File: List.html

package info (click to toggle)
ocaml-doc 3.09-1
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 10,428 kB
  • ctags: 4,963
  • sloc: ml: 9,244; makefile: 2,413; ansic: 122; sh: 49; asm: 17
file content (341 lines) | stat: -rw-r--r-- 24,205 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
<html>
<head>
<link rel="stylesheet" href="style.css" type="text/css">
<link rel="Start" href="index.html">
<link rel="previous" href="Lexing.html">
<link rel="next" href="ListLabels.html">
<link rel="Up" href="index.html">
<link title="Index of types" rel=Appendix href="index_types.html">
<link title="Index of exceptions" rel=Appendix href="index_exceptions.html">
<link title="Index of values" rel=Appendix href="index_values.html">
<link title="Index of modules" rel=Appendix href="index_modules.html">
<link title="Index of module types" rel=Appendix href="index_module_types.html">
<link title="Arg" rel="Chapter" href="Arg.html">
<link title="Arith_status" rel="Chapter" href="Arith_status.html">
<link title="Array" rel="Chapter" href="Array.html">
<link title="ArrayLabels" rel="Chapter" href="ArrayLabels.html">
<link title="Big_int" rel="Chapter" href="Big_int.html">
<link title="Bigarray" rel="Chapter" href="Bigarray.html">
<link title="Buffer" rel="Chapter" href="Buffer.html">
<link title="Callback" rel="Chapter" href="Callback.html">
<link title="CamlinternalMod" rel="Chapter" href="CamlinternalMod.html">
<link title="CamlinternalOO" rel="Chapter" href="CamlinternalOO.html">
<link title="Char" rel="Chapter" href="Char.html">
<link title="Complex" rel="Chapter" href="Complex.html">
<link title="Condition" rel="Chapter" href="Condition.html">
<link title="Dbm" rel="Chapter" href="Dbm.html">
<link title="Digest" rel="Chapter" href="Digest.html">
<link title="Dynlink" rel="Chapter" href="Dynlink.html">
<link title="Event" rel="Chapter" href="Event.html">
<link title="Filename" rel="Chapter" href="Filename.html">
<link title="Format" rel="Chapter" href="Format.html">
<link title="Gc" rel="Chapter" href="Gc.html">
<link title="Genlex" rel="Chapter" href="Genlex.html">
<link title="Graphics" rel="Chapter" href="Graphics.html">
<link title="GraphicsX11" rel="Chapter" href="GraphicsX11.html">
<link title="Hashtbl" rel="Chapter" href="Hashtbl.html">
<link title="Int32" rel="Chapter" href="Int32.html">
<link title="Int64" rel="Chapter" href="Int64.html">
<link title="Lazy" rel="Chapter" href="Lazy.html">
<link title="Lexing" rel="Chapter" href="Lexing.html">
<link title="List" rel="Chapter" href="List.html">
<link title="ListLabels" rel="Chapter" href="ListLabels.html">
<link title="Map" rel="Chapter" href="Map.html">
<link title="Marshal" rel="Chapter" href="Marshal.html">
<link title="MoreLabels" rel="Chapter" href="MoreLabels.html">
<link title="Mutex" rel="Chapter" href="Mutex.html">
<link title="Nativeint" rel="Chapter" href="Nativeint.html">
<link title="Num" rel="Chapter" href="Num.html">
<link title="Obj" rel="Chapter" href="Obj.html">
<link title="Oo" rel="Chapter" href="Oo.html">
<link title="Parsing" rel="Chapter" href="Parsing.html">
<link title="Pervasives" rel="Chapter" href="Pervasives.html">
<link title="Printexc" rel="Chapter" href="Printexc.html">
<link title="Printf" rel="Chapter" href="Printf.html">
<link title="Queue" rel="Chapter" href="Queue.html">
<link title="Random" rel="Chapter" href="Random.html">
<link title="Scanf" rel="Chapter" href="Scanf.html">
<link title="Set" rel="Chapter" href="Set.html">
<link title="Sort" rel="Chapter" href="Sort.html">
<link title="Stack" rel="Chapter" href="Stack.html">
<link title="StdLabels" rel="Chapter" href="StdLabels.html">
<link title="Str" rel="Chapter" href="Str.html">
<link title="Stream" rel="Chapter" href="Stream.html">
<link title="String" rel="Chapter" href="String.html">
<link title="StringLabels" rel="Chapter" href="StringLabels.html">
