File: manual021.html

package info (click to toggle)
ocaml-doc 3.09-1
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 10,428 kB
  • ctags: 4,963
  • sloc: ml: 9,244; makefile: 2,413; ansic: 122; sh: 49; asm: 17
file content (392 lines) | stat: -rw-r--r-- 29,368 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
            "http://www.w3.org/TR/REC-html40/loose.dtd">
<HTML>
<HEAD>



<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="hevea 1.08">
<LINK rel="stylesheet" type="text/css" href="manual.css">
<TITLE>
Language extensions
</TITLE>
</HEAD>
<BODY >
<A HREF="manual008.html"><IMG SRC ="previous_motif.gif" ALT="Previous"></A>
<A HREF="index.html"><IMG SRC ="contents_motif.gif" ALT="Up"></A>
<A HREF="manual022.html"><IMG SRC ="next_motif.gif" ALT="Next"></A>
<HR>

<H1 CLASS="chapter"><A NAME="htoc91">Chapter&nbsp;7</A>&nbsp;&nbsp;Language extensions</H1> <A NAME="c:extensions"></A>

This chapter describes language extensions and convenience features
that are implemented in Objective Caml, but not described in the
Objective Caml reference manual.<BR>
<BR>

<H2 CLASS="section"><A NAME="htoc92">7.1</A>&nbsp;&nbsp;Integer literals for types <TT>int32</TT>, <TT>int64</TT> and <TT>nativeint</TT></H2><BR>
<BR>
<DIV CLASS="center"><TABLE CELLSPACING=2 CELLPADDING=0>
<TR><TD ALIGN=right NOWRAP>
<A NAME="int32-literal"></A>
<FONT COLOR=maroon><I><TT>int32-literal</TT></I></FONT></TD>
<TD ALIGN=right NOWRAP>::=</TD>
<TD ALIGN=left NOWRAP> <FONT COLOR=maroon><I><a href="manual009.html#integer-literal"><font color=maroon><TT>integer-literal</TT></font></a></I></FONT> <FONT COLOR=blue><TT>l</TT></FONT></TD>
</TR>
<TR><TD ALIGN=right NOWRAP>
<A NAME="int64-literal"></A>
<FONT COLOR=maroon><I><TT>int64-literal</TT></I></FONT></TD>
<TD ALIGN=right NOWRAP>::=</TD>
<TD ALIGN=left NOWRAP> <FONT COLOR=maroon><I><a href="manual009.html#integer-literal"><font color=maroon><TT>integer-literal</TT></font></a></I></FONT> <FONT COLOR=blue><TT>L</TT></FONT></TD>
</TR>
<TR><TD ALIGN=right NOWRAP>
<A NAME="nativeint-literal"></A>
<FONT COLOR=maroon><I><TT>nativeint-literal</TT></I></FONT></TD>
<TD ALIGN=right NOWRAP>::=</TD>
<TD ALIGN=left NOWRAP> <FONT COLOR=maroon><I><a href="manual009.html#integer-literal"><font color=maroon><TT>integer-literal</TT></font></a></I></FONT> <FONT COLOR=blue><TT>n</TT></FONT></TD>
</TR></TABLE></DIV>
An integer literal can be followed by one of the letters <TT>l</TT>, <TT>L</TT> or <TT>n</TT>
to indicate that this integer has type <TT>int32</TT>, <TT>int64</TT> or <TT>nativeint</TT>
respectively, instead of the default type <TT>int</TT> for integer literals.
<A NAME="@manual3"></A>
<A NAME="@manual4"></A>
<A NAME="@manual5"></A>
The library modules <TT>Int32</TT>[<TT><A HREF="libref/Int32.html">Int32</A></TT>],
<TT>Int64</TT>[<TT><A HREF="libref/Int64.html">Int64</A></TT>] and <TT>Nativeint</TT>[<TT><A HREF="libref/Nativeint.html">Nativeint</A></TT>]
provide operations on these integer types.<BR>
<BR>

<H2 CLASS="section"><A NAME="htoc93">7.2</A>&nbsp;&nbsp;Streams and stream parsers</H2>
<A NAME="s:streams"></A>
The syntax for streams and stream parsers is no longer part of the
Objective Caml language, but available through a Camlp4 syntax
extension. See the Camlp4 reference manual for more information.
