1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="hevea 1.08">
<LINK rel="stylesheet" type="text/css" href="manual.css">
<TITLE>
The module system
</TITLE>
</HEAD>
<BODY >
<A HREF="manual003.html"><IMG SRC ="previous_motif.gif" ALT="Previous"></A>
<A HREF="index.html"><IMG SRC ="contents_motif.gif" ALT="Up"></A>
<A HREF="manual005.html"><IMG SRC ="next_motif.gif" ALT="Next"></A>
<HR>
<H1 CLASS="chapter"><A NAME="htoc12">Chapter 2</A> The module system</H1> <A NAME="c:moduleexamples"></A>
This chapter introduces the module system of Objective Caml.<BR>
<BR>
<H2 CLASS="section"><A NAME="htoc13">2.1</A> Structures</H2>
A primary motivation for modules is to package together related
definitions (such as the definitions of a data type and associated
operations over that type) and enforce a consistent naming scheme for
these definitions. This avoids running out of names or accidentally
confusing names. Such a package is called a <EM>structure</EM> and
is introduced by the <TT>struct</TT>...<TT>end</TT> construct, which contains an
arbitrary sequence of definitions. The structure is usually given a
name with the <TT>module</TT> binding. Here is for instance a structure
packaging together a type of priority queues and their operations:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>module PrioQueue =
struct
type priority = int
type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue
let empty = Empty
let rec insert queue prio elt =
match queue with
Empty -> Node(prio, elt, Empty, Empty)
| Node(p, e, left, right) ->
if prio <= p
then Node(prio, elt, insert right p e, left)
else Node(p, e, insert right prio elt, left)
exception Queue_is_empty
let rec remove_top = function
Empty -> raise Queue_is_empty
| Node(prio, elt, left, Empty) -> left
| Node(prio, elt, Empty, right) -> right
| Node(prio, elt, (Node(lprio, lelt, _, _) as left),
(Node(rprio, relt, _, _) as right)) ->
if lprio <= rprio
then Node(lprio, lelt, remove_top left, right)
else Node(rprio, relt, left, remove_top right)
let extract = function
Empty -> raise Queue_is_empty
| Node(prio, elt, _, _) as queue -> (prio, elt, remove_top queue)
end;;
</FONT><FONT COLOR=maroon>module PrioQueue :
sig
type priority = int
type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue
val empty : 'a queue
val insert : 'a queue -> priority -> 'a -> 'a queue
exception Queue_is_empty
val remove_top : 'a queue -> 'a queue
val extract : 'a queue -> priority * 'a * 'a queue
end
</FONT></PRE>
Outside the structure, its components can be referred to using the
“dot notation”, that is, identifiers qualified by a structure name.
For instance, <TT>PrioQueue.insert</TT> in a value context is
the function <TT>insert</TT> defined inside the structure
<TT>PrioQueue</TT>. Similarly, <TT>PrioQueue.queue</TT> in a type context is the
type <TT>queue</TT> defined in <TT>PrioQueue</TT>.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>PrioQueue.insert PrioQueue.empty 1 "hello";;
</FONT><FONT COLOR=maroon>- : string PrioQueue.queue =
PrioQueue.Node (1, "hello", PrioQueue.Empty, PrioQueue.Empty)
</FONT></PRE>
<H2 CLASS="section"><A NAME="htoc14">2.2</A> Signatures</H2>
Signatures are interfaces for structures. A signature specifies
which components of a structure are accessible from the outside, and
with which type. It can be used to hide some components of a structure
(e.g. local function definitions) or export some components with a
restricted type. For instance, the signature below specifies the three
priority queue operations <TT>empty</TT>, <TT>insert</TT> and <TT>extract</TT>, but not the
auxiliary function <TT>remove_top</TT>. Similarly, it makes the <TT>queue</TT> type
abstract (by not providing its actual representation as a concrete type).
