1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="hevea 1.08">
<LINK rel="stylesheet" type="text/css" href="manual.css">
<TITLE>
Objects in Caml
</TITLE>
</HEAD>
<BODY >
<A HREF="manual004.html"><IMG SRC ="previous_motif.gif" ALT="Previous"></A>
<A HREF="index.html"><IMG SRC ="contents_motif.gif" ALT="Up"></A>
<A HREF="manual006.html"><IMG SRC ="next_motif.gif" ALT="Next"></A>
<HR>
<H1 CLASS="chapter"><A NAME="htoc18">Chapter 3</A> Objects in Caml</H1>
<A NAME="c:objectexamples"></A>
<I>(Chapter written by Jrme Vouillon, Didier Rmy and Jacques Garrigue)</I><BR>
<BR>
<BR>
<BR>
<BR>
<BR>
This chapter gives an overview of the object-oriented features of
Objective Caml.
<div style="background-color:yellow; color:red; border-style:none; border-width:0.5pt">
Note that the relation between object, class and type
in Objective Caml is very different from that in main stream
object-oriented languages like Java or C++, so that you should not
assume that similar keywords mean the same thing.<BR>
</div>
<BR>
<A HREF="#ss:classes-and-objects">3.1</A> Classes and objects<BR>
<A HREF="#ss:immediate-objects">3.2</A> Immediate objects<BR>
<A HREF="#ss:reference-to-self">3.3</A> Reference to self<BR>
<A HREF="#ss:initializers">3.4</A> Initializers<BR>
<A HREF="#ss:virtual-methods">3.5</A> Virtual methods<BR>
<A HREF="#ss:private-methods">3.6</A> Private methods<BR>
<A HREF="#ss:class-interfaces">3.7</A> Class interfaces<BR>
<A HREF="#ss:inheritance">3.8</A> Inheritance<BR>
<A HREF="#ss:multiple-inheritance">3.9</A> Multiple inheritance<BR>
<A HREF="#ss:parameterized-classes">3.10</A> Parameterized classes<BR>
<A HREF="#ss:polymorphic-methods">3.11</A> Polymorphic methods<BR>
<A HREF="#ss:using-coercions">3.12</A> Using coercions<BR>
<A HREF="#ss:functional-objects">3.13</A> Functional objects<BR>
<A HREF="#ss:cloning-objects">3.14</A> Cloning objects<BR>
<A HREF="#ss:recursive-classes">3.15</A> Recursive classes<BR>
<A HREF="#ss:binary-methods">3.16</A> Binary methods<BR>
<A HREF="#ss:friends">3.17</A> Friends<BR>
<BR>
<BR>
<H2 CLASS="section"><A NAME="htoc19">3.1</A> Classes and objects</H2>
<A NAME="ss:classes-and-objects"></A>
The class <TT>point</TT> below defines one instance variable <TT>x</TT> and two methods
<TT>get_x</TT> and <TT>move</TT>. The initial value of the instance variable is <TT>0</TT>.
The variable <TT>x</TT> is declared mutable, so the method <TT>move</TT> can change
its value.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class point =
object
val mutable x = 0
method get_x = x
method move d = x <- x + d
end;;
</FONT><FONT COLOR=maroon>class point :
object val mutable x : int method get_x : int method move : int -> unit end
</FONT></PRE>
We now create a new point <TT>p</TT>, instance of the <TT>point</TT> class.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let p = new point;;
</FONT><FONT COLOR=maroon>val p : point = <obj>
</FONT></PRE>
Note that the type of <TT>p</TT> is <TT>point</TT>. This is an abbreviation
automatically defined by the class definition above. It stands for the
object type <TT><get_x : int; move : int -> unit></TT>, listing the methods
of class <TT>point</TT> along with their types.<BR>
<BR>
We now invoke some methods to <TT>p</TT>:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>p#get_x;;
</FONT><FONT COLOR=maroon>- : int = 0
<FONT COLOR=black>#</FONT><FONT COLOR=blue>p#move 3;;
</FONT>- : unit = ()
<FONT COLOR=black>#</FONT><FONT COLOR=blue>p#get_x;;
</FONT>- : int = 3
</FONT></PRE>
The evaluation of the body of a class only takes place at object
creation time. Therefore, in the following example, the instance
variable <TT>x</TT> is initialized to different values for two different
objects.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let x0 = ref 0;;
</FONT><FONT COLOR=maroon>val x0 : int ref = {contents = 0}
<FONT COLOR=black>#</FONT><FONT COLOR=blue>class point =
object
val mutable x = incr x0; !x0
method get_x = x
method move d = x <- x + d
end;;
</FONT>class point :
object val mutable x : int method get_x : int method move : int -> unit end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>new point#get_x;;
</FONT>- : int = 1
<FONT COLOR=black>#</FONT><FONT COLOR=blue>new point#get_x;;
</FONT>- : int = 2
</FONT></PRE>
The class <TT>point</TT> can also be abstracted over the initial values of
the <TT>x</TT> coordinate.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class point = fun x_init ->
object
val mutable x = x_init
method get_x = x
method move d = x <- x + d
end;;
</FONT><FONT COLOR=maroon>class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end
</FONT></PRE>
Like in function definitions, the definition above can be
abbreviated as:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class point x_init =
object
val mutable x = x_init
method get_x = x
method move d = x <- x + d
end;;
</FONT><FONT COLOR=maroon>class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end
</FONT></PRE>
An instance of the class <TT>point</TT> is now a function that expects an
initial parameter to create a point object:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>new point;;
</FONT><FONT COLOR=maroon>- : int -> point = <fun>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let p = new point 7;;
</FONT>val p : point = <obj>
</FONT></PRE>
The parameter <TT>x_init</TT> is, of course, visible in the whole body of the
definition, including methods. For instance, the method <TT>get_offset</TT>
in the class below returns the position of the object relative to its
initial position.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class point x_init =
object
val mutable x = x_init
method get_x = x
method get_offset = x - x_init
method move d = x <- x + d
end;;
</FONT><FONT COLOR=maroon>class point :
int ->
object
val mutable x : int
method get_offset : int
method get_x : int
method move : int -> unit
end
</FONT></PRE>
Expressions can be evaluated and bound before defining the object body
of the class. This is useful to enforce invariants. For instance,
points can be automatically adjusted to the nearest point on a grid,
as follows:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class adjusted_point x_init =
let origin = (x_init / 10) * 10 in
object
val mutable x = origin
method get_x = x
method get_offset = x - origin
method move d = x <- x + d
end;;
</FONT><FONT COLOR=maroon>class adjusted_point :
int ->
object
val mutable x : int
method get_offset : int
method get_x : int
method move : int -> unit
end
</FONT></PRE>
(One could also raise an exception if the <TT>x_init</TT> coordinate is not
on the grid.) In fact, the same effect could here be obtained by
calling the definition of class <TT>point</TT> with the value of the
<TT>origin</TT>.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class adjusted_point x_init = point ((x_init / 10) * 10);;
</FONT><FONT COLOR=maroon>class adjusted_point : int -> point
</FONT></PRE>
An alternative solution would have been to define the adjustment in