<link title="Sys" rel="Chapter" href="Sys.html">
<link title="Thread" rel="Chapter" href="Thread.html">
<link title="ThreadUnix" rel="Chapter" href="ThreadUnix.html">
<link title="Unix" rel="Chapter" href="Unix.html">
<link title="UnixLabels" rel="Chapter" href="UnixLabels.html">
<link title="Weak" rel="Chapter" href="Weak.html"><link title="Iterators" rel="Section" href="#6_Iterators">
<link title="Iterators on two lists" rel="Section" href="#6_Iteratorsontwolists">
<link title="List scanning" rel="Section" href="#6_Listscanning">
<link title="List searching" rel="Section" href="#6_Listsearching">
<link title="Association lists" rel="Section" href="#6_Associationlists">
<link title="Lists of pairs" rel="Section" href="#6_Listsofpairs">
<link title="Sorting" rel="Section" href="#6_Sorting">
<title>List</title>
</head>
<body>
<div class="navbar"><a href="Lexing.html">Previous</a>
&nbsp;<a href="index.html">Up</a>
&nbsp;<a href="ListLabels.html">Next</a>
</div>
<center><h1>Module <a href="type_List.html">List</a></h1></center>
<br>
<pre><span class="keyword">module</span> List: <code class="code"><span class="keyword">sig</span></code> <a href="List.html">..</a> <code class="code"><span class="keyword">end</span></code></pre>List operations.
<p>

   Some functions are flagged as not tail-recursive.  A tail-recursive
   function uses constant stack space, while a non-tail-recursive function
   uses stack space proportional to the length of its list argument, which
   can be a problem with very long lists.  When the function takes several
   list arguments, an approximate formula giving stack usage (in some
   unspecified constant unit) is shown in parentheses.
<p>

   The above considerations can usually be ignored if your lists are not
   longer than about 10000 elements.<br>
<hr width="100%">
<pre><span class="keyword">val</span> <a name="VALlength"></a>length : <code class="type">'a list -> int</code></pre><div class="info">
Return the length (number of elements) of the given list.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALhd"></a>hd : <code class="type">'a list -> 'a</code></pre><div class="info">
Return the first element of the given list. Raise
   <code class="code"><span class="constructor">Failure</span> <span class="string">"hd"</span></code> if the list is empty.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALtl"></a>tl : <code class="type">'a list -> 'a list</code></pre><div class="info">
Return the given list without its first element. Raise
   <code class="code"><span class="constructor">Failure</span> <span class="string">"tl"</span></code> if the list is empty.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALnth"></a>nth : <code class="type">'a list -> int -> 'a</code></pre><div class="info">
Return the n-th element of the given list.
   The first element (head of the list) is at position 0.
   Raise <code class="code"><span class="constructor">Failure</span> <span class="string">"nth"</span></code> if the list is too short.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALrev"></a>rev : <code class="type">'a list -> 'a list</code></pre><div class="info">
List reversal.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALappend"></a>append : <code class="type">'a list -> 'a list -> 'a list</code></pre><div class="info">
Catenate two lists.  Same function as the infix operator <code class="code">@</code>.
   Not tail-recursive (length of the first argument).  The <code class="code">@</code>
   operator is not tail-recursive either.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALrev_append"></a>rev_append : <code class="type">'a list -> 'a list -> 'a list</code></pre><div class="info">
<code class="code"><span class="constructor">List</span>.rev_append l1 l2</code> reverses <code class="code">l1</code> and concatenates it to <code class="code">l2</code>.
