1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
|
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<meta name="generator" content="hevea 2.18">
<link rel="stylesheet" type="text/css" href="manual.css">
<title>Chapter 7  Language extensions</title>
</head>
<body>
<a href="language.html"><img src="previous_motif.gif" alt="Previous"></a>
<a href="index.html"><img src="contents_motif.gif" alt="Up"></a>
<a href="comp.html"><img src="next_motif.gif" alt="Next"></a>
<hr>
<h1 class="chapter" id="sec215">Chapter 7  Language extensions</h1>
<ul>
<li><a href="extn.html#sec216">7.1  Integer literals for types <span class="c003">int32</span>, <span class="c003">int64</span>
and <span class="c003">nativeint</span></a>
</li><li><a href="extn.html#sec217">7.2  Recursive definitions of values</a>
</li><li><a href="extn.html#sec218">7.3  Lazy patterns</a>
</li><li><a href="extn.html#sec219">7.4  Recursive modules</a>
</li><li><a href="extn.html#sec220">7.5  Private types</a>
</li><li><a href="extn.html#sec224">7.6  Local opens</a>
</li><li><a href="extn.html#sec226">7.7  Record and object notations</a>
</li><li><a href="extn.html#sec227">7.8  Explicit polymorphic type annotations</a>
</li><li><a href="extn.html#sec228">7.9  Locally abstract types</a>
</li><li><a href="extn.html#sec230">7.10  First-class modules</a>
</li><li><a href="extn.html#sec233">7.11  Recovering the type of a module</a>
</li><li><a href="extn.html#sec234">7.12  Substituting inside a signature</a>
</li><li><a href="extn.html#sec235">7.13  Type-level module aliases</a>
</li><li><a href="extn.html#sec236">7.14  Explicit overriding in class definitions</a>
</li><li><a href="extn.html#sec237">7.15  Overriding in open statements</a>
</li><li><a href="extn.html#sec238">7.16  Generalized algebraic datatypes</a>
</li><li><a href="extn.html#sec245">7.17  Syntax for Bigarray access</a>
</li><li><a href="extn.html#sec246">7.18  Attributes</a>
</li><li><a href="extn.html#sec248">7.19  Extension nodes</a>
</li><li><a href="extn.html#sec250">7.20  Quoted strings</a>
</li><li><a href="extn.html#sec251">7.21  Exception cases in pattern matching</a>
</li><li><a href="extn.html#sec252">7.22  Extensible variant types</a>
</li><li><a href="extn.html#sec253">7.23  Generative functors</a>
</li><li><a href="extn.html#sec254">7.24  Extension-only syntax</a>
</li><li><a href="extn.html#sec257">7.25  Inline records</a>
</li><li><a href="extn.html#sec258">7.26  Local exceptions</a>
</li><li><a href="extn.html#sec259">7.27  Documentation comments</a>
</li></ul>
<p> <a id="c:extensions"></a>
</p><p>This chapter describes language extensions and convenience features
that are implemented in OCaml, but not described in the
OCaml reference manual.</p>
<h2 class="section" id="sec216">7.1  Integer literals for types <span class="c003">int32</span>, <span class="c003">int64</span>
and <span class="c003">nativeint</span></h2>
<p> <a id="s:ext-integer"></a></p><p>(Introduced in Objective Caml 3.07)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="const.html#constant"><span class="c010">constant</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#int32-literal"><span class="c010">int32-literal</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#int64-literal"><span class="c010">int64-literal</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#nativeint-literal"><span class="c010">nativeint-literal</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" id="int32-literal"><span class="c010">int32-literal</span></a></td><td class="c015">::=</td><td class="c017"> <a class="syntax" href="lex.html#integer-literal"><span class="c010">integer-literal</span></a> <span class="c004">l</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" id="int64-literal"><span class="c010">int64-literal</span></a></td><td class="c015">::=</td><td class="c017"> <a class="syntax" href="lex.html#integer-literal"><span class="c010">integer-literal</span></a> <span class="c004">L</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" id="nativeint-literal"><span class="c010">nativeint-literal</span></a></td><td class="c015">::=</td><td class="c017"> <a class="syntax" href="lex.html#integer-literal"><span class="c010">integer-literal</span></a> <span class="c004">n</span>
</td></tr>
</table></td></tr>
</table><p>An integer literal can be followed by one of the letters <span class="c003">l</span>, <span class="c003">L</span> or <span class="c003">n</span>
to indicate that this integer has type <span class="c003">int32</span>, <span class="c003">int64</span> or <span class="c003">nativeint</span>
respectively, instead of the default type <span class="c003">int</span> for integer literals.
<a id="hevea_manual4"></a>
<a id="hevea_manual5"></a>
<a id="hevea_manual6"></a>
The library modules <span class="c003">Int32</span>[<a href="libref/Int32.html"><span class="c003">Int32</span></a>],
<span class="c003">Int64</span>[<a href="libref/Int64.html"><span class="c003">Int64</span></a>] and <span class="c003">Nativeint</span>[<a href="libref/Nativeint.html"><span class="c003">Nativeint</span></a>]
provide operations on these integer types.</p>
<h2 class="section" id="sec217">7.2  Recursive definitions of values</h2>
<p> <a id="s:letrecvalues"></a></p><p>(Introduced in Objective Caml 1.00)</p><p>As mentioned in section <a href="expr.html#s%3Alocaldef">6.7.1</a>, the <span class="c002"><span class="c003">let</span> <span class="c003">rec</span></span> binding
construct, in addition to the definition of recursive functions,
also supports a certain class of recursive definitions of
non-functional values, such as
</p><div class="center">
<span class="c002"><span class="c003">let</span> <span class="c003">rec</span></span> <span class="c010">name</span><sub>1</sub> <span class="c002"><span class="c003">=</span> <span class="c003">1</span> <span class="c003">::</span></span>  <span class="c010">name</span><sub>2</sub>
<span class="c004">and</span>  <span class="c010">name</span><sub>2</sub> <span class="c002"><span class="c003">=</span> <span class="c003">2</span> <span class="c003">::</span></span>  <span class="c010">name</span><sub>1</sub>
<span class="c004">in</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
</div><p>
which binds <span class="c010">name</span><sub>1</sub> to the cyclic list <span class="c003">1::2::1::2::</span>…, and
<span class="c010">name</span><sub>2</sub> to the cyclic list <span class="c003">2::1::2::1::</span>…Informally, the class of accepted definitions consists of those
definitions where the defined names occur only inside function
bodies or as argument to a data constructor.</p><p>More precisely, consider the expression:
</p><div class="center">
<span class="c002"><span class="c003">let</span> <span class="c003">rec</span></span> <span class="c010">name</span><sub>1</sub> <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub> <span class="c004">and</span> … <span class="c004">and</span>  <span class="c010">name</span><sub><span class="c009">n</span></sub> <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">n</span></sub> <span class="c004">in</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
</div><p>
It will be accepted if each one of <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub> …  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">n</span></sub> is
statically constructive with respect to <span class="c010">name</span><sub>1</sub> …  <span class="c010">name</span><sub><span class="c009">n</span></sub>,
is not immediately linked to any of <span class="c010">name</span><sub>1</sub> …  <span class="c010">name</span><sub><span class="c009">n</span></sub>,
and is not an array constructor whose arguments have abstract type.</p><p>An expression <span class="c010">e</span> is said to be <em>statically constructive
with respect to</em> the variables <span class="c010">name</span><sub>1</sub> …  <span class="c010">name</span><sub><span class="c009">n</span></sub> if at least