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>module type PRIOQUEUE =
sig
type priority = int (* still concrete *)
type 'a queue (* now abstract *)
val empty : 'a queue
val insert : 'a queue -> int -> 'a -> 'a queue
val extract : 'a queue -> int * 'a * 'a queue
exception Queue_is_empty
end;;
</FONT><FONT COLOR=maroon>module type PRIOQUEUE =
sig
type priority = int
type 'a queue
val empty : 'a queue
val insert : 'a queue -> int -> 'a -> 'a queue
val extract : 'a queue -> int * 'a * 'a queue
exception Queue_is_empty
end
</FONT></PRE>
Restricting the <TT>PrioQueue</TT> structure by this signature results in
another view of the <TT>PrioQueue</TT> structure where the <TT>remove_top</TT>
function is not accessible and the actual representation of priority
queues is hidden:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>module AbstractPrioQueue = (PrioQueue : PRIOQUEUE);;
</FONT><FONT COLOR=maroon>module AbstractPrioQueue : PRIOQUEUE
<FONT COLOR=black>#</FONT><FONT COLOR=blue><U>AbstractPrioQueue.remove_top</U>;;
</FONT>Unbound value AbstractPrioQueue.remove_top
<FONT COLOR=black>#</FONT><FONT COLOR=blue>AbstractPrioQueue.insert AbstractPrioQueue.empty 1 "hello";;
</FONT>- : string AbstractPrioQueue.queue = <abstr>
</FONT></PRE>
The restriction can also be performed during the definition of the
structure, as in
<PRE CLASS="verbatim">
module PrioQueue = (struct ... end : PRIOQUEUE);;
</PRE>An alternate syntax is provided for the above:
<PRE CLASS="verbatim">
module PrioQueue : PRIOQUEUE = struct ... end;;
</PRE>
<H2 CLASS="section"><A NAME="htoc15">2.3</A> Functors</H2>
Functors are “functions” from structures to structures. They are used to
express parameterized structures: a structure <I>A</I> parameterized by a
structure <I>B</I> is simply a functor <I>F</I> with a formal parameter
<I>B</I> (along with the expected signature for <I>B</I>) which returns
the actual structure <I>A</I> itself. The functor <I>F</I> can then be
applied to one or several implementations <I>B</I><SUB>1</SUB> ...<I>B<SUB>n</SUB></I>
of <I>B</I>, yielding the corresponding structures
<I>A</I><SUB>1</SUB> ...<I>A<SUB>n</SUB></I>.<BR>
<BR>
For instance, here is a structure implementing sets as sorted lists,
parameterized by a structure providing the type of the set elements
and an ordering function over this type (used to keep the sets
sorted):
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>type comparison = Less | Equal | Greater;;
</FONT><FONT COLOR=maroon>type comparison = Less | Equal | Greater
<FONT COLOR=black>#</FONT><FONT COLOR=blue>module type ORDERED_TYPE =
sig
type t
val compare: t -> t -> comparison
end;;
</FONT>module type ORDERED_TYPE = sig type t val compare : t -> t -> comparison end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>module Set =
functor (Elt: ORDERED_TYPE) ->
struct
type element = Elt.t
type set = element list
let empty = []
let rec add x s =
match s with
[] -> [x]
| hd::tl ->
match Elt.compare x hd with
Equal -> s (* x is already in s *)
| Less -> x :: s (* x is smaller than all elements of s *)
| Greater -> hd :: add x tl
let rec member x s =
match s with
[] -> false
| hd::tl ->
match Elt.compare x hd with
Equal -> true (* x belongs to s *)
| Less -> false (* x is smaller than all elements of s *)
| Greater -> member x tl
end;;
</FONT>module Set :
functor (Elt : ORDERED_TYPE) ->
sig
type element = Elt.t
type set = element list
val empty : 'a list
val add : Elt.t -> Elt.t list -> Elt.t list
val member : Elt.t -> Elt.t list -> bool
end
</FONT></PRE>
By applying the <TT>Set</TT> functor to a structure implementing an ordered
type, we obtain set operations for this type:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>module OrderedString =
struct
type t = string
let compare x y = if x = y then Equal else if x < y then Less else Greater
end;;
</FONT><FONT COLOR=maroon>module OrderedString :
sig type t = string val compare : 'a -> 'a -> comparison end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>module StringSet = Set(OrderedString);;
</FONT>module StringSet :
sig
type element = OrderedString.t
type set = element list
val empty : 'a list
val add : OrderedString.t -> OrderedString.t list -> OrderedString.t list
val member : OrderedString.t -> OrderedString.t list -> bool
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>StringSet.member "bar" (StringSet.add "foo" StringSet.empty);;
</FONT>- : bool = false
</FONT></PRE>