   This is equivalent to <a href="List.html#VALrev"><code class="code"><span class="constructor">List</span>.rev</code></a><code class="code"> l1 @ l2</code>, but <code class="code">rev_append</code> is
   tail-recursive and more efficient.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALconcat"></a>concat : <code class="type">'a list list -> 'a list</code></pre><div class="info">
Concatenate a list of lists.  The elements of the argument are all
   concatenated together (in the same order) to give the result.
   Not tail-recursive
   (length of the argument + length of the longest sub-list).<br>
</div>
<pre><span class="keyword">val</span> <a name="VALflatten"></a>flatten : <code class="type">'a list list -> 'a list</code></pre><div class="info">
Same as <code class="code">concat</code>.  Not tail-recursive
   (length of the argument + length of the longest sub-list).<br>
</div>
<br>
<a name="6_Iterators"></a>
<h6>Iterators</h6><br>
<pre><span class="keyword">val</span> <a name="VALiter"></a>iter : <code class="type">('a -> unit) -> 'a list -> unit</code></pre><div class="info">
<code class="code"><span class="constructor">List</span>.iter f [a1; ...; an]</code> applies function <code class="code">f</code> in turn to
   <code class="code">a1; ...; an</code>. It is equivalent to
   <code class="code"><span class="keyword">begin</span> f a1; f a2; ...; f an; () <span class="keyword">end</span></code>.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALmap"></a>map : <code class="type">('a -> 'b) -> 'a list -> 'b list</code></pre><div class="info">
<code class="code"><span class="constructor">List</span>.map f [a1; ...; an]</code> applies function <code class="code">f</code> to <code class="code">a1, ..., an</code>,
   and builds the list <code class="code">[f a1; ...; f an]</code>
   with the results returned by <code class="code">f</code>.  Not tail-recursive.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALrev_map"></a>rev_map : <code class="type">('a -> 'b) -> 'a list -> 'b list</code></pre><div class="info">
<code class="code"><span class="constructor">List</span>.rev_map f l</code> gives the same result as
   <a href="List.html#VALrev"><code class="code"><span class="constructor">List</span>.rev</code></a><code class="code"> (</code><a href="List.html#VALmap"><code class="code"><span class="constructor">List</span>.map</code></a><code class="code"> f l)</code>, but is tail-recursive and
   more efficient.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALfold_left"></a>fold_left : <code class="type">('a -> 'b -> 'a) -> 'a -> 'b list -> 'a</code></pre><div class="info">
<code class="code"><span class="constructor">List</span>.fold_left f a [b1; ...; bn]</code> is
   <code class="code">f (... (f (f a b1) b2) ...) bn</code>.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALfold_right"></a>fold_right : <code class="type">('a -> 'b -> 'b) -> 'a list -> 'b -> 'b</code></pre><div class="info">
<code class="code"><span class="constructor">List</span>.fold_right f [a1; ...; an] b</code> is
   <code class="code">f a1 (f a2 (... (f an b) ...))</code>.  Not tail-recursive.<br>
</div>
<br>
<a name="6_Iteratorsontwolists"></a>
<h6>Iterators on two lists</h6><br>
<pre><span class="keyword">val</span> <a name="VALiter2"></a>iter2 : <code class="type">('a -> 'b -> unit) -> 'a list -> 'b list -> unit</code></pre><div class="info">
<code class="code"><span class="constructor">List</span>.iter2 f [a1; ...; an] [b1; ...; bn]</code> calls in turn
   <code class="code">f a1 b1; ...; f an bn</code>.
   Raise <code class="code"><span class="constructor">Invalid_argument</span></code> if the two lists have
   different lengths.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALmap2"></a>map2 : <code class="type">('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list</code></pre><div class="info">
<code class="code"><span class="constructor">List</span>.map2 f [a1; ...; an] [b1; ...; bn]</code> is
   <code class="code">[f a1 b1; ...; f an bn]</code>.