one of the following conditions is true:
</p><ul class="itemize"><li class="li-itemize">
<span class="c010">e</span> has no free occurrence of any of <span class="c010">name</span><sub>1</sub> …  <span class="c010">name</span><sub><span class="c009">n</span></sub>
</li><li class="li-itemize"><span class="c010">e</span> is a variable
</li><li class="li-itemize"><span class="c010">e</span> has the form <span class="c004">fun</span> … <span class="c004">-></span> …
</li><li class="li-itemize"><span class="c010">e</span> has the form <span class="c004">function</span> … <span class="c004">-></span> …
</li><li class="li-itemize"><span class="c010">e</span> has the form <span class="c002"><span class="c003">lazy</span> <span class="c003">(</span></span> … <span class="c004">)</span>
</li><li class="li-itemize"><span class="c010">e</span> has one of the following forms, where each one of
<a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub> …  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">m</span></sub> is statically constructive with respect to
<span class="c010">name</span><sub>1</sub> …  <span class="c010">name</span><sub><span class="c009">n</span></sub>, and <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub> is statically constructive with
respect to <span class="c010">name</span><sub>1</sub> …  <span class="c010">name</span><sub><span class="c009">n</span></sub>,  <span class="c010">xname</span><sub>1</sub> …  <span class="c010">xname</span><sub><span class="c009">m</span></sub>:
<ul class="itemize"><li class="li-itemize">
<span class="c004">let</span> [<span class="c004">rec</span>] <span class="c010">xname</span><sub>1</sub> <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub> <span class="c004">and</span> …
<span class="c004">and</span>  <span class="c010">xname</span><sub><span class="c009">m</span></sub> <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">m</span></sub> <span class="c004">in</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub>
</li><li class="li-itemize"><span class="c002"><span class="c003">let</span> <span class="c003">module</span></span> … <span class="c004">in</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub>
</li><li class="li-itemize"><a class="syntax" href="names.html#constr"><span class="c010">constr</span></a> <span class="c004">(</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">,</span> … <span class="c004">,</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">m</span></sub><span class="c004">)</span>
</li><li class="li-itemize"><span class="c004">`</span><a class="syntax" href="names.html#tag-name"><span class="c010">tag-name</span></a> <span class="c004">(</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">,</span> … <span class="c004">,</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">m</span></sub><span class="c004">)</span>
</li><li class="li-itemize"><span class="c004">[|</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">;</span> … <span class="c004">;</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">m</span></sub> <span class="c004">|]</span>
</li><li class="li-itemize"><span class="c004">{</span> <a class="syntax" href="names.html#field"><span class="c010">field</span></a><sub>1</sub> <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">;</span> … <span class="c004">;</span>  <a class="syntax" href="names.html#field"><span class="c010">field</span></a><sub><span class="c009">m</span></sub> =  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">m</span></sub> <span class="c004">}</span>
</li><li class="li-itemize"><span class="c004">{</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub> <span class="c004">with</span>  <a class="syntax" href="names.html#field"><span class="c010">field</span></a><sub>2</sub> <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>2</sub><span class="c004">;</span> … <span class="c004">;</span>
 <a class="syntax" href="names.html#field"><span class="c010">field</span></a><sub><span class="c009">m</span></sub> =  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">m</span></sub> <span class="c004">}</span> where <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub> is not immediately
linked to <span class="c010">name</span><sub>1</sub> …  <span class="c010">name</span><sub><span class="c009">n</span></sub>
</li><li class="li-itemize"><span class="c004">(</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">,</span> … <span class="c004">,</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">m</span></sub> <span class="c004">)</span>
</li><li class="li-itemize"><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">;</span> … <span class="c004">;</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">m</span></sub>
</li></ul>
</li></ul><p>An expression <span class="c010">e</span> is said to be <em>immediately linked to</em> the variable
<span class="c010">name</span> in the following cases:
</p><ul class="itemize"><li class="li-itemize">
<span class="c010">e</span> is <span class="c010">name</span>
</li><li class="li-itemize"><span class="c010">e</span> has the form <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">;</span> … <span class="c004">;</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">m</span></sub> where <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">m</span></sub>
is immediately linked to <span class="c010">name</span>
</li><li class="li-itemize"><span class="c010">e</span> has the form <span class="c004">let</span> [<span class="c004">rec</span>] <span class="c010">xname</span><sub>1</sub> <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub> <span class="c004">and</span> …
<span class="c004">and</span>  <span class="c010">xname</span><sub><span class="c009">m</span></sub> <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">m</span></sub> <span class="c004">in</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub> where <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub> is immediately
linked to <span class="c010">name</span> or to one of the <span class="c010">xname</span><sub><span class="c009">i</span></sub> such that <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">i</span></sub>
is immediately linked to <span class="c010">name</span>.
</li></ul>
<h2 class="section" id="sec218">7.3  Lazy patterns</h2>
<p> <a id="s:lazypat"></a></p><p><a id="hevea_manual.kwd202"></a></p><p>(Introduced in Objective Caml 3.11)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">lazy</span> <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a>
</td></tr>
</table></td></tr>
</table><p>The pattern <span class="c004">lazy</span> <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a> matches a value <span class="c009">v</span> of type <span class="c003">Lazy.t</span>,
provided <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a> matches the result of forcing <span class="c009">v</span> with
<span class="c003">Lazy.force</span>. A successful match of a pattern containing <span class="c004">lazy</span>
sub-patterns forces the corresponding parts of the value being matched, even
those that imply no test such as <span class="c004">lazy</span> <a class="syntax" href="names.html#value-name"><span class="c010">value-name</span></a> or <span class="c002"><span class="c003">lazy</span> <span class="c003">_</span></span>.
Matching a value with a <a class="syntax" href="expr.html#pattern-matching"><span class="c010">pattern-matching</span></a> where some patterns
contain <span class="c004">lazy</span> sub-patterns may imply forcing parts of the value,
even when the pattern selected in the end has no <span class="c004">lazy</span> sub-pattern.</p><p>For more information, see the description of module <span class="c003">Lazy</span> in the
standard library (
<a href="libref/Lazy.html">Module <span class="c003">Lazy</span></a>).
