the pattern part of the generated function
``<CODE>print_term</CODE>'' is correct. Test it.<BR>
<BR>
For the expression part, we have to generate the call to the printers
for all the constructors parameters. We add a function
``<CODE>gen_print_type</CODE>'' to generate a printer associated with a
type. For the moment, it just generates it for a simple type name. For
other types, it generates a printer displaying an ellipsis:
<PRE>
let gen_print_type loc =
function
<:ctyp< $lid:s$ >> -> <:expr< $lid:fun_name s$ >>
| _ -> <:expr< fun _ -> print_string "..." >>
</PRE>
We need also a function which generates the call to this printer
function with the constructor parameter:
<PRE>
let gen_call loc n f = <:expr< $f$ $lid:param_name n$ >>
</PRE>
and a function adding the extra syntax: spaces, parentheses and
commas:
<PRE>
let gen_print_con_extra_syntax loc el =
let rec loop =
function
[] | [_] as e -> e
| e :: el -> e :: <:expr< print_string ", " >> :: loop el
in
<:expr< print_string " (" >> :: loop el @
[<:expr< print_string ")" >>]
</PRE>
Now, we can change the function ``<CODE>gen_print_cons_expr</CODE>'' using
all these functions:
<PRE>
let gen_print_cons_expr loc c tl =
let pr_con = <:expr< print_string $str:c$ >> in
match tl with
[] -> pr_con
| _ ->
let pr_params =
let type_funs = List.map (gen_print_type loc) tl in
list_mapi (gen_call loc) type_funs
in
let pr_all = gen_print_con_extra_syntax loc pr_params in
let el = pr_con :: pr_all in
<:expr< do { $list:el$ } >>
</PRE>
Grouping all these functions together, you can make a second version
of ``<CODE>pa_type.ml</CODE>'' which works with the file ``<CODE>term.ml</CODE>''.
Test it! Try it also with your own programs having sum type definitions.<BR>
<BR>
<TABLE CELLPADDING=0 CELLSPACING=0 WIDTH="100%">
<TR><TD BGCOLOR="#7fff7f"><DIV ALIGN=center><TABLE>
<TR><TD><A NAME="htoc64"><B><FONT SIZE=4>7.5.3</FONT></B></A></TD>
<TD WIDTH="100%" ALIGN=center><B><FONT SIZE=4>Third version: polymorphic types</FONT></B></TD>
</TR></TABLE></DIV></TD>
</TR></TABLE><BR>
This time, we are going to generate the good code for polymorphic
types, i.e. types defined with types variables. Our example will be
the definition of the type ``<CODE>mlist</CODE>'' like this. File
``<CODE>mlist.ml</CODE>'':
<PRE>
type 'a mlist = Nil | Cons of 'a * 'a mlist
</PRE>
The printer of such a type will receive as parameter the print
functions of the instantiated type. As many as the type has type
variables. We can then call ``<CODE>print_mlist</CODE>
<CODE>print_int</CODE>'' for an ``<CODE>int mlist</CODE>'', ``<CODE>print_mlist</CODE>
<CODE>print_string</CODE>'' for a ``<CODE>string mlist</CODE>'' and so on.<BR>
<BR>
The desired result for the type ``<CODE>mlist</CODE>'' is:
<PRE>
type 'a mlist = Nil | Cons of 'a * 'a mlist
let rec print_mlist pr_a =
function
Nil -> print_string "Nil"
| Cons (x1, x2) ->
print_string "Cons"; print_string " ("; pr_a x1;
print_string ", "; print_mlist pr_a x2; print_string ")"
</PRE>
The name of the printer function for a type variable will be
``<CODE>pr_</CODE>'' followed by the type variable name:
<PRE>
let fun_param_name n = "pr_" ^ n
</PRE>
To add the function parameters to the printer definition (``<CODE>let</CODE>
<CODE>print_mlist</CODE> <CODE>pr_a</CODE> <CODE>= ...</CODE>'' in our example), we
change our function ``<CODE>gen_one_print_func</CODE>'' by inserting them in
the body of the function, just before its result, like this:
<PRE>
let body =
List.fold_right
(fun (v, _) e ->
<:expr< fun $lid:fun_param_name v$ -> $e$ >>)
tpl body
in
</PRE>
For the printing of a type variable (``<CODE>pr_a</CODE> <CODE>x1</CODE>'' in our
example), we add the case of type variables in our function
``<CODE>gen_print_type</CODE>'':
<PRE>
| <:ctyp< '$s$ >> -> <:expr< $lid:fun_param_name s$ >>
</PRE>
And to generate the printing of types with parameters (we have a
recursive case in our example: ``<CODE>print_mlist</CODE> <CODE>pr_a</CODE>