   Raise <code class="code"><span class="constructor">Invalid_argument</span></code> if the two lists have
   different lengths.  Not tail-recursive.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALrev_map2"></a>rev_map2 : <code class="type">('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list</code></pre><div class="info">
<code class="code"><span class="constructor">List</span>.rev_map2 f l1 l2</code> gives the same result as
   <a href="List.html#VALrev"><code class="code"><span class="constructor">List</span>.rev</code></a><code class="code"> (</code><a href="List.html#VALmap2"><code class="code"><span class="constructor">List</span>.map2</code></a><code class="code"> f l1 l2)</code>, but is tail-recursive and
   more efficient.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALfold_left2"></a>fold_left2 : <code class="type">('a -> 'b -> 'c -> 'a) -> 'a -> 'b list -> 'c list -> 'a</code></pre><div class="info">
<code class="code"><span class="constructor">List</span>.fold_left2 f a [b1; ...; bn] [c1; ...; cn]</code> is
   <code class="code">f (... (f (f a b1 c1) b2 c2) ...) bn cn</code>.
   Raise <code class="code"><span class="constructor">Invalid_argument</span></code> if the two lists have
   different lengths.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALfold_right2"></a>fold_right2 : <code class="type">('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c</code></pre><div class="info">
<code class="code"><span class="constructor">List</span>.fold_right2 f [a1; ...; an] [b1; ...; bn] c</code> is
   <code class="code">f a1 b1 (f a2 b2 (... (f an bn c) ...))</code>.
   Raise <code class="code"><span class="constructor">Invalid_argument</span></code> if the two lists have
   different lengths.  Not tail-recursive.<br>
</div>
<br>
<a name="6_Listscanning"></a>
<h6>List scanning</h6><br>
<pre><span class="keyword">val</span> <a name="VALfor_all"></a>for_all : <code class="type">('a -> bool) -> 'a list -> bool</code></pre><div class="info">
<code class="code">for_all p [a1; ...; an]</code> checks if all elements of the list
   satisfy the predicate <code class="code">p</code>. That is, it returns
   <code class="code">(p a1) <span class="keywordsign">&amp;&amp;</span> (p a2) <span class="keywordsign">&amp;&amp;</span> ... <span class="keywordsign">&amp;&amp;</span> (p an)</code>.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALexists"></a>exists : <code class="type">('a -> bool) -> 'a list -> bool</code></pre><div class="info">
<code class="code">exists p [a1; ...; an]</code> checks if at least one element of
   the list satisfies the predicate <code class="code">p</code>. That is, it returns
   <code class="code">(p a1) <span class="keywordsign">||</span> (p a2) <span class="keywordsign">||</span> ... <span class="keywordsign">||</span> (p an)</code>.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALfor_all2"></a>for_all2 : <code class="type">('a -> 'b -> bool) -> 'a list -> 'b list -> bool</code></pre><div class="info">
Same as <a href="List.html#VALfor_all"><code class="code"><span class="constructor">List</span>.for_all</code></a>, but for a two-argument predicate.
   Raise <code class="code"><span class="constructor">Invalid_argument</span></code> if the two lists have
   different lengths.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALexists2"></a>exists2 : <code class="type">('a -> 'b -> bool) -> 'a list -> 'b list -> bool</code></pre><div class="info">
Same as <a href="List.html#VALexists"><code class="code"><span class="constructor">List</span>.exists</code></a>, but for a two-argument predicate.