<a id="hevea_manual7"></a><a id="hevea_manual8"></a></p>
<h2 class="section" id="sec219">7.4  Recursive modules</h2>
<p> <a id="s-recursive-modules"></a>
<a id="hevea_manual.kwd203"></a>
<a id="hevea_manual.kwd204"></a></p><p>(Introduced in Objective Caml 3.07)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="modules.html#definition"><span class="c010">definition</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <span class="c004">rec</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">:</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a> <span class="c004">=</span>  <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a> 
 { <span class="c004">and</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">:</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a> <span class="c004">=</span>  <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a> }
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modtypes.html#specification"><span class="c010">specification</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <span class="c004">rec</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">:</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a>
 { <span class="c004">and</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a><span class="c004">:</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a> }
</td></tr>
</table></td></tr>
</table><p>Recursive module definitions, introduced by the <span class="c004">module rec</span> …<span class="c004">and</span> … construction, generalize regular module definitions
<span class="c004">module</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">=</span>  <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a> and module specifications
<span class="c004">module</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">:</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a> by allowing the defining
<a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a> and the <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a> to refer recursively to the module
identifiers being defined. A typical example of a recursive module
definition is:
</p><pre> module rec A : sig
type t = Leaf of string | Node of ASet.t
val compare: t -> t -> int
end
= struct
type t = Leaf of string | Node of ASet.t
let compare t1 t2 =
match (t1, t2) with
(Leaf s1, Leaf s2) -> Pervasives.compare s1 s2
| (Leaf _, Node _) -> 1
| (Node _, Leaf _) -> -1
| (Node n1, Node n2) -> ASet.compare n1 n2
end
and ASet : Set.S with type elt = A.t
= Set.Make(A)
</pre><p>It can be given the following specification:
</p><pre> module rec A : sig
type t = Leaf of string | Node of ASet.t
val compare: t -> t -> int
end
and ASet : Set.S with type elt = A.t
</pre><p>
This is an experimental extension of OCaml: the class of
recursive definitions accepted, as well as its dynamic semantics are
not final and subject to change in future releases.</p><p>Currently, the compiler requires that all dependency cycles between
the recursively-defined module identifiers go through at least one
“safe” module. A module is “safe” if all value definitions that
it contains have function types <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a><sub>1</sub> <span class="c004">-></span>  <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a><sub>2</sub>. Evaluation of a
recursive module definition proceeds by building initial values for
the safe modules involved, binding all (functional) values to
<span class="c002"><span class="c003">fun</span> <span class="c003">_</span> <span class="c003">-></span> <span class="c003">raise</span></span> <span class="c003">Undefined_recursive_module</span>. The defining
module expressions are then evaluated, and the initial values
for the safe modules are replaced by the values thus computed. If a
function component of a safe module is applied during this computation
(which corresponds to an ill-founded recursive definition), the
<span class="c003">Undefined_recursive_module</span> exception is raised.</p><p>Note that, in the <a class="syntax" href="modtypes.html#specification"><span class="c010">specification</span></a> case, the <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a>s must be
parenthesized if they use the <span class="c004">with</span> <a class="syntax" href="modtypes.html#mod-constraint"><span class="c010">mod-constraint</span></a> construct.</p>
<h2 class="section" id="sec220">7.5  Private types</h2>
<p><a id="s:private-types"></a>
<a id="hevea_manual.kwd205"></a></p><p>Private type declarations in module signatures, of the form
<span class="c003">type t = private ...</span>, enable libraries to
reveal some, but not all aspects of the implementation of a type to
clients of the library. In this respect, they strike a middle ground
between abstract type declarations, where no information is revealed
on the type implementation, and data type definitions and type
abbreviations, where all aspects of the type implementation are
publicized. Private type declarations come in three flavors: for
variant and record types (section <a href="#s-private-types-variant">7.5.1</a>),
for type abbreviations (section <a href="#s-private-types-abbrev">7.5.2</a>),
and for row types (section <a href="#s-private-rows">7.5.3</a>).</p>
<h3 class="subsection" id="sec221">7.5.1  Private variant and record types</h3>
<p> <a id="s-private-types-variant"></a></p><p>(Introduced in Objective Caml 3.07)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="typedecl.html#type-representation"><span class="c010">type-representation</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">=</span> <span class="c004">private</span> [ <span class="c004">|</span> ] <a class="syntax" href="typedecl.html#constr-decl"><span class="c010">constr-decl</span></a>  { <span class="c004">|</span> <a class="syntax" href="typedecl.html#constr-decl"><span class="c010">constr-decl</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">=</span> <span class="c004">private</span> <a class="syntax" href="typedecl.html#record-decl"><span class="c010">record-decl</span></a>
</td></tr>
</table></td></tr>
</table><p>Values of a variant or record type declared <span class="c004">private</span>
can be de-structured normally in pattern-matching or via
the <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">.</span>  <a class="syntax" href="names.html#field"><span class="c010">field</span></a> notation for record accesses. However, values of
these types cannot be constructed directly by constructor application
or record construction. Moreover, assignment on a mutable field of a
private record type is not allowed.</p><p>The typical use of private types is in the export signature of a
module, to ensure that construction of values of the private type always
go through the functions provided by the module, while still allowing
pattern-matching outside the defining module. For example:
</p><pre> module M : sig
type t = private A | B of int
val a : t
val b : int -> t
end
= struct
type t = A | B of int
let a = A
let b n = assert (n > 0); B n
end
</pre><p>Here, the <span class="c004">private</span> declaration ensures that in any value of type
<span class="c003">M.t</span>, the argument to the <span class="c003">B</span> constructor is always a positive integer.</p><p>With respect to the variance of their parameters, private types are
handled like abstract types. That is, if a private type has
parameters, their variance is the one explicitly given by prefixing
the parameter by a ‘<span class="c003">+</span>’ or a ‘<span class="c003">-</span>’, it is invariant otherwise.</p>
<h3 class="subsection" id="sec222">7.5.2  Private type abbreviations</h3>
<p> <a id="s-private-types-abbrev"></a></p><p>(Introduced in Objective Caml 3.11)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="typedecl.html#type-equation"><span class="c010">type-equation</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">=</span> <span class="c004">private</span> <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a>
</td></tr>
</table></td></tr>
</table><p>Unlike a regular type abbreviation, a private type abbreviation
declares a type that is distinct from its implementation type <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a>.
However, coercions from the type to <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a> are permitted.
Moreover, the compiler “knows” the implementation type and can take
advantage of this knowledge to perform type-directed optimizations.
For ambiguity reasons, <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a> cannot be an object or polymorphic
variant type, but a similar behaviour can be obtained through private
row types.</p><p>The following example uses a private type abbreviation to define a
module of nonnegative integers:
</p><pre> module N : sig
type t = private int
val of_int: int -> t
val to_int: t -> int
end
= struct
type t = int
let of_int n = assert (n >= 0); n
let to_int n = n
end
</pre><p>The type <span class="c003">N.t</span> is incompatible with <span class="c003">int</span>, ensuring that nonnegative
integers and regular integers are not confused. However, if <span class="c003">x</span> has
type <span class="c003">N.t</span>, the coercion <span class="c003">(x :> int)</span> is legal and returns the
underlying integer, just like <span class="c003">N.to_int x</span>. Deep coercions are also
supported: if <span class="c003">l</span> has type <span class="c003">N.t list</span>, the coercion <span class="c003">(l :> int list)</span>
returns the list of underlying integers, like <span class="c003">List.map N.to_int l</span>
but without copying the list <span class="c003">l</span>.</p><p>Note that the coercion <span class="c004">(</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">:></span>  <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a> <span class="c004">)</span> is actually an abbreviated
form,
and will only work in presence of private abbreviations if neither the
type of <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> nor <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a> contain any type variables. If they do,
you must use the full form <span class="c004">(</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">:</span>  <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a><sub>1</sub> <span class="c004">:></span>  <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a><sub>2</sub> <span class="c004">)</span> where
<a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a><sub>1</sub> is the expected type of <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>. Concretely, this would be <span class="c003">(x : N.t :> int)</span> and <span class="c003">(l : N.t list :> int list)</span> for the above examples.</p>
<h3 class="subsection" id="sec223">7.5.3  Private row types</h3>
<p> <a id="s-private-rows"></a>
<a id="hevea_manual.kwd206"></a></p><p>(Introduced in Objective Caml 3.09)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="typedecl.html#type-equation"><span class="c010">type-equation</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">=</span> <span class="c004">private</span> <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a>
</td></tr>
</table></td></tr>
</table><p>Private row types are type abbreviations where part of the
structure of the type is left abstract. Concretely <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a> in the
above should denote either an object type or a polymorphic variant
type, with some possibility of refinement left. If the private
declaration is used in an interface, the corresponding implementation
may either provide a ground instance, or a refined private type.
</p><pre> module M : sig type c = private < x : int; .. > val o : c end =
struct
class c = object method x = 3 method y = 2 end
let o = new c
end
</pre><p>This declaration does more than hiding the <span class="c003">y</span> method, it also makes
the type <span class="c003">c</span> incompatible with any other closed object type, meaning
that only <span class="c003">o</span> will be of type <span class="c003">c</span>. In that respect it behaves
similarly to private record types. But private row types are
more flexible with respect to incremental refinement. This feature can
be used in combination with functors.