<CODE>x2</CODE>'' for the constructor parameter of type ``<CODE>'a</CODE>
<CODE>mlist</CODE>''), we add, in the same function, the case of types
applications. But since it needs a recursive call, the function
``<CODE>gen_print_type</CODE>'' is rewritten with a internal recursive
definition.<BR>
<BR>
Here is the complete version:
<PRE>
#load "pa_extend.cmo";;
#load "q_MLast.cmo";;
let fun_name n = "print_" ^ n
let fun_param_name n = "pr_" ^ n
let param_name cnt = "x" ^ string_of_int cnt
let list_mapi f l =
let rec loop cnt =
function
x :: l -> f cnt x :: loop (cnt + 1) l
| [] -> []
in
loop 1 l
let gen_print_type loc t =
let rec eot =
function
<:ctyp< $t1$ $t2$ >> -> <:expr< $eot t1$ $eot t2$ >>
| <:ctyp< $lid:s$ >> -> <:expr< $lid:fun_name s$ >>
| <:ctyp< '$s$ >> -> <:expr< $lid:fun_param_name s$ >>
| _ -> <:expr< fun _ -> print_string "..." >>
in
eot t
let gen_call loc n f = <:expr< $f$ $lid:param_name n$ >>
let gen_print_cons_patt loc c tl =
let pl =
list_mapi (fun n _ -> <:patt< $lid:param_name n$ >>)
tl
in
List.fold_left (fun p1 p2 -> <:patt< $p1$ $p2$ >>)
<:patt< $uid:c$ >> pl
let gen_print_con_extra_syntax loc el =
let rec loop =
function
[] | [_] as e -> e
| e :: el -> e :: <:expr< print_string ", " >> :: loop el
in
<:expr< print_string " (" >> :: loop el @
[<:expr< print_string ")" >>]
let gen_print_cons_expr loc c tl =
let pr_con = <:expr< print_string $str:c$ >> in
match tl with
[] -> pr_con
| _ ->
let pr_params =
let type_funs = List.map (gen_print_type loc) tl in
list_mapi (gen_call loc) type_funs
in
let pr_all = gen_print_con_extra_syntax loc pr_params in
let el = pr_con :: pr_all in
<:expr< do { $list:el$ } >>
let gen_print_cons (loc, c, tl) =
let p = gen_print_cons_patt loc c tl in
let e = gen_print_cons_expr loc c tl in
p, None, e
let gen_print_sum loc cdl =
let pwel = List.map gen_print_cons cdl in
<:expr< fun [ $list:pwel$ ] >>
let gen_one_print_fun loc ((loc, n), tpl, tk, cl) =
let body =
match tk with
<:ctyp< [ $list:cdl$ ] >> -> gen_print_sum loc cdl
| _ -> <:expr< fun _ -> failwith $str:fun_name n$ >>
in
let body =
List.fold_right
(fun (v, _) e ->
<:expr< fun $lid:fun_param_name v$ -> $e$ >>)
tpl body
in
<:patt< $lid:fun_name n$ >>, body
let gen_print_funs loc tdl =
let pel = List.map (gen_one_print_fun loc) tdl in
<:str_item< value rec $list:pel$ >>
let _ =
DELETE_RULE
Pcaml.str_item: "type"; LIST1 Pcaml.type_declaration SEP "and"
END;
EXTEND
Pcaml.str_item:
[ [ "type"; tdl = LIST1 Pcaml.type_declaration SEP "and" ->
let si1 = <:str_item< type $list:tdl$ >> in
let si2 = gen_print_funs loc tdl in
<:str_item< declare $si1$; $si2$; end >> ] ]
;
END
</PRE>
<TABLE CELLPADDING=0 CELLSPACING=0 WIDTH="100%">
<TR><TD BGCOLOR="#7fff7f"><DIV ALIGN=center><TABLE>
<TR><TD><A NAME="htoc65"><B><FONT SIZE=4>7.5.4</FONT></B></A></TD>
<TD WIDTH="100%" ALIGN=center><B><FONT SIZE=4>Improvements</FONT></B></TD>
</TR></TABLE></DIV></TD>
</TR></TABLE><BR>
It is possible to add, the same way, the other kind of types: record
types, abstract types, and so on.<BR>
<BR>
Another interesting improvement is to generate, instead of
``<CODE>print_string</CODE>'' statements, functions of the
``<CODE>Format</CODE>'' library, with pretty printing boxes.<BR>
<BR>
Further, that version can be still improved, by generating only one
``<CODE>Format.fprintf</CODE>'' by printing case (instead of a sequence of
printing statements), using the very useful abbreviations provided by
that library by the prefixes ``<CODE>@</CODE>'' inside the format strings.
<BR>
<BR>
<I><FONT COLOR=maroon>
<br>
For remarks about Camlp4, write to:
<img src="http://cristal.inria.fr/~ddr/images/email.jpg" alt=email align=top>
</FONT></I><HR>
<A HREF="tutorial006.html"><IMG SRC ="previous_motif.gif" ALT="Previous"></A>
<A HREF="index.html"><IMG SRC ="contents_motif.gif" ALT="Up"></A>
<A HREF="tutorial008.html"><IMG SRC ="next_motif.gif" ALT="Next"></A>
</BODY>
</HTML>
|