   Raise <code class="code"><span class="constructor">Invalid_argument</span></code> if the two lists have
   different lengths.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALmem"></a>mem : <code class="type">'a -> 'a list -> bool</code></pre><div class="info">
<code class="code">mem a l</code> is true if and only if <code class="code">a</code> is equal
   to an element of <code class="code">l</code>.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALmemq"></a>memq : <code class="type">'a -> 'a list -> bool</code></pre><div class="info">
Same as <a href="List.html#VALmem"><code class="code"><span class="constructor">List</span>.mem</code></a>, but uses physical equality instead of structural
   equality to compare list elements.<br>
</div>
<br>
<a name="6_Listsearching"></a>
<h6>List searching</h6><br>
<pre><span class="keyword">val</span> <a name="VALfind"></a>find : <code class="type">('a -> bool) -> 'a list -> 'a</code></pre><div class="info">
<code class="code">find p l</code> returns the first element of the list <code class="code">l</code>
   that satisfies the predicate <code class="code">p</code>.
   Raise <code class="code"><span class="constructor">Not_found</span></code> if there is no value that satisfies <code class="code">p</code> in the
   list <code class="code">l</code>.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALfilter"></a>filter : <code class="type">('a -> bool) -> 'a list -> 'a list</code></pre><div class="info">
<code class="code">filter p l</code> returns all the elements of the list <code class="code">l</code>
   that satisfy the predicate <code class="code">p</code>.  The order of the elements
   in the input list is preserved.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALfind_all"></a>find_all : <code class="type">('a -> bool) -> 'a list -> 'a list</code></pre><div class="info">
<code class="code">find_all</code> is another name for <a href="List.html#VALfilter"><code class="code"><span class="constructor">List</span>.filter</code></a>.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALpartition"></a>partition : <code class="type">('a -> bool) -> 'a list -> 'a list * 'a list</code></pre><div class="info">
<code class="code">partition p l</code> returns a pair of lists <code class="code">(l1, l2)</code>, where
   <code class="code">l1</code> is the list of all the elements of <code class="code">l</code> that
   satisfy the predicate <code class="code">p</code>, and <code class="code">l2</code> is the list of all the
   elements of <code class="code">l</code> that do not satisfy <code class="code">p</code>.
   The order of the elements in the input list is preserved.<br>
</div>
<br>
<a name="6_Associationlists"></a>
<h6>Association lists</h6><br>
<pre><span class="keyword">val</span> <a name="VALassoc"></a>assoc : <code class="type">'a -> ('a * 'b) list -> 'b</code></pre><div class="info">
<code class="code">assoc a l</code> returns the value associated with key <code class="code">a</code> in the list of
   pairs <code class="code">l</code>. That is,
   <code class="code">assoc a [ ...; (a,b); ...] = b</code>
   if <code class="code">(a,b)</code> is the leftmost binding of <code class="code">a</code> in list <code class="code">l</code>.
   Raise <code class="code"><span class="constructor">Not_found</span></code> if there is no value associated with <code class="code">a</code> in the
   list <code class="code">l</code>.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALassq"></a>assq : <code class="type">'a -> ('a * 'b) list -> 'b</code></pre><div class="info">
Same as <a href="List.html#VALassoc"><code class="code"><span class="constructor">List</span>.assoc</code></a>, but uses physical equality instead of structural
   equality to compare keys.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALmem_assoc"></a>mem_assoc : <code class="type">'a -> ('a * 'b) list -> bool</code></pre><div class="info">
Same as <a href="List.html#VALassoc"><code class="code"><span class="constructor">List</span>.assoc</code></a>, but simply return true if a binding exists,
   and false if no bindings exist for the given key.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALmem_assq"></a>mem_assq : <code class="type">'a -> ('a * 'b) list -> bool</code></pre><div class="info">
Same as <a href="List.html#VALmem_assoc"><code class="code"><span class="constructor">List</span>.mem_assoc</code></a>, but uses physical equality instead of
   structural equality to compare keys.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALremove_assoc"></a>remove_assoc : <code class="type">'a -> ('a * 'b) list -> ('a * 'b) list</code></pre><div class="info">
<code class="code">remove_assoc a l</code> returns the list of
   pairs <code class="code">l</code> without the first pair with key <code class="code">a</code>, if any.