<div style="background-color:yellow; color:red; border-style:none; border-width:0.5pt">
Support for basic operations on streams is still available through the
<TT>Stream</TT>[<TT><A HREF="libref/Stream.html">Stream</A></TT>]
module of the standard library.
</div>
Objective Caml programs
that use the stream parser syntax should be compiled with the
<TT>-pp camlp4o</TT> option to <TT>ocamlc</TT> and <TT>ocamlopt</TT>. For interactive use,
run <TT>ocaml</TT> and issue the <CODE>#load "camlp4o.cma";;</CODE> command.<BR>
<BR>

<H2 CLASS="section"><A NAME="htoc94">7.3</A>&nbsp;&nbsp;Recursive definitions of values</H2> <A NAME="s:letrecvalues"></A>
As mentioned in section&nbsp;<A HREF="manual015.html#s:localdef">6.7.1</A>, the <FONT COLOR=blue><TT>let rec</TT></FONT> binding
construct, in addition to the definition of recursive functions,
also supports a certain class of recursive definitions of
non-functional values, such as
<DIV CLASS="center">
<FONT COLOR=blue><TT>let</TT> <TT>rec</TT></FONT> <FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>1</SUB> <FONT COLOR=blue><TT>=</TT> <TT>1</TT> <TT>::</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>2</SUB>
<FONT COLOR=blue><TT>and</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>2</SUB> <FONT COLOR=blue><TT>=</TT> <TT>2</TT> <TT>::</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>1</SUB>
<FONT COLOR=blue><TT>in</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>expr</TT></I></FONT>
</DIV>
which binds <FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>1</SUB> to the cyclic list <TT>1::2::1::2::</TT>..., and
<FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>2</SUB> to the cyclic list <TT>2::1::2::1::</TT>...Informally, the class of accepted definitions consists of those
definitions where the defined names occur only inside function
bodies or as argument to a data constructor.<BR>
<BR>
More precisely, consider the expression:
<DIV CLASS="center">
<FONT COLOR=blue><TT>let</TT> <TT>rec</TT></FONT> <FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>1</SUB> <FONT COLOR=blue><TT>=</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB> <FONT COLOR=blue><TT>and</TT></FONT> &hellip; <FONT COLOR=blue><TT>and</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>name</TT></FONT><SUB>n</SUB></I> <FONT COLOR=blue><TT>=</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>n</SUB></I> <FONT COLOR=blue><TT>in</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>expr</TT></I></FONT>
</DIV>
It will be accepted if each one of <FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB> &hellip; &nbsp;<I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>n</SUB></I> is
statically constructive with respect to <FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>1</SUB> &hellip; &nbsp;<I><FONT COLOR=maroon><TT>name</TT></FONT><SUB>n</SUB></I> and
not immediately linked to any of <FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>1</SUB> &hellip; &nbsp;<I><FONT COLOR=maroon><TT>name</TT></FONT><SUB>n</SUB></I><BR>
<BR>
An expression <FONT COLOR=maroon><I><TT>e</TT></I></FONT> is said to be <EM>statically constructive
with respect to</EM> the variables <FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>1</SUB> &hellip; &nbsp;<I><FONT COLOR=maroon><TT>name</TT></FONT><SUB>n</SUB></I> if at least
one of the following conditions is true:
<UL CLASS="itemize"><LI CLASS="li-itemize">
<FONT COLOR=maroon><I><TT>e</TT></I></FONT> has no free occurrence of any of <FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>1</SUB> &hellip; &nbsp;<I><FONT COLOR=maroon><TT>name</TT></FONT><SUB>n</SUB></I>
<LI CLASS="li-itemize"><FONT COLOR=maroon><I><TT>e</TT></I></FONT> is a variable
<LI CLASS="li-itemize"><FONT COLOR=maroon><I><TT>e</TT></I></FONT> has the form <FONT COLOR=blue><TT>fun</TT></FONT> &hellip; <FONT COLOR=blue><TT>-&gt;</TT></FONT> &hellip;