</p><pre> module F(X : sig type c = private < x : int; .. > end) =
struct
let get_x (o : X.c) = o#x
end
module G(X : sig type c = private < x : int; y : int; .. > end) =
struct
include F(X)
let get_y (o : X.c) = o#y
end
</pre><p>
A polymorphic variant type [t], for example
</p><pre> type t = [ `A of int | `B of bool ]
</pre><p>can be refined in two ways. A definition [u] may add new field to [t],
and the declaration
</p><pre> type u = private [> t]
</pre><p>will keep those new fields abstract. Construction of values of type
[u] is possible using the known variants of [t], but any
pattern-matching will require a default case to handle the potential
extra fields. Dually, a declaration [u] may restrict the fields of [t]
through abstraction: the declaration
</p><pre> type v = private [< t > `A]
</pre><p>corresponds to private variant types. One cannot create a value of the
private type [v], except using the constructors that are explicitly
listed as present, <span class="c003">(`A n)</span> in this example; yet, when
patter-matching on a [v], one should assume that any of the
constructors of [t] could be present.</p><p>Similarly to abstract types, the variance of type parameters
is not inferred, and must be given explicitly.</p>
<h2 class="section" id="sec224">7.6  Local opens</h2>
<p>
<a id="hevea_manual.kwd207"></a>
<a id="hevea_manual.kwd208"></a> <a id="s:local-opens"></a></p><p>(Introduced in OCaml 3.12, extended to patterns in 4.04)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">let</span> <span class="c004">open</span> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">in</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">.(</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">)</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">.(</span>  <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a> <span class="c004">)</span>
</td></tr>
</table></td></tr>
</table><p>The expressions
<span class="c002"><span class="c003">let</span> <span class="c003">open</span></span> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">in</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
and
<a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a><span class="c004">.(</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><span class="c004">)</span> are strictly equivalent. On the pattern side,
only the pattern <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a><span class="c004">.(</span> <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a><span class="c004">)</span> is available. These
constructions locally open the module referred to by the module path
<a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> in the respective scope of the expression <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> or
pattern <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a>.</p><p>Restricting opening to the scope of a single expression or pattern
instead of a whole structure allows one to benefit from shorter syntax
to refer to components of the opened module, without polluting the
global scope. Also, this can make the code easier to read (the open
statement is closer to where it is used) and to refactor (because the
code fragment is more self-contained).</p>
<h5 class="paragraph" id="sec225">Local opens for delimited expressions or patterns</h5>
<p> (Introduced in OCaml 4.02)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">.[</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">]</span>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">.[|</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">|]</span>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">.{</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">}</span>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">.{<</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">>}</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">.[</span>  <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a> <span class="c004">]</span>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">.[|</span>  <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a> <span class="c004">|]</span>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">.{</span>  <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a> <span class="c004">}</span>
</td></tr>
</table></td></tr>
</table><p>When the body of a local open expression or pattern is delimited by
<span class="c002"><span class="c003">[</span> <span class="c003">]</span></span>, <span class="c002"><span class="c003">[|</span> <span class="c003">|]</span></span>, or <span class="c002"><span class="c003">{</span> <span class="c003">}</span></span>, the parentheses can be omitted.
For expression, parentheses can also be omitted for <span class="c002"><span class="c003">{<</span> <span class="c003">>}</span></span>.
For example, <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a><span class="c004">.[</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><span class="c004">]</span> is equivalent to
<a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a><span class="c004">.([</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><span class="c004">])</span>, and <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a><span class="c004">.[|</span>  <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a> <span class="c004">|]</span> is
equivalent to <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a><span class="c004">.([|</span>  <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a> <span class="c004">|])</span>.</p>
<h2 class="section" id="sec226">7.7  Record and object notations</h2>
<p> <a id="s:record-and-object-notations"></a>
<a id="hevea_manual.kwd209"></a></p><p>(Introduced in OCaml 3.12, object copy notation added in Ocaml 4.03)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">{</span> <a class="syntax" href="names.html#field"><span class="c010">field</span></a>  [<span class="c004">=</span> <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a>]  { <span class="c004">;</span> <a class="syntax" href="names.html#field"><span class="c010">field</span></a>  [<span class="c004">=</span> <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a>] }  [<span class="c004">;</span> <span class="c004">_</span> ] [<span class="c004">;</span>] <span class="c004">}</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">{</span> <a class="syntax" href="names.html#field"><span class="c010">field</span></a>  [<span class="c004">=</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>]  { <span class="c004">;</span> <a class="syntax" href="names.html#field"><span class="c010">field</span></a>  [<span class="c004">=</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>] }  [<span class="c004">;</span>] <span class="c004">}</span>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">{</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">with</span>  <a class="syntax" href="names.html#field"><span class="c010">field</span></a>  [<span class="c004">=</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>]  { <span class="c004">;</span> <a class="syntax" href="names.html#field"><span class="c010">field</span></a>  [<span class="c004">=</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>] }  [<span class="c004">;</span>] <span class="c004">}</span>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">{</span> <span class="c004"><</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">with</span>  <a class="syntax" href="names.html#field"><span class="c010">field</span></a>  [<span class="c004">=</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>]  { <span class="c004">;</span> <a class="syntax" href="names.html#field"><span class="c010">field</span></a>  [<span class="c004">=</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>] }  [<span class="c004">;</span>] <span class="c004">></span> <span class="c004">}</span></td></tr>
</table></td></tr>
</table><p>In a record pattern, a record construction expression or an object copy expression,
a single identifier <span class="c010">id</span> stands for <span class="c010">id</span> <span class="c004">=</span>  <span class="c010">id</span>, and a qualified identifier
<a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">.</span>  <span class="c010">id</span> stands for <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">.</span>  <span class="c010">id</span> <span class="c004">=</span>  <span class="c010">id</span>.
For example, assuming the record type
</p><pre> type point = { x: float; y: float }
</pre><p>has been declared, the following expressions are equivalent:
</p><pre> let x = 1. and y = 2. in { x = x; y = y },
let x = 1. and y = 2. in { x; y },
let x = 1. and y = 2. in { x = x; y }
</pre><p>On the object side, all following methods are equivalent:
</p><pre> object
val x=0. val y=0. val z=0.
method f_0 x y = {< x; y >}
method f_1 x y = {< x = x; y >}
method f_2 x y = {< x=x ; y = y >}
end
</pre><p>Likewise, the following functions are equivalent:
</p><pre> fun {x = x; y = y} -> x +. y
fun {x; y} -> x +. y
</pre><p>
Optionally, a record pattern can be terminated by <span class="c002"><span class="c003">;</span> <span class="c003">_</span></span> to convey the
fact that not all fields of the record type are listed in the record
pattern and that it is intentional. By default, the compiler ignores
the <span class="c002"><span class="c003">;</span> <span class="c003">_</span></span> annotation. If warning 9 is turned on,
the compiler will warn when a record pattern fails to list all fields of
the corresponding record type and is not terminated by <span class="c002"><span class="c003">;</span> <span class="c003">_</span></span>.
Continuing the <span class="c003">point</span> example above,
</p><pre> fun {x} -> x +. 1.
</pre><p>will warn if warning 9 is on, while
</p><pre> fun {x; _} -> x +. 1.