   Not tail-recursive.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALremove_assq"></a>remove_assq : <code class="type">'a -> ('a * 'b) list -> ('a * 'b) list</code></pre><div class="info">
Same as <a href="List.html#VALremove_assoc"><code class="code"><span class="constructor">List</span>.remove_assoc</code></a>, but uses physical equality instead
   of structural equality to compare keys.  Not tail-recursive.<br>
</div>
<br>
<a name="6_Listsofpairs"></a>
<h6>Lists of pairs</h6><br>
<pre><span class="keyword">val</span> <a name="VALsplit"></a>split : <code class="type">('a * 'b) list -> 'a list * 'b list</code></pre><div class="info">
Transform a list of pairs into a pair of lists:
   <code class="code">split [(a1,b1); ...; (an,bn)]</code> is <code class="code">([a1; ...; an], [b1; ...; bn])</code>.
   Not tail-recursive.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALcombine"></a>combine : <code class="type">'a list -> 'b list -> ('a * 'b) list</code></pre><div class="info">
Transform a pair of lists into a list of pairs:
   <code class="code">combine [a1; ...; an] [b1; ...; bn]</code> is
   <code class="code">[(a1,b1); ...; (an,bn)]</code>.
   Raise <code class="code"><span class="constructor">Invalid_argument</span></code> if the two lists
   have different lengths.  Not tail-recursive.<br>
</div>
<br>
<a name="6_Sorting"></a>
<h6>Sorting</h6><br>
<pre><span class="keyword">val</span> <a name="VALsort"></a>sort : <code class="type">('a -> 'a -> int) -> 'a list -> 'a list</code></pre><div class="info">
Sort a list in increasing order according to a comparison
   function.  The comparison function must return 0 if its arguments
   compare as equal, a positive integer if the first is greater,
   and a negative integer if the first is smaller (see Array.sort for
   a complete specification).  For example,
   <a href="Pervasives.html#VALcompare"><code class="code">compare</code></a> is a suitable comparison function.
   The resulting list is sorted in increasing order.
   <code class="code"><span class="constructor">List</span>.sort</code> is guaranteed to run in constant heap space
   (in addition to the size of the result list) and logarithmic
   stack space.
<p>

   The current implementation uses Merge Sort. It runs in constant
   heap space and logarithmic stack space.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALstable_sort"></a>stable_sort : <code class="type">('a -> 'a -> int) -> 'a list -> 'a list</code></pre><div class="info">
Same as <a href="List.html#VALsort"><code class="code"><span class="constructor">List</span>.sort</code></a>, but the sorting algorithm is guaranteed to
   be stable (i.e. elements that compare equal are kept in their
   original order) .
<p>

   The current implementation uses Merge Sort. It runs in constant
   heap space and logarithmic stack space.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALfast_sort"></a>fast_sort : <code class="type">('a -> 'a -> int) -> 'a list -> 'a list</code></pre><div class="info">
Same as <a href="List.html#VALsort"><code class="code"><span class="constructor">List</span>.sort</code></a> or <a href="List.html#VALstable_sort"><code class="code"><span class="constructor">List</span>.stable_sort</code></a>, whichever is faster
    on typical input.<br>
</div>
<pre><span class="keyword">val</span> <a name="VALmerge"></a>merge : <code class="type">('a -> 'a -> int) -> 'a list -> 'a list -> 'a list</code></pre><div class="info">
Merge two lists:
    Assuming that <code class="code">l1</code> and <code class="code">l2</code> are sorted according to the
    comparison function <code class="code">cmp</code>, <code class="code">merge cmp l1 l2</code> will return a
    sorted list containting all the elements of <code class="code">l1</code> and <code class="code">l2</code>.
    If several elements compare equal, the elements of <code class="code">l1</code> will be
    before the elements of <code class="code">l2</code>.
    Not tail-recursive (sum of the lengths of the arguments).<br>
</div>
</body></html>