a special allocation function:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let new_adjusted_point x_init = new point ((x_init / 10) * 10);;
</FONT><FONT COLOR=maroon>val new_adjusted_point : int -> point = <fun>
</FONT></PRE>
However, the former pattern is generally more appropriate, since
the code for adjustment is part of the definition of the class and will be
inherited.<BR>
<BR>
This ability provides class constructors as can be found in other
languages. Several constructors can be defined this way to build objects of
the same class but with different initialization patterns; an
alternative is to use initializers, as decribed below in section
<A HREF="#ss:initializers">3.4</A>.<BR>
<BR>
<H2 CLASS="section"><A NAME="htoc20">3.2</A> Immediate objects</H2>
<A NAME="ss:immediate-objects"></A>
There is another, more direct way to create an object: create it
without going through a class.<BR>
<BR>
The syntax is exactly the same as for class expressions, but the
result is a single object rather than a class. All the constructs
described in the rest of this section also apply to immediate objects.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let p =
object
val mutable x = 0
method get_x = x
method move d = x <- x + d
end;;
</FONT><FONT COLOR=maroon>val p : < get_x : int; move : int -> unit > = <obj>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>p#get_x;;
</FONT>- : int = 0
<FONT COLOR=black>#</FONT><FONT COLOR=blue>p#move 3;;
</FONT>- : unit = ()
<FONT COLOR=black>#</FONT><FONT COLOR=blue>p#get_x;;
</FONT>- : int = 3
</FONT></PRE>
Unlike classes, which cannot be defined inside an expression,
immediate objects can appear anywhere, using variables from their
environment.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let minmax x y =
if x < y then object method min = x method max = y end
else object method min = y method max = x end;;
</FONT><FONT COLOR=maroon>val minmax : 'a -> 'a -> < max : 'a; min : 'a > = <fun>
</FONT></PRE>
Immediate objects have two weaknesses compared to classes: their types
are not abbreviated, and you cannot inherit from them. But these two
weaknesses can be advantages in some situations, as we will see
in sections <A HREF="#ss:reference-to-self">3.3</A> and <A HREF="#ss:parameterized-classes">3.10</A>.<BR>
<BR>
<H2 CLASS="section"><A NAME="htoc21">3.3</A> Reference to self</H2>
<A NAME="ss:reference-to-self"></A>
A method or an initializer can send messages to self (that is,
the current object). For that, self must be explicitly bound, here to
the variable <TT>s</TT> (<TT>s</TT> could be any identifier, even though we will
often choose the name <TT>self</TT>.)
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class printable_point x_init =
object (s)
val mutable x = x_init
method get_x = x
method move d = x <- x + d
method print = print_int s#get_x
end;;
</FONT><FONT COLOR=maroon>class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let p = new printable_point 7;;
</FONT>val p : printable_point = <obj>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>p#print;;
</FONT>7- : unit = ()
</FONT></PRE>
Dynamically, the variable <TT>s</TT> is bound at the invocation of a method. In
particular, when the class <TT>printable_point</TT> is inherited, the variable
<TT>s</TT> will be correctly bound to the object of the subclass. <BR>
<BR>
A common problem with self is that, as its type may be extended in
subclasses, you cannot fix it in advance. Here is a simple example.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let ints = ref [];;
</FONT><FONT COLOR=maroon>val ints : '_a list ref = {contents = []}
<FONT COLOR=black>#</FONT><FONT COLOR=blue>class my_int =
object (self)
method n = 1
method register = ints := <U>self</U> :: !ints
end;;
</FONT>This expression has type < n : int; register : 'a; .. >
but is here used with type 'b
Self type cannot escape its class
</FONT></PRE>
You can ignore the first two lines of the error message. What matters
is the last one: putting self into an external reference would make it
impossible to extend it afterwards.
We will see in section <A HREF="#ss:using-coercions">3.12</A> a workaround to this
problem.
Note however that, since immediate objects are not extensible, the
problem does not occur with them.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let my_int =
object (self)
method n = 1
method register = ints := self :: !ints
end;;
</FONT><FONT COLOR=maroon>val my_int : < n : int; register : unit > = <obj>
</FONT></PRE>
<H2 CLASS="section"><A NAME="htoc22">3.4</A> Initializers</H2>
<A NAME="ss:initializers"></A>
Let-bindings within class definitions are evaluated before the object
is constructed. It is also possible to evaluate an expression
immediately after the object has been built. Such code is written as
an anonymous hidden method called an initializer. Therefore, is can
access self and the instance variables.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class printable_point x_init =
let origin = (x_init / 10) * 10 in
object (self)
val mutable x = origin
method get_x = x
method move d = x <- x + d
method print = print_int self#get_x
initializer print_string "new point at "; self#print; print_newline()
end;;
</FONT><FONT COLOR=maroon>class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let p = new printable_point 17;;
</FONT>new point at 10
val p : printable_point = <obj>
</FONT></PRE>
Initializers cannot be overridden. On the contrary, all initializers are
evaluated sequentially.
Initializers are particularly useful to enforce invariants.
Another example can be seen in section <A HREF="manual007.html#ss:bank-accounts">5.1</A>.<BR>
<BR>
<H2 CLASS="section"><A NAME="htoc23">3.5</A> Virtual methods</H2>
<A NAME="ss:virtual-methods"></A>
It is possible to declare a method without actually defining it, using
the keyword <TT>virtual</TT>. This method will be provided later in
subclasses. A class containing virtual methods must be flagged
<TT>virtual</TT>, and cannot be instantiated (that is, no object of this class
can be created). It still defines type abbreviations (treating virtual methods
as other methods.)
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class virtual abstract_point x_init =
object (self)
val mutable x = x_init
method virtual get_x : int
method get_offset = self#get_x - x_init
method virtual move : int -> unit
end;;
</FONT><FONT COLOR=maroon>class virtual abstract_point :
int ->
object
val mutable x : int
method get_offset : int
method virtual get_x : int
method virtual move : int -> unit
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>class point x_init =
object
inherit abstract_point x_init
method get_x = x
method move d = x <- x + d
end;;
</FONT>class point :
int ->
object
val mutable x : int
method get_offset : int
method get_x : int
method move : int -> unit
end
</FONT></PRE>
<H2 CLASS="section"><A NAME="htoc24">3.6</A> Private methods</H2>
<A NAME="ss:private-methods"></A>
Private methods are methods that do not appear in object interfaces.