</pre><p>will not warn. This warning can help spot program points where
record patterns may need to be modified after new fields are added to a
record type.</p>
<h2 class="section" id="sec227">7.8  Explicit polymorphic type annotations</h2>
<p> <a id="s:explicit-polymorphic-type"></a>
<a id="hevea_manual.kwd210"></a></p><p>(Introduced in OCaml 3.12)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="expr.html#let-binding"><span class="c010">let-binding</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#value-name"><span class="c010">value-name</span></a> <span class="c004">:</span>  <a class="syntax" href="types.html#poly-typexpr"><span class="c010">poly-typexpr</span></a> <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
</td></tr>
</table></td></tr>
</table><p>Polymorphic type annotations in <span class="c004">let</span>-definitions behave in a way
similar to polymorphic methods: they explicitly require the defined
value to be polymorphic, and allow one to use this polymorphism in
recursive occurrences (when using <span class="c002"><span class="c003">let</span> <span class="c003">rec</span></span>). Note however that this
is a normal polymorphic type, unifiable with any instance of
itself.</p><p>There are two possible applications of this feature. One is polymorphic
recursion:
</p><pre> type 'a t = Leaf of 'a | Node of ('a * 'a) t
let rec depth : 'a. 'a t -> 'b = function
Leaf _ -> 1
| Node x -> 1 + depth x
</pre><p>Note that <span class="c003">'b</span> is not explicitly polymorphic here, and it will
actually be unified with <span class="c003">int</span>.</p><p>The other application is to ensure that some definition is sufficiently
polymorphic:
</p><div class="caml-example">
<pre><div class="caml-input"> let id: 'a. 'a -> 'a = <U>fun x -> x + 1</U>;;
</div><div class="caml-output error">Error: This definition has type int -> int which is less general than
'a. 'a -> 'a
</div></pre>
</div>
<h2 class="section" id="sec228">7.9  Locally abstract types</h2>
<p>
<a id="hevea_manual.kwd211"></a>
<a id="hevea_manual.kwd212"></a> <a id="s:locally-abstract"></a></p><p>(Introduced in OCaml 3.12, short syntax added in 4.03)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="expr.html#parameter"><span class="c010">parameter</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">(</span> <span class="c004">type</span> {<a class="syntax" href="names.html#typeconstr-name"><span class="c010">typeconstr-name</span></a>}<sup>+</sup> <span class="c004">)</span>
</td></tr>
</table></td></tr>
</table><p>The expression <span class="c002"><span class="c003">fun</span> <span class="c003">(</span> <span class="c003">type</span></span> <a class="syntax" href="names.html#typeconstr-name"><span class="c010">typeconstr-name</span></a> <span class="c002"><span class="c003">)</span> <span class="c003">-></span></span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> introduces a
type constructor named <a class="syntax" href="names.html#typeconstr-name"><span class="c010">typeconstr-name</span></a> which is considered abstract
in the scope of the sub-expression, but then replaced by a fresh type
variable. Note that contrary to what the syntax could suggest, the
expression <span class="c002"><span class="c003">fun</span> <span class="c003">(</span> <span class="c003">type</span></span> <a class="syntax" href="names.html#typeconstr-name"><span class="c010">typeconstr-name</span></a> <span class="c002"><span class="c003">)</span> <span class="c003">-></span></span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> itself does not
suspend the evaluation of <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> as a regular abstraction would. The
syntax has been chosen to fit nicely in the context of function
declarations, where it is generally used. It is possible to freely mix
regular function parameters with pseudo type parameters, as in:
</p><pre> let f = fun (type t) (foo : t list) -> ...
</pre><p>and even use the alternative syntax for declaring functions:
</p><pre> let f (type t) (foo : t list) = ...
</pre><p>If several locally abstract types need to be introduced, it is possible to use
the syntax
<span class="c002"><span class="c003">fun</span> <span class="c003">(</span> <span class="c003">type</span></span> <a class="syntax" href="names.html#typeconstr-name"><span class="c010">typeconstr-name</span></a><sub>1</sub> …  <a class="syntax" href="names.html#typeconstr-name"><span class="c010">typeconstr-name</span></a><sub><span class="c009">n</span></sub> <span class="c002"><span class="c003">)</span> <span class="c003">-></span></span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
as syntactic sugar for <span class="c002"><span class="c003">fun</span> <span class="c003">(</span> <span class="c003">type</span></span> <a class="syntax" href="names.html#typeconstr-name"><span class="c010">typeconstr-name</span></a><sub>1</sub> <span class="c002"><span class="c003">)</span> <span class="c003">-></span></span> … <span class="c002"><span class="c003">-></span>
<span class="c003">fun</span> <span class="c003">(</span> <span class="c003">type</span></span>  <a class="syntax" href="names.html#typeconstr-name"><span class="c010">typeconstr-name</span></a><sub><span class="c009">n</span></sub> <span class="c002"><span class="c003">)</span> <span class="c003">-></span></span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>. For instance,
</p><pre> let f = fun (type t u v) -> fun (foo : (t * u * v) list) -> ...
let f' (type t u v) (foo : (t * u * v) list) = ...
</pre><p>
This construction is useful because the type constructors it introduces
can be used in places where a type variable is not allowed. For
instance, one can use it to define an exception in a local module
within a polymorphic function.
</p><pre> let f (type t) () =
let module M = struct exception E of t end in
(fun x -> M.E x), (function M.E x -> Some x | _ -> None)
</pre><p>
Here is another example:
</p><pre> let sort_uniq (type s) (cmp : s -> s -> int) =
let module S = Set.Make(struct type t = s let compare = cmp end) in
fun l ->
S.elements (List.fold_right S.add l S.empty)
</pre><p>
It is also extremely useful for first-class modules (see
section <a href="#s-first-class-modules">7.10</a>) and generalized algebraic datatypes
(GADTs: see section <a href="#s%3Agadts">7.16</a>).</p>
<h5 class="paragraph" id="sec229">Polymorphic syntax</h5>
<p> (Introduced in OCaml 4.00)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="expr.html#let-binding"><span class="c010">let-binding</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#value-name"><span class="c010">value-name</span></a> <span class="c004">:</span> <span class="c004">type</span>  { <a class="syntax" href="names.html#typeconstr-name"><span class="c010">typeconstr-name</span></a> }<sup>+</sup> <span class="c004">.</span>  <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a> <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="classes.html#class-field"><span class="c010">class-field</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">method</span> [<span class="c004">private</span>] <a class="syntax" href="names.html#method-name"><span class="c010">method-name</span></a> <span class="c004">:</span> <span class="c004">type</span>
 { <a class="syntax" href="names.html#typeconstr-name"><span class="c010">typeconstr-name</span></a> }<sup>+</sup> <span class="c004">.</span>  <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a> <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">method!</span> [<span class="c004">private</span>] <a class="syntax" href="names.html#method-name"><span class="c010">method-name</span></a> <span class="c004">:</span> <span class="c004">type</span>
 { <a class="syntax" href="names.html#typeconstr-name"><span class="c010">typeconstr-name</span></a> }<sup>+</sup> <span class="c004">.</span>  <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a> <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
</td></tr>
</table></td></tr>
</table><p>The <span class="c004">(type</span> <a class="syntax" href="names.html#typeconstr-name"><span class="c010">typeconstr-name</span></a><span class="c004">)</span> syntax construction by itself does not make
polymorphic the type variable it introduces, but it can be combined
with explicit polymorphic annotations where needed.
The above rule is provided as syntactic sugar to make this easier:
</p><pre> let rec f : type t1 t2. t1 * t2 list -> t1 = ...
</pre><p>is automatically expanded into
</p><pre> let rec f : 't1 't2. 't1 * 't2 list -> 't1 =
fun (type t1) (type t2) -> (... : t1 * t2 list -> t1)
</pre><p>This syntax can be very useful when defining recursive functions involving
GADTs, see the section <a href="#s%3Agadts">7.16</a> for a more detailed explanation.</p><p>The same feature is provided for method definitions.