<LI CLASS="li-itemize"><FONT COLOR=maroon><I><TT>e</TT></I></FONT> has the form <FONT COLOR=blue><TT>function</TT></FONT> &hellip; <FONT COLOR=blue><TT>-&gt;</TT></FONT> &hellip;
<LI CLASS="li-itemize"><FONT COLOR=maroon><I><TT>e</TT></I></FONT> has the form <FONT COLOR=blue><TT>lazy</TT> <TT>(</TT></FONT> &hellip; <FONT COLOR=blue><TT>)</TT></FONT>
<LI CLASS="li-itemize"><FONT COLOR=maroon><I><TT>e</TT></I></FONT> has one of the following forms, where each one of
 <FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB> &hellip; &nbsp;<I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>m</SUB></I> is statically constructive with respect to
 <FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>1</SUB> &hellip; &nbsp;<I><FONT COLOR=maroon><TT>name</TT></FONT><SUB>n</SUB></I>, and <FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>0</SUB> is statically constructive with
 respect to <FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>1</SUB> &hellip; &nbsp;<I><FONT COLOR=maroon><TT>name</TT></FONT><SUB>n</SUB></I>, &nbsp;<FONT COLOR=maroon><I><TT>xname</TT></I></FONT><SUB>1</SUB> &hellip; &nbsp;<I><FONT COLOR=maroon><TT>xname</TT></FONT><SUB>m</SUB></I>:
 <UL CLASS="itemize"><LI CLASS="li-itemize">
 <FONT COLOR=blue><TT>let</TT></FONT> [<FONT COLOR=blue><TT>rec</TT></FONT>] <FONT COLOR=maroon><I><TT>xname</TT></I></FONT><SUB>1</SUB> <FONT COLOR=blue><TT>=</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB> <FONT COLOR=blue><TT>and</TT></FONT> &hellip;
 <FONT COLOR=blue><TT>and</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>xname</TT></FONT><SUB>m</SUB></I> <FONT COLOR=blue><TT>=</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>m</SUB></I> <FONT COLOR=blue><TT>in</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>0</SUB>
 <LI CLASS="li-itemize"><FONT COLOR=blue><TT>let</TT> <TT>module</TT></FONT> &hellip; <FONT COLOR=blue><TT>in</TT></FONT> <FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB>
 <LI CLASS="li-itemize"><FONT COLOR=maroon><TT><I>constr</I></TT> <FONT COLOR=blue><TT>(</TT></FONT>&nbsp;<TT><I>expr</I></TT></FONT><SUB>1</SUB><FONT COLOR=blue><TT>,</TT></FONT> &hellip; <FONT COLOR=blue><TT>,</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>m</SUB></I><FONT COLOR=blue><TT>)</TT></FONT>
 <LI CLASS="li-itemize"><FONT COLOR=blue><TT>`<FONT COLOR=maroon><I>tag-name</I></FONT></TT> <TT>(</TT></FONT>&nbsp;<FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB><FONT COLOR=blue><TT>,</TT></FONT> &hellip; <FONT COLOR=blue><TT>,</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>m</SUB></I><FONT COLOR=blue><TT>)</TT></FONT>
 <LI CLASS="li-itemize"><FONT COLOR=blue><TT>[|</TT></FONT> <FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB><FONT COLOR=blue><TT>;</TT></FONT> &hellip; <FONT COLOR=blue><TT>;</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>m</SUB></I> <FONT COLOR=blue><TT>|]</TT></FONT>
 <LI CLASS="li-itemize"><FONT COLOR=blue><TT>{</TT></FONT> <FONT COLOR=maroon><I><TT>field</TT></I></FONT><SUB>1</SUB> <FONT COLOR=blue><TT>=</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB><FONT COLOR=blue><TT>;</TT></FONT> &hellip; <FONT COLOR=blue><TT>;</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>field</TT></FONT><SUB>m</SUB></I> = &nbsp;<I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>m</SUB></I> <FONT COLOR=blue><TT>}</TT></FONT>
 <LI CLASS="li-itemize"><FONT COLOR=blue><TT>{</TT></FONT> <FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB> <FONT COLOR=blue><TT>with</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>field</TT></I></FONT><SUB>2</SUB> <FONT COLOR=blue><TT>=</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>2</SUB><FONT COLOR=blue><TT>;</TT></FONT> &hellip; <FONT COLOR=blue><TT>;</TT></FONT>
 &nbsp;<I><FONT COLOR=maroon><TT>field</TT></FONT><SUB>m</SUB></I> = &nbsp;<I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>m</SUB></I> <FONT COLOR=blue><TT>}</TT></FONT> where <FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB> is not immediately