They can only be invoked from other methods of the same object.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class restricted_point x_init =
object (self)
val mutable x = x_init
method get_x = x
method private move d = x <- x + d
method bump = self#move 1
end;;
</FONT><FONT COLOR=maroon>class restricted_point :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method private move : int -> unit
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let p = new restricted_point 0;;
</FONT>val p : restricted_point = <obj>
<FONT COLOR=black>#</FONT><FONT COLOR=blue><U>p</U>#move 10;;
</FONT>This expression has type restricted_point
It has no method move
<FONT COLOR=black>#</FONT><FONT COLOR=blue>p#bump;;
</FONT>- : unit = ()
</FONT></PRE>
<div style="background-color:yellow; color:red; border-style:none; border-width:0.5pt">
Note that this is not the same thing as private and protected methods
in Java or C++, which can be called from other objects of the same
class. This is a direct consequence of the independence between types
and classes in Objective Caml: two unrelated classes may produce
objects of the same type, and there is no way at the type level to
ensure that an object comes from a specific class. However a possible
encoding of friend methods is given in section <A HREF="#ss:friends">3.17</A>.<BR>
</div>
<BR>
Private methods are inherited (they are by default visible in subclasses),
unless they are hidden by signature matching, as described below.<BR>
<BR>
Private methods can be made public in a subclass.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class point_again x =
object (self)
inherit restricted_point x
method virtual move : _
end;;
</FONT><FONT COLOR=maroon>class point_again :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit
end
</FONT></PRE>
The annotation <TT>virtual</TT> here is only used to mention a method without
providing its definition. Since we didn't add the <TT>private</TT>
annotation, this makes the method public, keeping the original
definition.<BR>
<BR>
An alternative definition is
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class point_again x =
object (self : < move : _; ..> )
inherit restricted_point x
end;;
</FONT><FONT COLOR=maroon>class point_again :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit
end
</FONT></PRE>
The constraint on self's type is requiring a public <TT>move</TT> method, and
this is sufficient to override <TT>private</TT>.<BR>
<BR>
One could think that a private method should remain private in a subclass.
However, since the method is visible in a subclass, it is always possible
to pick its code and define a method of the same name that runs that
code, so yet another (heavier) solution would be:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class point_again x =
object
inherit restricted_point x as super
method move = super#move
end;;
</FONT><FONT COLOR=maroon>class point_again :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit
end
</FONT></PRE>
Of course, private methods can also be virtual. Then, the keywords must
appear in this order <TT>method private virtual</TT>. <BR>
<BR>
<H2 CLASS="section"><A NAME="htoc25">3.7</A> Class interfaces</H2>
<A NAME="ss:class-interfaces"></A>
Class interfaces are inferred from class definitions. They may also
be defined directly and used to restrict the type of a class. Like class
declarations, they also define a new type abbreviation.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class type restricted_point_type =
object
method get_x : int
method bump : unit
end;;
</FONT><FONT COLOR=maroon>class type restricted_point_type =
object method bump : unit method get_x : int end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>fun (x : restricted_point_type) -> x;;
</FONT>- : restricted_point_type -> restricted_point_type = <fun>
</FONT></PRE>
In addition to program documentation, class interfaces can be used to
constrain the type of a class. Both instance variables and concrete
private methods can be hidden by a class type constraint. Public and
virtual methods, however, cannot.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class restricted_point' x = (restricted_point x : restricted_point_type);;
</FONT><FONT COLOR=maroon>class restricted_point' : int -> restricted_point_type
</FONT></PRE>
Or, equivalently:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class restricted_point' = (restricted_point : int -> restricted_point_type);;
</FONT><FONT COLOR=maroon>class restricted_point' : int -> restricted_point_type
</FONT></PRE>
The interface of a class can also be specified in a module
signature, and used to restrict the inferred signature of a module.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>module type POINT = sig
class restricted_point' : int ->
object
method get_x : int
method bump : unit
end
end;;
</FONT><FONT COLOR=maroon>module type POINT =
sig
class restricted_point' :
int -> object method bump : unit method get_x : int end
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>module Point : POINT = struct
class restricted_point' = restricted_point
end;;
</FONT>module Point : POINT
</FONT></PRE>
<H2 CLASS="section"><A NAME="htoc26">3.8</A> Inheritance</H2>
<A NAME="ss:inheritance"></A>
We illustrate inheritance by defining a class of colored points that
inherits from the class of points. This class has all instance
variables and all methods of class <TT>point</TT>, plus a new instance
variable <TT>c</TT> and a new method <TT>color</TT>.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class colored_point x (c : string) =
object
inherit point x
val c = c
method color = c
end;;
</FONT><FONT COLOR=maroon>class colored_point :
int ->
string ->
object
val c : string
val mutable x : int
method color : string
method get_offset : int
method get_x : int
method move : int -> unit
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let p' = new colored_point 5 "red";;
</FONT>val p' : colored_point = <obj>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>p'#get_x, p'#color;;
</FONT>- : int * string = (5, "red")
</FONT></PRE>
A point and a colored point have incompatible types, since a point has
no method <TT>color</TT>. However, the function <TT>get_x</TT> below is a generic
function applying method <TT>get_x</TT> to any object <TT>p</TT> that has this
method (and possibly some others, which are represented by an ellipsis
in the type). Thus, it applies to both points and colored points.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let get_succ_x p = p#get_x + 1;;
</FONT><FONT COLOR=maroon>val get_succ_x : < get_x : int; .. > -> int = <fun>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>get_succ_x p + get_succ_x p';;
</FONT>- : int = 8
</FONT></PRE>
Methods need not be declared previously, as shown by the example:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let set_x p = p#set_x;;
</FONT><FONT COLOR=maroon>val set_x : < set_x : 'a; .. > -> 'a = <fun>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let incr p = set_x p (get_succ_x p);;
</FONT>val incr : < get_x : int; set_x : int -> 'a; .. > -> 'a = <fun>
</FONT></PRE>
<H2 CLASS="section"><A NAME="htoc27">3.9</A> Multiple inheritance</H2>
<A NAME="ss:multiple-inheritance"></A>
Multiple inheritance is allowed. Only the last definition of a method
is kept: the redefinition in a subclass of a method that was visible in
the parent class overrides the definition in the parent class.
Previous definitions of a method can be reused by binding the related
ancestor. Below, <TT>super</TT> is bound to the ancestor <TT>printable_point</TT>.
The name <TT>super</TT> is a pseudo value identifier that can only be used to
invoke a super-class method, as in <TT>super#print</TT>.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class printable_colored_point y c =
object (self)
val c = c
method color = c
inherit printable_point y as super
method print =
print_string "(";
super#print;
print_string ", ";
print_string (self#color);
print_string ")"
end;;
</FONT><FONT COLOR=maroon>class printable_colored_point :
int ->
string ->
object
val c : string
val mutable x : int
method color : string
method get_x : int
method move : int -> unit
method print : unit
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let p' = new printable_colored_point 17 "red";;
</FONT>new point at (10, red)
val p' : printable_colored_point = <obj>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>p'#print;;
</FONT>(10, red)- : unit = ()
</FONT></PRE>
A private method that has been hidden in the parent class is no longer
visible, and is thus not overridden. Since initializers are treated as
private methods, all initializers along the class hierarchy are evaluated,
in the order they are introduced.<BR>
<BR>
<H2 CLASS="section"><A NAME="htoc28">3.10</A> Parameterized classes</H2>
<A NAME="ss:parameterized-classes"></A>
Reference cells can be implemented as objects.