The <span class="c004">method!</span> form combines this extension with the
“explicit overriding” extension described in
section <a href="#s%3Aexplicit-overriding">7.14</a>.</p>
<h2 class="section" id="sec230">7.10  First-class modules</h2>
<p><a id="s-first-class-modules"></a>
<a id="hevea_manual.kwd213"></a>
<a id="hevea_manual.kwd214"></a>
<a id="hevea_manual.kwd215"></a>
<a id="hevea_manual.kwd216"></a></p><p>(Introduced in OCaml 3.12; pattern syntax and package type inference
introduced in 4.00; structural comparison of package types introduced in 4.02.;
fewer parens required starting from 4.05)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">(module</span> <a class="syntax" href="#package-type"><span class="c010">package-type</span></a><span class="c004">)</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">(val</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>  [<span class="c004">:</span> <a class="syntax" href="#package-type"><span class="c010">package-type</span></a>]<span class="c004">)</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">(module</span> <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a>  [<span class="c004">:</span> <a class="syntax" href="#package-type"><span class="c010">package-type</span></a>]<span class="c004">)</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">(module</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a>  [<span class="c004">:</span> <a class="syntax" href="#package-type"><span class="c010">package-type</span></a>]<span class="c004">)</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" id="package-type"><span class="c010">package-type</span></a></td><td class="c015">::=</td><td class="c017">
<a class="syntax" href="names.html#modtype-path"><span class="c010">modtype-path</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#modtype-path"><span class="c010">modtype-path</span></a> <span class="c004">with</span>  <a class="syntax" href="#package-constraint"><span class="c010">package-constraint</span></a>  { <span class="c004">and</span> <a class="syntax" href="#package-constraint"><span class="c010">package-constraint</span></a> }
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" id="package-constraint"><span class="c010">package-constraint</span></a></td><td class="c015">::=</td><td class="c017">
<span class="c004">type</span> <a class="syntax" href="names.html#typeconstr"><span class="c010">typeconstr</span></a> <span class="c004">=</span>  <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>Modules are typically thought of as static components. This extension
makes it possible to pack a module as a first-class value, which can
later be dynamically unpacked into a module.</p><p>The expression <span class="c002"><span class="c003">(</span> <span class="c003">module</span></span> <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a> <span class="c004">:</span>  <a class="syntax" href="#package-type"><span class="c010">package-type</span></a> <span class="c004">)</span> converts the
module (structure or functor) denoted by module expression <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a>
to a value of the core language that encapsulates this module. The
type of this core language value is <span class="c002"><span class="c003">(</span> <span class="c003">module</span></span> <a class="syntax" href="#package-type"><span class="c010">package-type</span></a> <span class="c004">)</span>.
The <a class="syntax" href="#package-type"><span class="c010">package-type</span></a> annotation can be omitted if it can be inferred
from the context.</p><p>Conversely, the module expression <span class="c002"><span class="c003">(</span> <span class="c003">val</span></span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">:</span>  <a class="syntax" href="#package-type"><span class="c010">package-type</span></a> <span class="c004">)</span>
evaluates the core language expression <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> to a value, which must
have type <span class="c004">module</span> <a class="syntax" href="#package-type"><span class="c010">package-type</span></a>, and extracts the module that was
encapsulated in this value. Again <a class="syntax" href="#package-type"><span class="c010">package-type</span></a> can be omitted if the
type of <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> is known.
If the module expression is already parenthesized, like the arguments
of functors are, no additional parens are needed: <span class="c003">Map.Make(val key)</span>.</p><p>The pattern <span class="c002"><span class="c003">(</span> <span class="c003">module</span></span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">:</span>  <a class="syntax" href="#package-type"><span class="c010">package-type</span></a> <span class="c004">)</span> matches a
package with type <a class="syntax" href="#package-type"><span class="c010">package-type</span></a> and binds it to <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a>.
It is not allowed in toplevel let bindings.
Again <a class="syntax" href="#package-type"><span class="c010">package-type</span></a> can be omitted if it can be inferred from the
enclosing pattern.</p><p>The <a class="syntax" href="#package-type"><span class="c010">package-type</span></a> syntactic class appearing in the <span class="c002"><span class="c003">(</span> <span class="c003">module</span></span>
<a class="syntax" href="#package-type"><span class="c010">package-type</span></a> <span class="c004">)</span> type expression and in the annotated forms represents a
subset of module types.
This subset consists of named module types with optional constraints
of a limited form: only non-parametrized types can be specified.</p><p>For type-checking purposes (and starting from OCaml 4.02), package types
are compared using the structural comparison of module types.</p><p>In general, the module expression <span class="c002"><span class="c003">(</span> <span class="c003">val</span></span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">:</span>  <a class="syntax" href="#package-type"><span class="c010">package-type</span></a>
<span class="c004">)</span> cannot be used in the body of a functor, because this could cause
unsoundness in conjunction with applicative functors.
Since OCaml 4.02, this is relaxed in two ways:
if <a class="syntax" href="#package-type"><span class="c010">package-type</span></a> does not contain nominal type declarations (<em>i.e.</em> types that are created with a proper identity), then this
expression can be used anywhere, and even if it contains such types
it can be used inside the body of a generative
functor, described in section <a href="#s%3Agenerative-functors">7.23</a>.
It can also be used anywhere in the context of a local module binding
<span class="c002"><span class="c003">let</span> <span class="c003">module</span></span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c002"><span class="c003">=</span> <span class="c003">(</span> <span class="c003">val</span></span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub> <span class="c004">:</span>  <a class="syntax" href="#package-type"><span class="c010">package-type</span></a> <span class="c002"><span class="c003">)</span>
<span class="c003">in</span></span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>2</sub>.</p>
<h5 class="paragraph" id="sec231">Basic example</h5>
<p> A typical use of first-class modules is to
select at run-time among several implementations of a signature.
Each implementation is a structure that we can encapsulate as a
first-class module, then store in a data structure such as a hash
table:
</p><pre> module type DEVICE = sig ... end
let devices : (string, (module DEVICE)) Hashtbl.t = Hashtbl.create 17
module SVG = struct ... end
let _ = Hashtbl.add devices "SVG" (module SVG : DEVICE)
module PDF = struct ... end
let _ = Hashtbl.add devices "PDF" (module PDF: DEVICE)
</pre><p>We can then select one implementation based on command-line
arguments, for instance:
</p><pre> module Device =
(val (try Hashtbl.find devices (parse_cmdline())
with Not_found -> eprintf "Unknown device %s\n"; exit 2)
: DEVICE)
</pre><p>Alternatively, the selection can be performed within a function:
</p><pre> let draw_using_device device_name picture =
let module Device =
(val (Hashtbl.find_devices device_name) : DEVICE)
in
Device.draw picture
</pre>
<h5 class="paragraph" id="sec232">Advanced examples</h5>
<p>
With first-class modules, it is possible to parametrize some code over the
implementation of a module without using a functor.</p><pre> let sort (type s) (module Set : Set.S with type elt = s) l =
Set.elements (List.fold_right Set.add l Set.empty)
val sort : (module Set.S with type elt = 'a) -> 'a list -> 'a list
</pre><p>
To use this function, one can wrap the <span class="c003">Set.Make</span> functor:</p><pre> let make_set (type s) cmp =
let module S = Set.Make(struct
type t = s
let compare = cmp
end) in
(module S : Set.S with type elt = s)
val make_set : ('a -> 'a -> int) -> (module Set.S with type elt = 'a)
</pre>
<h2 class="section" id="sec233">7.11  Recovering the type of a module</h2>
<p> <a id="s:module-type-of"></a></p><p><a id="hevea_manual.kwd217"></a>
<a id="hevea_manual.kwd218"></a>
<a id="hevea_manual.kwd219"></a>
<a id="hevea_manual.kwd220"></a></p><p>(Introduced in OCaml 3.12)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <span class="c004">type</span> <span class="c004">of</span> <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a>
</td></tr>
</table></td></tr>
</table><p>The construction <span class="c002"><span class="c003">module</span> <span class="c003">type</span> <span class="c003">of</span></span> <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a> expands to the module type
(signature or functor type) inferred for the module expression <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a>.
To make this module type reusable in many situations, it is
intentionally not strengthened: abstract types and datatypes are not
explicitly related with the types of the original module.
For the same reason, module aliases in the inferred type are expanded.</p><p>A typical use, in conjunction with the signature-level <span class="c004">include</span>
construct, is to extend the signature of an existing structure.
In that case, one wants to keep the types equal to types in the
original module. This can done using the following idiom.
</p><pre> module type MYHASH = sig
include module type of struct include Hashtbl end
val replace: ('a, 'b) t -> 'a -> 'b -> unit
end
</pre><p>The signature <span class="c003">MYHASH</span> then contains all the fields of the signature
of the module <span class="c003">Hashtbl</span> (with strengthened type definitions), plus the
new field <span class="c003">replace</span>. An implementation of this signature can be
obtained easily by using the <span class="c004">include</span> construct again, but this
time at the structure level:
</p><pre> module MyHash : MYHASH = struct
include Hashtbl
let replace t k v = remove t k; add t k v
end
</pre><p>
Another application where the absence of strengthening comes handy, is
to provide an alternative implementation for an existing module.