<H2 CLASS="section"><A NAME="htoc16">2.4</A> Functors and type abstraction</H2>
As in the <TT>PrioQueue</TT> example, it would be good style to hide the
actual implementation of the type <TT>set</TT>, so that users of the
structure will not rely on sets being lists, and we can switch later
to another, more efficient representation of sets without breaking
their code. This can be achieved by restricting <TT>Set</TT> by a suitable
functor signature:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>module type SETFUNCTOR =
functor (Elt: ORDERED_TYPE) ->
sig
type element = Elt.t (* concrete *)
type set (* abstract *)
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end;;
</FONT><FONT COLOR=maroon>module type SETFUNCTOR =
functor (Elt : ORDERED_TYPE) ->
sig
type element = Elt.t
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>module AbstractSet = (Set : SETFUNCTOR);;
</FONT>module AbstractSet : SETFUNCTOR
<FONT COLOR=black>#</FONT><FONT COLOR=blue>module AbstractStringSet = AbstractSet(OrderedString);;
</FONT>module AbstractStringSet :
sig
type element = OrderedString.t
type set = AbstractSet(OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>AbstractStringSet.add "gee" AbstractStringSet.empty;;
</FONT>- : AbstractStringSet.set = <abstr>
</FONT></PRE>
In an attempt to write the type constraint above more elegantly,
one may wish to name the signature of the structure
returned by the functor, then use that signature in the constraint:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>module type SET =
sig
type element
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end;;
</FONT><FONT COLOR=maroon>module type SET =
sig
type element
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>module WrongSet = (Set : functor(Elt: ORDERED_TYPE) -> SET);;
</FONT>module WrongSet : functor (Elt : ORDERED_TYPE) -> SET
<FONT COLOR=black>#</FONT><FONT COLOR=blue>module WrongStringSet = WrongSet(OrderedString);;
</FONT>module WrongStringSet :
sig
type element = WrongSet(OrderedString).element
type set = WrongSet(OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>WrongStringSet.add <U>"gee"</U> WrongStringSet.empty;;
</FONT>This expression has type string but is here used with type
WrongStringSet.element = WrongSet(OrderedString).element
</FONT></PRE>
The problem here is that <TT>SET</TT> specifies the type <TT>element</TT>
abstractly, so that the type equality between <TT>element</TT> in the result
of the functor and <TT>t</TT> in its argument is forgotten. Consequently,
<TT>WrongStringSet.element</TT> is not the same type as <TT>string</TT>, and the
operations of <TT>WrongStringSet</TT> cannot be applied to strings.
As demonstrated above, it is important that the type <TT>element</TT> in the
signature <TT>SET</TT> be declared equal to <TT>Elt.t</TT>; unfortunately, this is
impossible above since <TT>SET</TT> is defined in a context where <TT>Elt</TT> does
not exist. To overcome this difficulty, Objective Caml provides a
<TT>with type</TT> construct over signatures that allows to enrich a signature
with extra type equalities:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>module AbstractSet =
(Set : functor(Elt: ORDERED_TYPE) -> (SET with type element = Elt.t));;
</FONT><FONT COLOR=maroon>module AbstractSet :
functor (Elt : ORDERED_TYPE) ->
sig
type element = Elt.t
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end
</FONT></PRE>
As in the case of simple structures, an alternate syntax is provided
for defining functors and restricting their result:
<PRE CLASS="verbatim">
module AbstractSet(Elt: ORDERED_TYPE) : (SET with type element = Elt.t) =
struct ... end;;
</PRE>
Abstracting a type component in a functor result is a powerful
technique that provides a high degree of type safety, as we now
illustrate. Consider an ordering over character strings that is
different from the standard ordering implemented in the
<TT>OrderedString</TT> structure. For instance, we compare strings without
distinguishing upper and lower case.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>module NoCaseString =
struct
type t = string
let compare s1 s2 =
OrderedString.compare (String.lowercase s1) (String.lowercase s2)
end;;
</FONT><FONT COLOR=maroon>module NoCaseString :
sig type t = string val compare : string -> string -> comparison end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>module NoCaseStringSet = AbstractSet(NoCaseString);;
</FONT>module NoCaseStringSet :
sig
type element = NoCaseString.t