The naive definition fails to typecheck:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class<U> ref x_init =
object
val mutable x = x_init
method get = x
method set y = x <- y
end</U>;;
</FONT><FONT COLOR=maroon>Some type variables are unbound in this type:
class ref :
'a ->
object val mutable x : 'a method get : 'a method set : 'a -> unit end
The method get has type 'a where 'a is unbound
</FONT></PRE>
The reason is that at least one of the methods has a polymorphic type
(here, the type of the value stored in the reference cell), thus
either the class should be parametric, or the method type should be
constrained to a monomorphic type. A monomorphic instance of the class could
be defined by:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class ref (x_init:int) =
object
val mutable x = x_init
method get = x
method set y = x <- y
end;;
</FONT><FONT COLOR=maroon>class ref :
int ->
object val mutable x : int method get : int method set : int -> unit end
</FONT></PRE>
Note that since immediate objects do not define a class type, the have
no such restriction.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let new_ref x_init =
object
val mutable x = x_init
method get = x
method set y = x <- y
end;;
</FONT><FONT COLOR=maroon>val new_ref : 'a -> < get : 'a; set : 'a -> unit > = <fun>
</FONT></PRE>
On the other hand, a class for polymorphic references must explicitly
list the type parameters in its declaration. Class type parameters are
always listed between <TT>[</TT> and <TT>]</TT>. The type parameters must also be
bound somewhere in the class body by a type constraint.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class ['a] ref x_init =
object
val mutable x = (x_init : 'a)
method get = x
method set y = x <- y
end;;
</FONT><FONT COLOR=maroon>class ['a] ref :
'a -> object val mutable x : 'a method get : 'a method set : 'a -> unit end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let r = new ref 1 in r#set 2; (r#get);;
</FONT>- : int = 2
</FONT></PRE>
The type parameter in the declaration may actually be constrained in the
body of the class definition. In the class type, the actual value of
the type parameter is displayed in the <TT>constraint</TT> clause.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class ['a] ref_succ (x_init:'a) =
object
val mutable x = x_init + 1
method get = x
method set y = x <- y
end;;
</FONT><FONT COLOR=maroon>class ['a] ref_succ :
'a ->
object
constraint 'a = int
val mutable x : int
method get : int
method set : int -> unit
end
</FONT></PRE>
Let us consider a more complex example: define a circle, whose center
may be any kind of point. We put an additional type
constraint in method <TT>move</TT>, since no free variables must remain
unaccounted for by the class type parameters.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class ['a] circle (c : 'a) =
object
val mutable center = c
method center = center
method set_center c = center <- c
method move = (center#move : int -> unit)
end;;
</FONT><FONT COLOR=maroon>class ['a] circle :
'a ->
object
constraint 'a = < move : int -> unit; .. >
val mutable center : 'a
method center : 'a
method move : int -> unit
method set_center : 'a -> unit
end
</FONT></PRE>
An alternate definition of <TT>circle</TT>, using a <TT>constraint</TT> clause in
the class definition, is shown below. The type <TT>#point</TT> used below in
the <TT>constraint</TT> clause is an abbreviation produced by the definition
of class <TT>point</TT>. This abbreviation unifies with the type of any
object belonging to a subclass of class <TT>point</TT>. It actually expands to
<TT>< get_x : int; move : int -> unit; .. ></TT>. This leads to the following
alternate definition of <TT>circle</TT>, which has slightly stronger
constraints on its argument, as we now expect <TT>center</TT> to have a
method <TT>get_x</TT>.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class ['a] circle (c : 'a) =
object
constraint 'a = #point
val mutable center = c
method center = center
method set_center c = center <- c
method move = center#move
end;;
</FONT><FONT COLOR=maroon>class ['a] circle :
'a ->
object
constraint 'a = #point
val mutable center : 'a
method center : 'a
method move : int -> unit
method set_center : 'a -> unit
end
</FONT></PRE>
The class <TT>colored_circle</TT> is a specialized version of class
<TT>circle</TT> that requires the type of the center to unify with
<TT>#colored_point</TT>, and adds a method <TT>color</TT>. Note that when specializing a
parameterized class, the instance of type parameter must always be
explicitly given. It is again written between <TT>[</TT> and <TT>]</TT>.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class ['a] colored_circle c =
object
constraint 'a = #colored_point
inherit ['a] circle c
method color = center#color
end;;
</FONT><FONT COLOR=maroon>class ['a] colored_circle :
'a ->
object
constraint 'a = #colored_point
val mutable center : 'a
method center : 'a
method color : string
method move : int -> unit
method set_center : 'a -> unit
end
</FONT></PRE>
<H2 CLASS="section"><A NAME="htoc29">3.11</A> Polymorphic methods</H2>
<A NAME="ss:polymorphic-methods"></A>
While parameterized classes may be polymorphic in their contents, they
are not enough to allow polymorphism of method use.<BR>
<BR>
A classical example is defining an iterator.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>List.fold_left;;
</FONT><FONT COLOR=maroon>- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>class ['a] intlist (l : int list) =
object
method empty = (l = [])
method fold f (accu : 'a) = List.fold_left f accu l
end;;
</FONT>class ['a] intlist :
int list ->
object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end
</FONT></PRE>
At first look, we seem to have a polymorphic iterator, however this
does not work in practice.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let l = new intlist [1; 2; 3];;
</FONT><FONT COLOR=maroon>val l : '_a intlist = <obj>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>l#fold (fun x y -> x+y) 0;;
</FONT>- : int = 6
<FONT COLOR=black>#</FONT><FONT COLOR=blue>l;;
</FONT>- : int intlist = <obj>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>l#fold (fun s x -> <U>s</U> ^ string_of_int x ^ " ") "";;
</FONT>This expression has type int but is here used with type string
</FONT></PRE>
Our iterator works, as shows its first use for summation. However,
since objects themselves are not polymorphic (only their constructors
are), using the <TT>fold</TT> method fixes its type for this individual object.
Our next attempt to use it as a string iterator fails.<BR>
<BR>
The problem here is that quantification was wrongly located: this is
not the class we want to be polymorphic, but the <TT>fold</TT> method.
This can be achieved by giving an explicitly polymorphic type in the
method definition.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class intlist (l : int list) =
object
method empty = (l = [])
method fold : 'a. ('a -> int -> 'a) -> 'a -> 'a =
fun f accu -> List.fold_left f accu l
end;;
</FONT><FONT COLOR=maroon>class intlist :
int list ->
object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let l = new intlist [1; 2; 3];;
</FONT>val l : intlist = <obj>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>l#fold (fun x y -> x+y) 0;;
</FONT>- : int = 6
<FONT COLOR=black>#</FONT><FONT COLOR=blue>l#fold (fun s x -> s ^ string_of_int x ^ " ") "";;
</FONT>- : string = "1 2 3 "
</FONT></PRE>
As you can see in the class type shown by the compiler, while
polymorphic method types must be fully explicit in class definitions
(appearing immediately after the method name), quantified type
variables can be left implicit in class descriptions.
<div style="background-color:yellow; color:red; border-style:none; border-width:0.5pt">
Why require types
to be explicit? The problem is that <TT>(int -> int -> int) -> int -> int</TT> would also be a valid type for <TT>fold</TT>, and it happens to be
incompatible with the polymorphic type we gave (automatic
instantiation only works for toplevel types variables, not for inner
quantifiers, where it becomes an undecidable problem.) So the compiler
cannot choose between those two types, and must be helped.<BR>
</div>
<BR>
However, the type can be completely omitted in the class definition if
it is already known, through inheritance or type constraints on self.