 linked to <FONT COLOR=maroon><I><TT>name</TT></I></FONT><SUB>1</SUB> &hellip; &nbsp;<I><FONT COLOR=maroon><TT>name</TT></FONT><SUB>n</SUB></I>
 <LI CLASS="li-itemize"><FONT COLOR=blue><TT>(</TT></FONT> <FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB><FONT COLOR=blue><TT>,</TT></FONT> &hellip; <FONT COLOR=blue><TT>,</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>m</SUB></I> <FONT COLOR=blue><TT>)</TT></FONT>
 <LI CLASS="li-itemize"><FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB><FONT COLOR=blue><TT>;</TT></FONT> &hellip; <FONT COLOR=blue><TT>;</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>m</SUB></I>
 </UL>
</UL>
An expression <FONT COLOR=maroon><I><TT>e</TT></I></FONT> is said to be <EM>immediately linked to</EM> the variable
<FONT COLOR=maroon><I><TT>name</TT></I></FONT> in the following cases:
<UL CLASS="itemize"><LI CLASS="li-itemize">
<FONT COLOR=maroon><I><TT>e</TT></I></FONT> is <FONT COLOR=maroon><I><TT>name</TT></I></FONT>
<LI CLASS="li-itemize"><FONT COLOR=maroon><I><TT>e</TT></I></FONT> has the form <FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB><FONT COLOR=blue><TT>;</TT></FONT> &hellip; <FONT COLOR=blue><TT>;</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>m</SUB></I> where <I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>m</SUB></I>
 is immediately linked to <FONT COLOR=maroon><I><TT>name</TT></I></FONT>
<LI CLASS="li-itemize"><FONT COLOR=maroon><I><TT>e</TT></I></FONT> has the form <FONT COLOR=blue><TT>let</TT></FONT> [<FONT COLOR=blue><TT>rec</TT></FONT>] <FONT COLOR=maroon><I><TT>xname</TT></I></FONT><SUB>1</SUB> <FONT COLOR=blue><TT>=</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>1</SUB> <FONT COLOR=blue><TT>and</TT></FONT> &hellip;
 <FONT COLOR=blue><TT>and</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>xname</TT></FONT><SUB>m</SUB></I> <FONT COLOR=blue><TT>=</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>m</SUB></I> <FONT COLOR=blue><TT>in</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>0</SUB> where <FONT COLOR=maroon><I><TT>expr</TT></I></FONT><SUB>0</SUB> is immediately
 linked to <FONT COLOR=maroon><I><TT>name</TT></I></FONT> or to one of the <I><FONT COLOR=maroon><TT>xname</TT></FONT><SUB>i</SUB></I> such that <I><FONT COLOR=maroon><TT>expr</TT></FONT><SUB>i</SUB></I>
 is immediately linked to <FONT COLOR=maroon><I><TT>name</TT></I></FONT>.
</UL>

<H2 CLASS="section"><A NAME="htoc95">7.4</A>&nbsp;&nbsp;Range patterns</H2>
In patterns, Objective Caml recognizes the form
<FONT COLOR=blue><TT>'</TT> <FONT COLOR=maroon><TT><I>c</I></TT></FONT> <TT>'</TT> <TT>..</TT> <TT>'</TT> &nbsp;<FONT COLOR=maroon><TT><I>d</I></TT></FONT> <TT>'</TT></FONT>
(two character literals separated by&nbsp;<TT>..</TT>) as shorthand for the pattern
<DIV CLASS="center">
<FONT COLOR=blue><TT>'</TT></FONT> <FONT COLOR=maroon><TT><I>c</I></TT> <FONT COLOR=blue><TT>'</TT> <TT>|</TT> <TT>'</TT></FONT> &nbsp;<TT><I>c</I></TT></FONT><SUB>1</SUB> <FONT COLOR=blue><TT>'</TT> <TT>|</TT> <TT>'</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>c</TT></I></FONT><SUB>2</SUB> <FONT COLOR=blue><TT>'</TT> <TT>|</TT></FONT> &hellip;
 <FONT COLOR=blue><TT>|</TT> <TT>'</TT></FONT> &nbsp;<I><FONT COLOR=maroon><TT>c</TT></FONT><SUB>n</SUB></I> <FONT COLOR=blue><TT>'</TT> <TT>|</TT> <TT>'</TT> &nbsp;<FONT COLOR=maroon><TT><I>d</I></TT></FONT> <TT>'</TT></FONT>
</DIV>
where <I>c</I><SUB>1</SUB>, <I>c</I><SUB>2</SUB>, ..., <I>c<SUB>n</SUB></I> are the characters
that occur between <I>c</I> and <I>d</I> in the ASCII character set. For
instance, the pattern <TT>'0'..'9'</TT> matches all characters that are digits.<BR>
<BR>

<H2 CLASS="section"><A NAME="htoc96">7.5</A>&nbsp;&nbsp;Assertion checking</H2>
<A NAME="@manual.kwd169"></A>
Objective Caml supports the <TT>assert</TT> construct to check debugging assertions.