type set = AbstractSet(NoCaseString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>NoCaseStringSet.add "FOO" <U>AbstractStringSet.empty</U>;;
</FONT>This expression has type
AbstractStringSet.set = AbstractSet(OrderedString).set
but is here used with type
NoCaseStringSet.set = AbstractSet(NoCaseString).set
</FONT></PRE>
Notice that the two types <TT>AbstractStringSet.set</TT> and
<TT>NoCaseStringSet.set</TT> are not compatible, and values of these
two types do not match. This is the correct behavior: even though both
set types contain elements of the same type (strings), both are built
upon different orderings of that type, and different invariants need
to be maintained by the operations (being strictly increasing for the
standard ordering and for the case-insensitive ordering). Applying
operations from <TT>AbstractStringSet</TT> to values of type
<TT>NoCaseStringSet.set</TT> could give incorrect results, or build
lists that violate the invariants of <TT>NoCaseStringSet</TT>.<BR>
<BR>
<H2 CLASS="section"><A NAME="htoc17">2.5</A> Modules and separate compilation</H2>
All examples of modules so far have been given in the context of the
interactive system. However, modules are most useful for large,
batch-compiled programs. For these programs, it is a practical
necessity to split the source into several files, called compilation
units, that can be compiled separately, thus minimizing recompilation
after changes.<BR>
<BR>
In Objective Caml, compilation units are special cases of structures
and signatures, and the relationship between the units can be
explained easily in terms of the module system. A compilation unit <I>A</I>
comprises two files:
<UL CLASS="itemize"><LI CLASS="li-itemize">
the implementation file <I>A</I><TT>.ml</TT>, which contains a sequence
of definitions, analogous to the inside of a <TT>struct</TT>...<TT>end</TT>
construct;
<LI CLASS="li-itemize">the interface file <I>A</I><TT>.mli</TT>, which contains a sequence of
specifications, analogous to the inside of a <TT>sig</TT>...<TT>end</TT>
construct.
</UL>
Both files define a structure named <I>A</I> as if
the following definition was entered at top-level:
<PRE>
module <I>A</I>: sig (* contents of file <I>A</I>.mli *) end
= struct (* contents of file <I>A</I>.ml *) end;;
</PRE>
The files defining the compilation units can be compiled separately
using the <TT>ocamlc -c</TT> command (the <TT>-c</TT> option means “compile only, do
not try to link”); this produces compiled interface files (with
extension <TT>.cmi</TT>) and compiled object code files (with extension
<TT>.cmo</TT>). When all units have been compiled, their <TT>.cmo</TT> files are
linked together using the <TT>ocaml</TT> command. For instance, the following
commands compile and link a program composed of two compilation units
<TT>Aux</TT> and <TT>Main</TT>:
<PRE CLASS="verbatim">
$ ocamlc -c Aux.mli # produces aux.cmi
$ ocamlc -c Aux.ml # produces aux.cmo
$ ocamlc -c Main.mli # produces main.cmi
$ ocamlc -c Main.ml # produces main.cmo
$ ocamlc -o theprogram Aux.cmo Main.cmo
</PRE>The program behaves exactly as if the following phrases were entered
at top-level:
<PRE>
module Aux: sig (* contents of Aux.mli *) end
= struct (* contents of Aux.ml *) end;;
module Main: sig (* contents of Main.mli *) end
= struct (* contents of Main.ml *) end;;
</PRE>
In particular, <TT>Main</TT> can refer to <TT>Aux</TT>: the definitions and
declarations contained in <TT>Main.ml</TT> and <TT>Main.mli</TT> can refer to
definition in <TT>Aux.ml</TT>, using the <TT>Aux.</TT><I>ident</I> notation, provided
these definitions are exported in <TT>Aux.mli</TT>.<BR>
<BR>
The order in which the <TT>.cmo</TT> files are given to <TT>ocaml</TT> during the
linking phase determines the order in which the module definitions
occur. Hence, in the example above, <TT>Aux</TT> appears first and <TT>Main</TT> can
refer to it, but <TT>Aux</TT> cannot refer to <TT>Main</TT>.<BR>
<BR>
Notice that only top-level structures can be mapped to
separately-compiled files, but not functors nor module types.
However, all module-class objects can appear as components of a
structure, so the solution is to put the functor or module type
inside a structure, which can then be mapped to a file.
<BR>
<BR>
<HR>
<A HREF="manual003.html"><IMG SRC ="previous_motif.gif" ALT="Previous"></A>
<A HREF="index.html"><IMG SRC ="contents_motif.gif" ALT="Up"></A>
<A HREF="manual005.html"><IMG SRC ="next_motif.gif" ALT="Next"></A>
</BODY>
</HTML>
|