</p><pre> module MySet : module type of Set = struct
...
end
</pre><p>This idiom guarantees that <span class="c003">Myset</span> is compatible with Set, but allows
it to represent sets internally in a different way.</p>
<h2 class="section" id="sec234">7.12  Substituting inside a signature</h2>
<p>
<a id="hevea_manual.kwd221"></a>
<a id="hevea_manual.kwd222"></a>
<a id="hevea_manual.kwd223"></a>
<a id="s:signature-substitution"></a></p><p>(Introduced in OCaml 3.12)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="modtypes.html#mod-constraint"><span class="c010">mod-constraint</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">type</span> [<a class="syntax" href="typedecl.html#type-params"><span class="c010">type-params</span></a>]  <a class="syntax" href="names.html#typeconstr-name"><span class="c010">typeconstr-name</span></a> <span class="c004">:=</span>  <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">:=</span>  <a class="syntax" href="names.html#extended-module-path"><span class="c010">extended-module-path</span></a>
</td></tr>
</table></td></tr>
</table><p>“Destructive” substitution (<span class="c004">with</span> ... <span class="c004">:=</span> ...) behaves essentially like
normal signature constraints (<span class="c004">with</span> ... <span class="c004">=</span> ...), but it additionally removes
the redefined type or module from the signature. There are a number of
restrictions: one can only remove types and modules at the outermost
level (not inside submodules), and in the case of <span class="c004">with type</span> the
definition must be another type constructor with the same type
parameters.</p><p>A natural application of destructive substitution is merging two
signatures sharing a type name.
</p><div class="caml-example">
<pre><div class="caml-input"> module type Printable = sig
type t
val print : Format.formatter -> t -> unit
end
module type Comparable = sig
type t
val compare : t -> t -> int
end
module type PrintableComparable = sig
include Printable
include Comparable with type t := t
end;;
</div>
</pre>
</div><p>One can also use this to completely remove a field:
</p><div class="caml-example">
<pre><div class="caml-input"> module type S = Comparable with type t := int;;
</div><div class="caml-output ok">module type S = sig val compare : int -> int -> int end
</div></pre>
</div><p>or to rename one:
</p><div class="caml-example">
<pre><div class="caml-input"> module type S = sig
type u
include Comparable with type t := u
end;;
</div><div class="caml-output ok">module type S = sig type u val compare : u -> u -> int end
</div></pre>
</div><p>Note that you can also remove manifest types, by substituting with the
same type.
</p><div class="caml-example">
<pre><div class="caml-input"> module type ComparableInt = Comparable with type t = int ;;
</div><div class="caml-output ok">module type ComparableInt = sig type t = int val compare : t -> t -> int end
</div></pre>
<pre><div class="caml-input"> module type CompareInt = ComparableInt with type t := int ;;
</div><div class="caml-output ok">module type CompareInt = sig val compare : int -> int -> int end
</div></pre>
</div>
<h2 class="section" id="sec235">7.13  Type-level module aliases</h2>
<p>
<a id="hevea_manual.kwd224"></a>
<a id="s:module-alias"></a></p><p>(Introduced in OCaml 4.02)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="modtypes.html#specification"><span class="c010">specification</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">=</span>  <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a>
</td></tr>
</table></td></tr>
</table><p>The above specification, inside a signature, only matches a module
definition equal to <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a>. Conversely, a type-level module
alias can be matched by itself, or by any supertype of the type of the
module it references.</p><p>There are several restrictions on <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a>:
</p><ol class="enumerate" type=1><li class="li-enumerate">
it should be of the form <span class="c009">M</span><sub>0</sub>.<span class="c009">M</span><sub>1</sub>...<span class="c009">M</span><sub><span class="c009">n</span></sub> (<em>i.e.</em> without
functor applications);
</li><li class="li-enumerate">inside the body of a functor, <span class="c009">M</span><sub>0</sub> should not be one of the
functor parameters;
</li><li class="li-enumerate">inside a recursive module definition, <span class="c009">M</span><sub>0</sub> should not be one of
the recursively defined modules.
</li></ol><p>Such specifications are also inferred. Namely, when <span class="c010">P</span> is a path
satisfying the above constraints,
</p><div class="caml-example">
<pre><div class="caml-input"> module N = P;;
</div>
</pre>
</div><p>has type
</p><pre>module N = P
</pre><p>Type-level module aliases are used when checking module path
equalities. That is, in a context where module name <span class="c010">N</span> is known to be
an alias for <span class="c010">P</span>, not only these two module paths check as equal, but
<span class="c010">F</span> (<span class="c010">N</span>) and <span class="c010">F</span> (<span class="c010">P</span>) are also recognized as equal. In the default
compilation mode, this is the only difference with the previous
approach of module aliases having just the same module type as the
module they reference.</p><p>When the compiler flag <span class="c004">-no-alias-deps</span> is enabled, type-level
module aliases are also exploited to avoid introducing dependencies
between compilation units. Namely, a module alias referring to a
module inside another compilation unit does not introduce a link-time
dependency on that compilation unit, as long as it is not
dereferenced; it still introduces a compile-time dependency if the
interface needs to be read, <em>i.e.</em> if the module is a submodule
of the compilation unit, or if some type components are referred to.
Additionally, accessing a module alias introduces a link-time
dependency on the compilation unit containing the module referenced by
the alias, rather than the compilation unit containing the alias.
Note that these differences in link-time behavior may be incompatible
with the previous behavior, as some compilation units might not be
extracted from libraries, and their side-effects ignored.</p><p>These weakened dependencies make possible to use module aliases in
place of the <span class="c004">-pack</span> mechanism. Suppose that you have a library
<span class="c004">Mylib</span> composed of modules <span class="c004">A</span> and <span class="c004">B</span>. Using <span class="c004">-pack</span>, one
would issue the command line
</p><pre> ocamlc -pack a.cmo b.cmo -o mylib.cmo
</pre><p>and as a result obtain a <span class="c004">Mylib</span> compilation unit, containing
physically <span class="c004">A</span> and <span class="c004">B</span> as submodules, and with no dependencies on
their respective compilation units.
Here is a concrete example of a possible alternative approach:
</p><ol class="enumerate" type=1><li class="li-enumerate">
Rename the files containing <span class="c004">A</span> and <span class="c004">B</span> to <span class="c004">Mylib_A</span> and
<span class="c004">Mylib_B</span>.
</li><li class="li-enumerate">Create a packing interface <span class="c004">Mylib.ml</span>, containing the
following lines.
<pre> module A = Mylib_A
module B = Mylib_B
</pre></li><li class="li-enumerate">Compile <span class="c004">Mylib.ml</span> using <span class="c004">-no-alias-deps</span>, and the other
files using <span class="c004">-no-alias-deps</span> and <span class="c002"><span class="c003">-open</span> <span class="c003">Mylib</span></span> (the last one is
equivalent to adding the line <span class="c002"><span class="c003">open!</span> <span class="c003">Mylib</span></span> at the top of each
file).
<pre> ocamlc -c -no-alias-deps Mylib.ml
ocamlc -c -no-alias-deps -open Mylib Mylib_*.mli Mylib_*.ml
</pre></li><li class="li-enumerate">Finally, create a library containing all the compilation units,
and export all the compiled interfaces.
<pre> ocamlc -a Mylib*.cmo -o Mylib.cma
</pre></li></ol><p>
This approach lets you access <span class="c004">A</span> and <span class="c004">B</span> directly inside the
library, and as <span class="c004">Mylib.A</span> and <span class="c004">Mylib.B</span> from outside.