Here is an example of method overriding.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class intlist_rev l =
object
inherit intlist l
method fold f accu = List.fold_left f accu (List.rev l)
end;;
</FONT></PRE>
The following idiom separates description and definition.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class type ['a] iterator =
object method fold : ('b -> 'a -> 'b) -> 'b -> 'b end;;
class intlist l =
object (self : int #iterator)
method empty = (l = [])
method fold f accu = List.fold_left f accu l
end;;
</FONT></PRE>
Note here the <TT>(self : int #iterator)</TT> idiom, which ensures that this
object implements the interface <TT>iterator</TT>.<BR>
<BR>
Polymorphic methods are called in exactly the same way as normal
methods, but you should be aware of some limitations of type
inference. Namely, a polymorphic method can only be called if its
type is known at the call site. Otherwise, the method will be assumed
to be monomorphic, and given an incompatible type.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let sum lst = lst#fold (fun x y -> x+y) 0;;
</FONT><FONT COLOR=maroon>val sum : < fold : (int -> int -> int) -> int -> 'a; .. > -> 'a = <fun>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>sum <U>l</U>;;
</FONT>This expression has type intlist but is here used with type
< fold : (int -> int -> int) -> int -> 'a; .. >
Types for method fold are incompatible
</FONT></PRE>
The workaround is easy: you should put a type constraint on the
parameter.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let sum (lst : _ #iterator) = lst#fold (fun x y -> x+y) 0;;
</FONT><FONT COLOR=maroon>val sum : int #iterator -> int = <fun>
</FONT></PRE>
Of course the constraint may also be an explicit method type.
Only occurences of quantified variables are required.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let sum lst =
(lst : < fold : 'a. ('a -> _ -> 'a) -> 'a -> 'a; .. >)#fold (+) 0;;
</FONT><FONT COLOR=maroon>val sum : < fold : 'a. ('a -> int -> 'a) -> 'a -> 'a; .. > -> int = <fun>
</FONT></PRE>
Another use of polymorphic methods is to allow some form of implicit
subtyping in method arguments. We have already seen in section
<A HREF="#ss:inheritance">3.8</A> how some functions may be polymorphic in the
class of their argument. This can be extended to methods.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class type point0 = object method get_x : int end;;
</FONT><FONT COLOR=maroon>class type point0 = object method get_x : int end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>class distance_point x =
object
inherit point x
method distance : 'a. (#point0 as 'a) -> int =
fun other -> abs (other#get_x - x)
end;;
</FONT>class distance_point :
int ->
object
val mutable x : int
method distance : #point0 -> int
method get_offset : int
method get_x : int
method move : int -> unit
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let p = new distance_point 3 in
(p#distance (new point 8), p#distance (new colored_point 1 "blue"));;
</FONT>- : int * int = (5, 2)
</FONT></PRE>
Note here the special syntax <TT>(#point0 as 'a)</TT> we have to use to
quantify the extensible part of <TT>#point0</TT>. As for the variable binder,
it can be omitted in class specifications. If you want polymorphism
inside object field it must be quantified independently.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class multi_poly =
object
method m1 : 'a. (< n1 : 'b. 'b -> 'b; .. > as 'a) -> _ =
fun o -> o#n1 true, o#n1 "hello"
method m2 : 'a 'b. (< n2 : 'b -> bool; .. > as 'a) -> 'b -> _ =
fun o x -> o#n2 x
end;;
</FONT><FONT COLOR=maroon>class multi_poly :
object
method m1 : < n1 : 'a. 'a -> 'a; .. > -> bool * string
method m2 : < n2 : 'b -> bool; .. > -> 'b -> bool
end
</FONT></PRE>
In method <TT>m1</TT>, <TT>o</TT> must be an object with at least a method <TT>n1</TT>,
itself polymorphic. In method <TT>m2</TT>, the argument of <TT>n2</TT> and <TT>x</TT> must
have the same type, which is quantified at the same level as <TT>'a</TT>.<BR>
<BR>
<H2 CLASS="section"><A NAME="htoc30">3.12</A> Using coercions</H2>
<A NAME="ss:using-coercions"></A>
Subtyping is never implicit. There are, however, two ways to perform
subtyping. The most general construction is fully explicit: both the
domain and the codomain of the type coercion must be given.<BR>
<BR>
We have seen that points and colored points have incompatible types.
For instance, they cannot be mixed in the same list. However, a
colored point can be coerced to a point, hiding its <TT>color</TT> method:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let colored_point_to_point cp = (cp : colored_point :> point);;
</FONT><FONT COLOR=maroon>val colored_point_to_point : colored_point -> point = <fun>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let p = new point 3 and q = new colored_point 4 "blue";;
</FONT>val p : point = <obj>
val q : colored_point = <obj>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let l = [p; (colored_point_to_point q)];;
</FONT>val l : point list = [<obj>; <obj>]
</FONT></PRE>
An object of type <TT>t</TT> can be seen as an object of type <TT>t'</TT>
only if <TT>t</TT> is a subtype of <TT>t'</TT>. For instance, a point cannot be
seen as a colored point.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue><U>(p : point :> colored_point)</U>;;
</FONT><FONT COLOR=maroon>Type point = < get_offset : int; get_x : int; move : int -> unit >
is not a subtype of type
colored_point =
< color : string; get_offset : int; get_x : int; move : int -> unit >
</FONT></PRE>
Indeed, narrowing coercions would be unsafe, and could only be combined with
a type case, possibly raising a runtime error. However, there is no such
operation available in the language. <BR>
<BR>
Be aware that subtyping and inheritance are not related. Inheritance is a
syntactic relation between classes while subtyping is a semantic relation
between types. For instance, the class of colored points could have been
defined directly, without inheriting from the class of points; the type of
colored points would remain unchanged and thus still be a subtype of
points.
<BR>
<BR>
The domain of a coercion can usually be omitted. For instance, one can
define:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let to_point cp = (cp :> point);;
</FONT><FONT COLOR=maroon>val to_point : #point -> point = <fun>
</FONT></PRE>
In this case, the function <TT>colored_point_to_point</TT> is an instance of the
function <TT>to_point</TT>. This is not always true, however. The fully
explicit coercion is more precise and is sometimes unavoidable.
Consider, for example, the following class:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class c0 = object method m = {< >} method n = 0 end;;
</FONT><FONT COLOR=maroon>class c0 : object ('a) method m : 'a method n : int end
</FONT></PRE>
The object type <TT>c0</TT> is an abbreviation for <TT><m : 'a; n : int> as 'a</TT>.
Consider now the type declaration:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class type c1 = object method m : c1 end;;
</FONT><FONT COLOR=maroon>class type c1 = object method m : c1 end
</FONT></PRE>
The object type <TT>c1</TT> is an abbreviation for the type <TT><m : 'a> as 'a</TT>.
The coercion from an object of type <TT>c0</TT> to an object of type <TT>c1</TT> is
correct:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>fun (x:c0) -> (x : c0 :> c1);;
</FONT><FONT COLOR=maroon>- : c0 -> c1 = <fun>
</FONT></PRE>
However, the domain of the coercion cannot be omitted here:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>fun (x:c0) -> (<U>x</U> :> c1);;
</FONT><FONT COLOR=maroon>This expression cannot be coerced to type c1 = < m : c1 >; it has type
c0 = < m : c0; n : int >
but is here used with type < m : #c1 as 'a; .. >
Type c0 = < m : c0; n : int > is not compatible with type 'a = < m : c1; .. >
Type c0 = < m : c0; n : int > is not compatible with type c1 = < m : c1 >
Only the first object type has a method n.