The expression <FONT COLOR=blue><TT>assert</TT></FONT> <FONT COLOR=maroon><I><TT>expr</TT></I></FONT> evaluates the expression <FONT COLOR=maroon><I><TT>expr</TT></I></FONT> and
returns <TT>()</TT> if <FONT COLOR=maroon><I><TT>expr</TT></I></FONT> evaluates to <TT>true</TT>. Otherwise, the exception
<TT>Assert_failure</TT> is raised with the source file name and the
location of <FONT COLOR=maroon><I><TT>expr</TT></I></FONT> as arguments. Assertion
checking can be turned off with the <TT>-noassert</TT> compiler option.<BR>
<BR>
As a special case, <TT>assert false</TT> is reduced to
<TT>raise (Assert_failure ...)</TT>, which is polymorphic (and
is not turned off by the <TT>-noassert</TT> option).
<A NAME="@manual6"></A><BR>
<BR>

<H2 CLASS="section"><A NAME="htoc97">7.6</A>&nbsp;&nbsp;Lazy evaluation</H2>
<A NAME="@manual.kwd170"></A>
The expression <FONT COLOR=blue><TT>lazy</TT></FONT> <FONT COLOR=maroon><I><TT>expr</TT></I></FONT> returns a value <I>v</I> of type <TT>Lazy.t</TT> that
encapsulates the computation of <FONT COLOR=maroon><I><TT>expr</TT></I></FONT>. The argument <FONT COLOR=maroon><I><TT>expr</TT></I></FONT> is not
evaluated at this point in the program. Instead, its evaluation will
be performed the first time <TT>Lazy.force</TT> is applied to the value
<I>v</I>, returning the actual value of <FONT COLOR=maroon><I><TT>expr</TT></I></FONT>. Subsequent applications
of <TT>Lazy.force</TT> to <I>v</I> do not evaluate <FONT COLOR=maroon><I><TT>expr</TT></I></FONT> again.
For more information, see the description of module <TT>Lazy</TT> in the
standard library (see
<A HREF="libref/Lazy.html">Module <TT>Lazy</TT></A>).
<A NAME="@manual7"></A><A NAME="@manual8"></A><BR>
<BR>

<H2 CLASS="section"><A NAME="htoc98">7.7</A>&nbsp;&nbsp;Local modules</H2>
<A NAME="@manual.kwd171"></A>
<A NAME="@manual.kwd172"></A>
The expression
<FONT COLOR=blue><TT>let</TT></FONT> <FONT COLOR=blue><TT>module</TT></FONT> <FONT COLOR=maroon><TT><I>module-name</I></TT> <FONT COLOR=blue><TT>=</TT></FONT> &nbsp;<TT><I>module-expr</I></TT> <FONT COLOR=blue><TT>in</TT></FONT> &nbsp;<TT><I>expr</I></TT></FONT>
locally binds the module expression <FONT COLOR=maroon><I><TT>module-expr</TT></I></FONT> to the identifier
<FONT COLOR=maroon><I><TT>module-name</TT></I></FONT> during the evaluation of the expression <FONT COLOR=maroon><I><TT>expr</TT></I></FONT>.