This simple coercion was not fully general. Consider using a double coercion.
</FONT></PRE>
The solution is to use the explicit form.
Sometimes, a change in the class-type definition can also solve the problem
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class type c2 = object ('a) method m : 'a end;;
</FONT><FONT COLOR=maroon>class type c2 = object ('a) method m : 'a end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>fun (x:c0) -> (x :> c2);;
</FONT>- : c0 -> c2 = <fun>
</FONT></PRE>
While class types <TT>c1</TT> and <TT>c2</TT> are different, both object types
<TT>c1</TT> and <TT>c2</TT> expand to the same object type (same method names and types).
Yet, when the domain of a coercion is left implicit and its co-domain
is an abbreviation of a known class type, then the class type, rather
than the object type, is used to derive the coercion function. This
allows to leave the domain implicit in most cases when coercing form a
subclass to its superclass.
The type of a coercion can always be seen as below:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let to_c1 x = (x :> c1);;
</FONT><FONT COLOR=maroon>val to_c1 : < m : #c1; .. > -> c1 = <fun>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let to_c2 x = (x :> c2);;
</FONT>val to_c2 : #c2 -> c2 = <fun>
</FONT></PRE>
Note the difference between the two coercions: in the second case, the type
<TT>#c2 = < m : 'a; .. > as 'a</TT> is polymorphically recursive (according
to the explicit recursion in the class type of <TT>c2</TT>); hence the
success of applying this coercion to an object of class <TT>c0</TT>.
On the other hand, in the first case, <TT>c1</TT> was only expanded and
unrolled twice to obtain <TT>< m : < m : c1; .. >; .. ></TT> (remember <TT>#c1 = < m : c1; .. ></TT>), without introducing recursion.
You may also note that the type of <TT>to_c2</TT> is <TT>#c2 -> c2</TT> while
the type of <TT>to_c1</TT> is more general than <TT>#c1 -> c1</TT>. This is not always true,
since there are class types for which some instances of <TT>#c</TT> are not subtypes
of <TT>c</TT>, as explained in section <A HREF="#ss:binary-methods">3.16</A>. Yet, for
parameterless classes the coercion <TT>(_ :> c)</TT> is always more general than
<TT>(_ : #c :> c)</TT>.
<BR>
<BR>
A common problem may occur when one tries to define a coercion to a
class <TT>c</TT> while defining class <TT>c</TT>. The problem is due to the type
abbreviation not being completely defined yet, and so its subtypes are not
clearly known. Then, a coercion <TT>(_ :> c)</TT> or <TT>(_ : #c :> c)</TT> is taken to be
the identity function, as in
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>function x -> (x :> 'a);;
</FONT><FONT COLOR=maroon>- : 'a -> 'a = <fun>
</FONT></PRE>
As a consequence, if the coercion is applied to <TT>self</TT>, as in the
following example, the type of <TT>self</TT> is unified with the closed type
<TT>c</TT> (a closed object type is an object type without ellipsis). This
would constrain the type of self be closed and is thus rejected.
Indeed, the type of self cannot be closed: this would prevent any
further extension of the class. Therefore, a type error is generated
when the unification of this type with another type would result in a
closed object type.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class c = object method m = 1 end
and d = object (self)
inherit c
method n = 2
method as_c = (<U>self</U> :> c)
end;;
</FONT><FONT COLOR=maroon>This expression cannot be coerced to type c = < m : int >; it has type
< as_c : c; m : int; n : int; .. >
but is here used with type c
Self type cannot be unified with a closed object type
</FONT></PRE>
However, the most common instance of this problem, coercing self to
its current class, is detected as a special case by the type checker,
and properly typed.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class c = object (self) method m = (self :> c) end;;
</FONT><FONT COLOR=maroon>class c : object method m : c end
</FONT></PRE>
This allows the following idiom, keeping a list of all objects
belonging to a class or its subclasses:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let all_c = ref [];;
</FONT><FONT COLOR=maroon>val all_c : '_a list ref = {contents = []}
<FONT COLOR=black>#</FONT><FONT COLOR=blue>class c (m : int) =
object (self)
method m = m
initializer all_c := (self :> c) :: !all_c
end;;
</FONT>class c : int -> object method m : int end
</FONT></PRE>
This idiom can in turn be used to retrieve an object whose type has
been weakened:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let rec lookup_obj obj = function [] -> raise Not_found
| obj' :: l ->
if (obj :> < >) = (obj' :> < >) then obj' else lookup_obj obj l ;;
</FONT><FONT COLOR=maroon>val lookup_obj : < .. > -> (< .. > as 'a) list -> 'a = <fun>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let lookup_c obj = lookup_obj obj !all_c;;
</FONT>val lookup_c : < .. > -> < m : int > = <fun>
</FONT></PRE>
The type <TT>< m : int ></TT> we see here is just the expansion of <TT>c</TT>, due
to the use of a reference; we have succeeded in getting back an object
of type <TT>c</TT>.<BR>
<BR>
<BR>
The previous coercion problem can often be avoided by first
defining the abbreviation, using a class type:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class type c' = object method m : int end;;
</FONT><FONT COLOR=maroon>class type c' = object method m : int end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>class c : c' = object method m = 1 end
and d = object (self)
inherit c
method n = 2
method as_c = (self :> c')
end;;
</FONT>class c : c'
and d : object method as_c : c' method m : int method n : int end
</FONT></PRE>
It is also possible to use a virtual class. Inheriting from this class
simultaneously allows to enforce all methods of <TT>c</TT> to have the same
type as the methods of <TT>c'</TT>.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class virtual c' = object method virtual m : int end;;
</FONT><FONT COLOR=maroon>class virtual c' : object method virtual m : int end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>class c = object (self) inherit c' method m = 1 end;;
</FONT>class c : object method m : int end
</FONT></PRE>
One could think of defining the type abbreviation directly:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>type c' = <m : int>;;
</FONT></PRE>
However, the abbreviation <TT>#c'</TT> cannot be defined directly in a similar way.
It can only be defined by a class or a class-type definition.
This is because <TT>#</TT> sharp abbreviations carry an implicit anonymous
variable <TT>..</TT> that cannot be explicitly named.