It then returns the value of <FONT COLOR=maroon><I><TT>expr</TT></I></FONT>. For example:
<PRE CLASS="verbatim">
        let remove_duplicates comparison_fun string_list =
          let module StringSet =
            Set.Make(struct type t = string
                            let compare = comparison_fun end) in
          StringSet.elements
            (List.fold_right StringSet.add string_list StringSet.empty)
</PRE>

<H2 CLASS="section"><A NAME="htoc99">7.8</A>&nbsp;&nbsp;Private types</H2>
<A NAME="@manual.kwd173"></A><BR>
<BR>
<DIV CLASS="center"><TABLE CELLSPACING=2 CELLPADDING=0>
<TR><TD ALIGN=right NOWRAP>
<FONT COLOR=maroon><I><a href="manual016.html#type-representation"><font color=maroon><TT>type-representation</TT></font></a></I></FONT></TD>
<TD ALIGN=right NOWRAP>::=</TD>
<TD ALIGN=left NOWRAP>
 ...</TD>
</TR>
<TR><TD ALIGN=right NOWRAP>&nbsp;</TD>
<TD ALIGN=right NOWRAP>&#8739;</TD>
<TD ALIGN=left NOWRAP> <FONT COLOR=blue><TT>=</TT> <TT>private</TT></FONT> <FONT COLOR=maroon><I><a href="manual016.html#constr-decl"><font color=maroon><TT>constr-decl</TT></font></a></I></FONT> &nbsp;{ <FONT COLOR=blue><TT>|</TT></FONT> <FONT COLOR=maroon><I><a href="manual016.html#constr-decl"><font color=maroon><TT>constr-decl</TT></font></a></I></FONT> }</TD>
</TR>
<TR><TD ALIGN=right NOWRAP>&nbsp;</TD>
<TD ALIGN=right NOWRAP>&#8739;</TD>
<TD ALIGN=left NOWRAP> <FONT COLOR=blue><TT>=</TT> <TT>private</TT> <TT>{</TT></FONT> <FONT COLOR=maroon><I><a href="manual016.html#field-decl"><font color=maroon><TT>field-decl</TT></font></a></I></FONT> &nbsp;{ <FONT COLOR=blue><TT>;</TT></FONT> <FONT COLOR=maroon><I><a href="manual016.html#field-decl"><font color=maroon><TT>field-decl</TT></font></a></I></FONT> } <FONT COLOR=blue><TT>}</TT></FONT></TD>
</TR></TABLE></DIV>
Private types are variant or record types. Values of
these types can be de-structured normally in pattern-matching or via
the <FONT COLOR=maroon><TT><I>expr</I></TT> <FONT COLOR=blue><TT>.</TT></FONT> &nbsp;<TT><I>field</I></TT></FONT> notation for record accesses. However, values of
these types cannot be constructed directly by constructor application
or record construction. Moreover, assignment on a mutable field of a
private record type is not allowed.<BR>
<BR>
The typical use of private types is in the export signature of a
module, to ensure that construction of values of the private type always
go through the functions provided by the module, while still allowing
pattern-matching outside the defining module. For example:
<PRE CLASS="verbatim">
        module M : sig
                     type t = private A | B of int
                     val a : t
                     val b : int -&gt; t
                   end
                 = struct
                     type t = A | B of int
                     let a = A
                     let b n = assert (n &gt; 0); B n
                   end
</PRE>Here, the <TT>private</TT> declaration ensures that in any value of type
<TT>M.t</TT>, the argument to the <TT>B</TT> constructor is always a positive integer.<BR>
<BR>
<div style="background-color:yellow; color:red; border-style:none; border-width:0.5pt">
With respect to the variance of their parameters, private types are
handled like abstract types. That is, if a private type has
parameters, their variance is the one explicitly given by prefixing
the parameter by a `<TT>+</TT>' or a `<TT>-</TT>', it is invariant otherwise.<BR>
</div>
<BR>

<H2 CLASS="section"><A NAME="htoc100">7.9</A>&nbsp;&nbsp;Recursive modules</H2> <A NAME="s-recursive-modules"></A>
<A NAME="@manual.kwd174"></A>
<A NAME="@manual.kwd175"></A><BR>
<BR>
<DIV CLASS="center"><TABLE CELLSPACING=2 CELLPADDING=0>
<TR><TD ALIGN=right NOWRAP>
<FONT COLOR=maroon><I><a href="manual019.html#definition"><font color=maroon><TT>definition</TT></font></a></I></FONT></TD>
<TD ALIGN=right NOWRAP>::=</TD>
<TD ALIGN=left NOWRAP>
 ...</TD>
</TR>
<TR><TD ALIGN=right NOWRAP>&nbsp;</TD>
<TD ALIGN=right NOWRAP>&#8739;</TD>