The closer you get to it is:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>type 'a c'_class = 'a constraint 'a = < m : int; .. >;;
</FONT></PRE>
with an extra type variable capturing the open object type.<BR>
<BR>
<H2 CLASS="section"><A NAME="htoc31">3.13</A> Functional objects</H2>
<A NAME="ss:functional-objects"></A>
It is possible to write a version of class <TT>point</TT> without assignments
on the instance variables. The construct <TT>{< ... >}</TT> returns a copy of
“self” (that is, the current object), possibly changing the value of
some instance variables.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class functional_point y =
object
val x = y
method get_x = x
method move d = {< x = x + d >}
end;;
</FONT><FONT COLOR=maroon>class functional_point :
int ->
object ('a) val x : int method get_x : int method move : int -> 'a end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let p = new functional_point 7;;
</FONT>val p : functional_point = <obj>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>p#get_x;;
</FONT>- : int = 7
<FONT COLOR=black>#</FONT><FONT COLOR=blue>(p#move 3)#get_x;;
</FONT>- : int = 10
<FONT COLOR=black>#</FONT><FONT COLOR=blue>p#get_x;;
</FONT>- : int = 7
</FONT></PRE>
Note that the type abbreviation <TT>functional_point</TT> is recursive, which can
be seen in the class type of <TT>functional_point</TT>: the type of self is <TT>'a</TT>
and <TT>'a</TT> appears inside the type of the method <TT>move</TT>.<BR>
<BR>
The above definition of <TT>functional_point</TT> is not equivalent
to the following:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class bad_functional_point y =
object
val x = y
method get_x = x
method move d = new bad_functional_point (x+d)
end;;
</FONT><FONT COLOR=maroon>class bad_functional_point :
int ->
object
val x : int
method get_x : int
method move : int -> bad_functional_point
end
</FONT></PRE>
While objects of either class will behave the same, objects of their
subclasses will be different. In a subclass of the latter, the method
<TT>move</TT> will
keep returning an object of the parent class. On the contrary, in a
subclass of the former, the method <TT>move</TT> will return an object of the
subclass.<BR>
<BR>
Functional update is often used in conjunction with binary methods
as illustrated in section <A HREF="manual007.html#module:string">5.2.1</A>.<BR>
<BR>
<H2 CLASS="section"><A NAME="htoc32">3.14</A> Cloning objects</H2>
<A NAME="ss:cloning-objects"></A>
Objects can also be cloned, whether they are functional or imperative.
The library function <TT>Oo.copy</TT> makes a shallow copy of an object. That is,
it returns an object that is equal to the previous one. The
instance variables have been copied but their contents are shared.
Assigning a new value to an instance variable of the copy (using a method
call) will not affect instance variables of the original, and conversely.
A deeper assignment (for example if the instance variable if a reference cell)
will of course affect both the original and the copy. <BR>
<BR>
The type of <TT>Oo.copy</TT> is the following:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>Oo.copy;;
</FONT><FONT COLOR=maroon>- : (< .. > as 'a) -> 'a = <fun>
</FONT></PRE>
The keyword <TT>as</TT> in that type binds the type variable <TT>'a</TT> to
the object type <TT>< .. ></TT>. Therefore, <TT>Oo.copy</TT> takes an object with
any methods (represented by the ellipsis), and returns an object of
the same type. The type of <TT>Oo.copy</TT> is different from type <TT>< .. > -> < .. ></TT> as each ellipsis represents a different set of methods.
Ellipsis actually behaves as a type variable.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let p = new point 5;;
</FONT><FONT COLOR=maroon>val p : point = <obj>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let q = Oo.copy p;;
</FONT>val q : < get_offset : int; get_x : int; move : int -> unit > = <obj>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>q#move 7; (p#get_x, q#get_x);;
</FONT>- : int * int = (5, 12)
</FONT></PRE>
In fact, <TT>Oo.copy p</TT> will behave as <TT>p#copy</TT> assuming that a public
method <TT>copy</TT> with body <TT>{< >}</TT> has been defined in the class of <TT>p</TT>.<BR>
<BR>
Objects can be compared using the generic comparison functions <TT>=</TT> and <TT><></TT>.
Two objects are equal if and only if they are physically equal. In
particular, an object and its copy are not equal.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let q = Oo.copy p;;
</FONT><FONT COLOR=maroon>val q : < get_offset : int; get_x : int; move : int -> unit > = <obj>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>p = q, p = p;;
</FONT>- : bool * bool = (false, true)
</FONT></PRE>
Other generic comparissons such as (<TT><</TT>, <TT><=</TT>,...) can also be used on objects. The
relation <TT><</TT> defines an unspecified but strict ordering on objets. The
ordering relationship between two objects is fixed once for all after the
two objects have been created and it is not affected by mutation of fields.<BR>
<BR>
Cloning and override have a non empty intersection.
They are interchangeable when used within an object and without
overriding any field:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class copy =
object
method copy = {< >}
end;;
</FONT><FONT COLOR=maroon>class copy : object ('a) method copy : 'a end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>class copy =
object (self)
method copy = Oo.copy self
end;;
</FONT>class copy : object ('a) method copy : 'a end
</FONT></PRE>
Only the override can be used to actually override fields, and
only the <TT>Oo.copy</TT> primitive can be used externally. <BR>
<BR>
Cloning can also be used to provide facilities for saving and
restoring the state of objects.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class backup =
object (self : 'mytype)
val mutable copy = None
method save = copy <- Some {< copy = None >}
method restore = match copy with Some x -> x | None -> self
end;;
</FONT><FONT COLOR=maroon>class backup :
object ('a)
val mutable copy : 'a option
method restore : 'a
method save : unit
end
</FONT></PRE>
The above definition will only backup one level.
The backup facility can be added to any class using multiple inheritance.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class ['a] backup_ref x = object inherit ['a] ref x inherit backup end;;
</FONT><FONT COLOR=maroon>class ['a] backup_ref :
'a ->
object ('b)
val mutable copy : 'b option
val mutable x : 'a
method get : 'a
method restore : 'b
method save : unit
method set : 'a -> unit
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let rec get p n = if n = 0 then p # get else get (p # restore) (n-1);;
</FONT>val get : (< get : 'b; restore : 'a; .. > as 'a) -> int -> 'b = <fun>
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let p = new backup_ref 0 in
p # save; p # set 1; p # save; p # set 2;
[get p 0; get p 1; get p 2; get p 3; get p 4];;
</FONT>- : int list = [2; 1; 1; 1; 1]
</FONT></PRE>
A variant of backup could retain all copies. (We then add a method clear to
manually erase all copies.)