<TD ALIGN=left NOWRAP> <FONT COLOR=blue><TT>module</TT></FONT> <FONT COLOR=blue><TT>rec</TT></FONT> <FONT COLOR=maroon><TT><a href="manual011.html#module-name"><font color=maroon><I>module-name</I></font></a></TT> <FONT COLOR=blue><TT>:</TT></FONT> &nbsp;<TT><a href="manual018.html#module-type"><font color=maroon><I>module-type</I></font></a></TT> <FONT COLOR=blue><TT>=</TT></FONT> &nbsp;<TT><a href="manual019.html#module-expr"><font color=maroon><I>module-expr</I></font></a></TT></FONT> 
 &nbsp;{ <FONT COLOR=blue><TT>and</TT></FONT> <FONT COLOR=maroon><TT><a href="manual011.html#module-name"><font color=maroon><I>module-name</I></font></a><FONT COLOR=blue>:</FONT></TT> &nbsp;<TT><a href="manual018.html#module-type"><font color=maroon><I>module-type</I></font></a></TT> <FONT COLOR=blue><TT>=</TT></FONT> &nbsp;<TT><a href="manual019.html#module-expr"><font color=maroon><I>module-expr</I></font></a></TT></FONT> }</TD>
</TR>
<TR><TD ALIGN=right NOWRAP>
<FONT COLOR=maroon><I><a href="manual018.html#specification"><font color=maroon><TT>specification</TT></font></a></I></FONT></TD>
<TD ALIGN=right NOWRAP>::=</TD>
<TD ALIGN=left NOWRAP>
 ...</TD>
</TR>
<TR><TD ALIGN=right NOWRAP>&nbsp;</TD>
<TD ALIGN=right NOWRAP>&#8739;</TD>
<TD ALIGN=left NOWRAP> <FONT COLOR=blue><TT>module</TT></FONT> <FONT COLOR=blue><TT>rec</TT></FONT> <FONT COLOR=maroon><TT><a href="manual011.html#module-name"><font color=maroon><I>module-name</I></font></a></TT> <FONT COLOR=blue><TT>:</TT></FONT> &nbsp;<TT><a href="manual018.html#module-type"><font color=maroon><I>module-type</I></font></a></TT></FONT>
 &nbsp;{ <FONT COLOR=blue><TT>and</TT></FONT> <FONT COLOR=maroon><TT><a href="manual011.html#module-name"><font color=maroon><I>module-name</I></font></a><FONT COLOR=blue>:</FONT></TT> &nbsp;<TT><a href="manual018.html#module-type"><font color=maroon><I>module-type</I></font></a></TT></FONT> }</TD>
</TR></TABLE></DIV><BR>
<BR>
Recursive module definitions, introduced by the 'module rec' ...'and' ... construction, generalize regular module definitions
<FONT COLOR=blue><TT>module</TT></FONT> <FONT COLOR=maroon><TT><I>module-name</I></TT> <FONT COLOR=blue><TT>=</TT></FONT> &nbsp;<TT><I>module-expr</I></TT></FONT> and module specifications
<FONT COLOR=blue><TT>module</TT></FONT> <FONT COLOR=maroon><TT><I>module-name</I></TT> <FONT COLOR=blue><TT>:</TT></FONT> &nbsp;<TT><I>module-type</I></TT></FONT> by allowing the defining
<FONT COLOR=maroon><I><TT>module-expr</TT></I></FONT> and the <FONT COLOR=maroon><I><TT>module-type</TT></I></FONT> to refer recursively to the module
identifiers being defined. A typical example of a recursive module
definition is:
<PRE CLASS="verbatim">
    module rec A : sig
                     type t = Leaf of string | Node of ASet.t
                     val compare: t -&gt; t -&gt; int
                   end
                 = struct
                     type t = Leaf of string | Node of ASet.t
                     let compare t1 t2 =
                       match (t1, t2) with
                         (Leaf s1, Leaf s2) -&gt; Pervasives.compare s1 s2
                       | (Leaf _, Node _) -&gt; 1
                       | (Node _, Leaf _) -&gt; -1
                       | (Node n1, Node n2) -&gt; ASet.compare n1 n2
                   end
        and ASet : Set.S with type elt = A.t
                 = Set.Make(A)
</PRE>It can be given the following specification:
<PRE CLASS="verbatim">
    module rec A : sig
                     type t = Leaf of string | Node of ASet.t
                     val compare: t -&gt; t -&gt; int
                   end
        and ASet : Set.S with type elt = A.t
</PRE>
This is an experimental extension of Objective Caml: the class of
recursive definitions accepted, as well as its dynamic semantics are
not final and subject to change in future releases.<BR>
<BR>
Currently, the compiler requires that all dependency cycles between
the recursively-defined module identifiers go through at least one
&#8220;safe&#8221; module. A module is &#8220;safe&#8221; if all value definitions that
it contains have function types <FONT COLOR=maroon><I><TT>ty</TT></I></FONT><SUB>1</SUB> <FONT COLOR=blue><TT>-&gt;</TT></FONT> &nbsp;<FONT COLOR=maroon><I><TT>ty</TT></I></FONT><SUB>2</SUB>. Evaluation of a
recursive module definition proceeds by building initial values for
the safe modules involved, binding all (functional) values to
<FONT COLOR=blue><TT>fun</TT> <FONT COLOR=maroon><TT><I>x</I></TT></FONT> <TT>-&gt;</TT> <TT>raise</TT> <TT>Undefined_recursive_module</TT></FONT>. The defining
module expressions are then evaluated, and the initial values
for the safe modules are replaced by the values thus computed. If a
function component of a safe module is applied during this computation
(which corresponds to an ill-founded recursive definition), the
<TT>Undefined_recursive_module</TT> exception is raised.<BR>
<BR>

<div style="background-color:yellow; color:red; border-style:none; border-width:0.5pt">
<H2 CLASS="section"><A NAME="htoc101">7.10</A>&nbsp;&nbsp;Private row types</H2> <A NAME="s-private-rows"></A>
<A NAME="@manual.kwd176"></A><BR>
<BR>
<DIV CLASS="center"><TABLE CELLSPACING=2 CELLPADDING=0>
<TR><TD ALIGN=right NOWRAP>
<FONT COLOR=maroon><I><a href="manual016.html#type-equation"><font color=maroon><TT>type-equation</TT></font></a></I></FONT></TD>
<TD ALIGN=right NOWRAP>::=</TD>
<TD ALIGN=left NOWRAP>
 ...</TD>
</TR>
<TR><TD ALIGN=right NOWRAP>&nbsp;</TD>
<TD ALIGN=right NOWRAP>&#8739;</TD>
<TD ALIGN=left NOWRAP> <FONT COLOR=blue><TT>=</TT> <TT>private</TT></FONT> <FONT COLOR=maroon><I><a href="manual012.html#typexpr"><font color=maroon><TT>typexpr</TT></font></a></I></FONT></TD>
</TR></TABLE></DIV>
Private row types are type abbreviations where part of the
structure of the type is left abstract. Concretely <FONT COLOR=maroon><I><TT>typexpr</TT></I></FONT> in the
above should denote either an object type or a polymorphic variant
type, with some possibility of refinement left. If the private
declaration is used in an interface, the corresponding implementation
may either provide a ground instance, or a refined private type.
<PRE CLASS="verbatim">
   module M : sig type c = private &lt; x : int; .. &gt; val o : c end =
     struct
       class c = object method x = 3 method y = 2 end
       let o = new c
     end
</PRE>This declaration does more than hiding the <TT>y</TT> method, it also makes
the type <TT>c</TT> incompatible with any other closed object type, meaning
that only <TT>o</TT> will be of type <TT>c</TT>. In that respect it behaves
similarly to private record types. But private row types are
more flexible with respect to incremental refinement. This feature can
be used in combination with functors.
<PRE CLASS="verbatim">
   module F(X : sig type c = private &lt; x : int; .. &gt; end) =
     struct
       let get_x (o : X.c) = o#x
     end
   module G(X : sig type c = private &lt; x : int; y : int; .. &gt; end) =
     struct
       include F(X)
       let get_y (o : X.c) = o#y
     end
</PRE>
Polymorphic variant types can be refined in two ways, either to allow
the addition of new constructors, or to allow the disparition of
declared constructors. The second case corresponds to private variant
types (one cannot create a value of the private type), while the first
case requires default cases in pattern-matching to handle addition.
<PRE CLASS="verbatim">
   type t = [ `A of int | `B of bool ]
   type u = private [&lt; t &gt; `A ]
   type v = private [&gt; t ]
</PRE>With type <TT>u</TT>, it is possible to create values of the form <TT>(`A n)</TT>,
but not <TT>(`B b)</TT>. With type <TT>v</TT>, construction is not restricted but
pattern-matching must have a default case.<BR>
<BR>
Like for abstract and private types, the variance of type parameters
is not infered, and must be given explicitly.
<BR>
</div>
<BR>
<HR>
<A HREF="manual008.html"><IMG SRC ="previous_motif.gif" ALT="Previous"></A>
<A HREF="index.html"><IMG SRC ="contents_motif.gif" ALT="Up"></A>
<A HREF="manual022.html"><IMG SRC ="next_motif.gif" ALT="Next"></A>
</BODY>
</HTML>