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class backup =
object (self : 'mytype)
val mutable copy = None
method save = copy <- Some {< >}
method restore = match copy with Some x -> x | None -> self
method clear = copy <- None
end;;
</FONT><FONT COLOR=maroon>class backup :
object ('a)
val mutable copy : 'a option
method clear : unit
method restore : 'a
method save : unit
end
</FONT></PRE>
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class ['a] backup_ref x = object inherit ['a] ref x inherit backup end;;
</FONT><FONT COLOR=maroon>class ['a] backup_ref :
'a ->
object ('b)
val mutable copy : 'b option
val mutable x : 'a
method clear : unit
method get : 'a
method restore : 'b
method save : unit
method set : 'a -> unit
end
<FONT COLOR=black>#</FONT><FONT COLOR=blue>let p = new backup_ref 0 in
p # save; p # set 1; p # save; p # set 2;
[get p 0; get p 1; get p 2; get p 3; get p 4];;
</FONT>- : int list = [2; 1; 0; 0; 0]
</FONT></PRE>
<H2 CLASS="section"><A NAME="htoc33">3.15</A> Recursive classes</H2>
<A NAME="ss:recursive-classes"></A>
Recursive classes can be used to define objects whose types are
mutually recursive.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class window =
object
val mutable top_widget = (None : widget option)
method top_widget = top_widget
end
and widget (w : window) =
object
val window = w
method window = window
end;;
</FONT><FONT COLOR=maroon>class window :
object
val mutable top_widget : widget option
method top_widget : widget option
end
and widget : window -> object val window : window method window : window end
</FONT></PRE>
Although their types are mutually recursive, the classes <TT>widget</TT> and
<TT>window</TT> are themselves independent. <BR>
<BR>
<H2 CLASS="section"><A NAME="htoc34">3.16</A> Binary methods</H2>
<A NAME="ss:binary-methods"></A>
A binary method is a method which takes an argument of the same type
as self. The class <TT>comparable</TT> below is a template for classes with a
binary method <TT>leq</TT> of type <TT>'a -> bool</TT> where the type variable <TT>'a</TT>
is bound to the type of self. Therefore, <TT>#comparable</TT> expands to <TT>< leq : 'a -> bool; .. > as 'a</TT>. We see here that the binder <TT>as</TT> also
allows to write recursive types.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class virtual comparable =
object (_ : 'a)
method virtual leq : 'a -> bool
end;;
</FONT><FONT COLOR=maroon>class virtual comparable : object ('a) method virtual leq : 'a -> bool end
</FONT></PRE>
We then define a subclass <TT>money</TT> of <TT>comparable</TT>. The class money
simply wraps floats as comparable objects. We will extend it below with
more operations. There is a type constraint on the class parameter <TT>x</TT>
as the primitive <TT><=</TT> is a polymorphic comparison function in
Objective Caml. The <TT>inherit</TT> clause ensures that the type of objects
of this class is an instance of <TT>#comparable</TT>.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class money (x : float) =
object
inherit comparable
val repr = x
method value = repr
method leq p = repr <= p#value
end;;
</FONT><FONT COLOR=maroon>class money :
float ->
object ('a)
val repr : float
method leq : 'a -> bool
method value : float
end
</FONT></PRE>
Note that the type <TT>money1</TT> is not a subtype of type
<TT>comparable</TT>, as the self type appears in contravariant position
in the type of method <TT>leq</TT>.
Indeed, an object <TT>m</TT> of class <TT>money</TT> has a method <TT>leq</TT>
that expects an argument of type <TT>money</TT> since it accesses
its <TT>value</TT> method. Considering <TT>m</TT> of type <TT>comparable</TT> would allow to
call method <TT>leq</TT> on <TT>m</TT> with an argument that does not have a method
<TT>value</TT>, which would be an error.<BR>
<BR>
Similarly, the type <TT>money2</TT> below is not a subtype of type <TT>money</TT>.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class money2 x =
object
inherit money x
method times k = {< repr = k *. repr >}
end;;
</FONT><FONT COLOR=maroon>class money2 :
float ->
object ('a)
val repr : float
method leq : 'a -> bool
method times : float -> 'a
method value : float
end
</FONT></PRE>
It is however possible to define functions that manipulate objects of
type either <TT>money</TT> or <TT>money2</TT>: the function <TT>min</TT>
will return the minimum of any two objects whose type unifies with
<TT>#comparable</TT>. The type of <TT>min</TT> is not the same as <TT>#comparable -> #comparable -> #comparable</TT>, as the abbreviation <TT>#comparable</TT> hides a
type variable (an ellipsis). Each occurrence of this abbreviation
generates a new variable.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>let min (x : #comparable) y =
if x#leq y then x else y;;
</FONT><FONT COLOR=maroon>val min : (#comparable as 'a) -> 'a -> 'a = <fun>
</FONT></PRE>
This function can be applied to objects of type <TT>money</TT>
or <TT>money2</TT>.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>(min (new money 1.3) (new money 3.1))#value;;
</FONT><FONT COLOR=maroon>- : float = 1.3
<FONT COLOR=black>#</FONT><FONT COLOR=blue>(min (new money2 5.0) (new money2 3.14))#value;;
</FONT>- : float = 3.14
</FONT></PRE>
More examples of binary methods can be found in sections
<A HREF="manual007.html#module:string">5.2.1</A> and <A HREF="manual007.html#module:set">5.2.3</A>.<BR>
<BR>
Notice the use of functional update for method <TT>times</TT>.
Writing <TT>new money2 (k *. repr)</TT> instead of <TT>{< repr = k *. repr >}</TT>
would not behave well with inheritance: in a subclass <TT>money3</TT> of <TT>money2</TT>
the <TT>times</TT> method would return an object of class <TT>money2</TT> but not of class
<TT>money3</TT> as would be expected. <BR>
<BR>
The class <TT>money</TT> could naturally carry another binary method. Here is a
direct definition:
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class money x =
object (self : 'a)
val repr = x
method value = repr
method print = print_float repr
method times k = {< repr = k *. x >}
method leq (p : 'a) = repr <= p#value
method plus (p : 'a) = {< repr = x +. p#value >}
end;;
</FONT><FONT COLOR=maroon>class money :
float ->
object ('a)
val repr : float
method leq : 'a -> bool
method plus : 'a -> 'a
method print : unit
method times : float -> 'a
method value : float
end
</FONT></PRE>
<H2 CLASS="section"><A NAME="htoc35">3.17</A> Friends</H2>
<A NAME="ss:friends"></A>
The above class <TT>money</TT> reveals a problem that often occurs with binary
methods. In order to interact with other objects of the same class, the
representation of <TT>money</TT> objects must be revealed, using a method such as
<TT>value</TT>. If we remove all binary methods (here <TT>plus</TT> and <TT>leq</TT>),
the representation can easily be hidden inside objects by removing the method
<TT>value</TT> as well. However, this is not possible as long as some binary
requires access to the representation on object of the same class but
different from self.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>class safe_money x =
object (self : 'a)
val repr = x
method print = print_float repr
method times k = {< repr = k *. x >}
end;;
</FONT><FONT COLOR=maroon>class safe_money :
float ->
object ('a)
val repr : float
method print : unit
method times : float -> 'a
end
</FONT></PRE>
Here, the representation of the object is known only to a particular object.
To make it available to other objects of the same class, we are forced to
make it available to the whole world. However we can easily restrict the
visibility of the representation using the module system.
<PRE><FONT COLOR=black>#</FONT><FONT COLOR=blue>module type MONEY =
sig
type t
class c : float ->
object ('a)
val repr : t
method value : t
method print : unit
method times : float -> 'a
method leq : 'a -> bool
method plus : 'a -> 'a
end
end;;
module Euro : MONEY =
struct
type t = float
class c x =
object (self : 'a)
val repr = x
method value = repr
method print = print_float repr
method times k = {< repr = k *. x >}
method leq (p : 'a) = repr <= p#value
method plus (p : 'a) = {< repr = x +. p#value >}
end
end;;
</FONT></PRE>
Another example of friend functions may be found in section
<A HREF="manual007.html#module:set">5.2.3</A>. These examples occur when a group of objects (here
objects of the same class) and functions should see each others internal
representation, while their representation should be hidden from the
outside. The solution is always to define all friends in the same module,
give access to the representation and use a signature constraint to make the
representation abstract outside of the module.<BR>
<BR>
<BR>
<BR>
<HR>
<A HREF="manual004.html"><IMG SRC ="previous_motif.gif" ALT="Previous"></A>
<A HREF="index.html"><IMG SRC ="contents_motif.gif" ALT="Up"></A>
<A HREF="manual006.html"><IMG SRC ="next_motif.gif" ALT="Next"></A>
</BODY>
</HTML>
|