It also has the advantage that <span class="c004">Mylib</span> is no longer monolithic: if
you use <span class="c004">Mylib.A</span>, only <span class="c004">Mylib_A</span> will be linked in, not
<span class="c004">Mylib_B</span>.
</p>
<h2 class="section" id="sec236">7.14  Explicit overriding in class definitions</h2>
<p><a id="s:explicit-overriding"></a>
<a id="hevea_manual.kwd225"></a>
<a id="hevea_manual.kwd226"></a>
<a id="hevea_manual.kwd227"></a></p><p>(Introduced in OCaml 3.12)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="classes.html#class-field"><span class="c010">class-field</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017">  <span class="c004">inherit!</span> <a class="syntax" href="classes.html#class-expr"><span class="c010">class-expr</span></a>  [<span class="c004">as</span> <a class="syntax" href="lex.html#lowercase-ident"><span class="c010">lowercase-ident</span></a>]
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017">  <span class="c004">val!</span> [<span class="c004">mutable</span>] <a class="syntax" href="names.html#inst-var-name"><span class="c010">inst-var-name</span></a>  [<span class="c004">:</span> <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a>] <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017">  <span class="c004">method!</span> [<span class="c004">private</span>] <a class="syntax" href="names.html#method-name"><span class="c010">method-name</span></a>  {<a class="syntax" href="expr.html#parameter"><span class="c010">parameter</span></a>}  [<span class="c004">:</span> <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a>] <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017">  <span class="c004">method!</span> [<span class="c004">private</span>] <a class="syntax" href="names.html#method-name"><span class="c010">method-name</span></a> <span class="c004">:</span>  <a class="syntax" href="types.html#poly-typexpr"><span class="c010">poly-typexpr</span></a> <span class="c004">=</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
</td></tr>
</table></td></tr>
</table><p>The keywords <span class="c004">inherit!</span>, <span class="c004">val!</span> and <span class="c004">method!</span> have the same semantics
as <span class="c004">inherit</span>, <span class="c004">val</span> and <span class="c004">method</span>, but they additionally require the
definition they introduce to be an overriding. Namely, <span class="c004">method!</span>
requires <a class="syntax" href="names.html#method-name"><span class="c010">method-name</span></a> to be already defined in this class, <span class="c004">val!</span>
requires <a class="syntax" href="names.html#inst-var-name"><span class="c010">inst-var-name</span></a> to be already defined in this class, and
<span class="c004">inherit!</span> requires <a class="syntax" href="classes.html#class-expr"><span class="c010">class-expr</span></a> to override some definitions.
If no such overriding occurs, an error is signaled.</p><p>As a side-effect, these 3 keywords avoid the warnings 7
(method override) and 13 (instance variable override).
Note that warning 7 is disabled by default.</p>
<h2 class="section" id="sec237">7.15  Overriding in open statements</h2>
<p><a id="s:explicit-overriding-open"></a>
<a id="hevea_manual.kwd228"></a></p><p>(Introduced in OCaml 4.01)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="modules.html#definition"><span class="c010">definition</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017">  <span class="c004">open!</span> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modtypes.html#specification"><span class="c010">specification</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017">  <span class="c004">open!</span> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">let</span> <span class="c004">open!</span> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a> <span class="c004">in</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
</td></tr>
</table></td></tr>
</table><p>Since OCaml 4.01, <span class="c004">open</span> statements shadowing an existing identifier
(which is later used) trigger the warning 44. Adding a <span class="c004">!</span>
character after the <span class="c004">open</span> keyword indicates that such a shadowing is
intentional and should not trigger the warning.</p>
<h2 class="section" id="sec238">7.16  Generalized algebraic datatypes</h2>
<p> <a id="hevea_manual.kwd229"></a>
<a id="hevea_manual.kwd230"></a> <a id="s:gadts"></a></p><p>(Introduced in OCaml 4.00)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="typedecl.html#constr-decl"><span class="c010">constr-decl</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#constr-name"><span class="c010">constr-name</span></a> <span class="c004">:</span>  [ <a class="syntax" href="typedecl.html#constr-args"><span class="c010">constr-args</span></a> <span class="c004">-></span> ]  <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="typedecl.html#type-param"><span class="c010">type-param</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> [<a class="syntax" href="typedecl.html#variance"><span class="c010">variance</span></a>] <span class="c004">_</span>
</td></tr>
</table></td></tr>
</table><p>Generalized algebraic datatypes, or GADTs, extend usual sum types in
two ways: constraints on type parameters may change depending on the
value constructor, and some type variables may be existentially
quantified.
Adding constraints is done by giving an explicit return type
(the rightmost <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a> in the above syntax), where type parameters
are instantiated.
This return type must use the same type constructor as the type being
defined, and have the same number of parameters.
Variables are made existential when they appear inside a constructor’s
argument, but not in its return type.</p><p>Since the use of a return type often eliminates the need to name type
parameters in the left-hand side of a type definition, one can replace
them with anonymous types <span class="c004">_</span> in that case.</p><p>The constraints associated to each constructor can be recovered
through pattern-matching.
Namely, if the type of the scrutinee of a pattern-matching contains
a locally abstract type, this type can be refined according to the
constructor used.
These extra constraints are only valid inside the corresponding branch
of the pattern-matching.
If a constructor has some existential variables, fresh locally
abstract types are generated, and they must not escape the
scope of this branch.</p>
<h5 class="paragraph" id="sec239">Recursive functions</h5>
<p>Here is a concrete example:
</p><pre> type _ term =
| Int : int -> int term
| Add : (int -> int -> int) term
| App : ('b -> 'a) term * 'b term -> 'a term
let rec eval : type a. a term -> a = function
| Int n -> n (* a = int *)
| Add -> (fun x y -> x+y) (* a = int -> int -> int *)
| App(f,x) -> (eval f) (eval x)
(* eval called at types (b->a) and b for fresh b *)
let two = eval (App (App (Add, Int 1), Int 1))
val two : int = 2
</pre><p>It is important to remark that the function <span class="c003">eval</span> is using the
polymorphic syntax for locally abstract types. When defining a recursive
function that manipulates a GADT, explicit polymorphic recursion should
generally be used. For instance, the following definition fails with a
type error:
</p><pre> let rec eval (type a) : a term -> a = function
| Int n -> n
| Add -> (fun x y -> x+y)
| App(f,x) -> (eval f) (eval x)
(* ^
Error: This expression has type ($App_'b -> a) term but an expression was
expected of type 'a
The type constructor $App_'b would escape its scope
*)
</pre><p>In absence of an explicit polymorphic annotation, a monomorphic type
is inferred for the recursive function. If a recursive call occurs
inside the function definition at a type that involves an existential
GADT type variable, this variable flows to the type of the recursive
function, and thus escapes its scope. In the above example, this happens
in the branch <span class="c003">App(f,x)</span> when <span class="c003">eval</span> is called with <span class="c003">f</span> as an argument.
In this branch, the type of <span class="c003">f</span> is <span class="c003">($App_ 'b-> a)</span>. The prefix <span class="c003">$</span> in
<span class="c003">$App_ 'b</span> denotes an existential type named by the compiler
(see <a href="#p%3Aexistential-names">7.16</a>). Since the type of <span class="c003">eval</span> is
<span class="c003">'a term -> 'a</span>, the call <span class="c003">eval f</span> makes the existential type <span class="c003">$App_'b</span>
flow to the type variable <span class="c003">'a</span> and escape its scope. This triggers the
above error.</p>
<h5 class="paragraph" id="sec240">Type inference</h5>
<p>Type inference for GADTs is notoriously hard.
This is due to the fact some types may become ambiguous when escaping
from a branch.
For instance, in the <span class="c003">Int</span> case above, <span class="c003">n</span> could have either type <span class="c003">int</span>
or <span class="c003">a</span>, and they are not equivalent outside of that branch.
As a first approximation, type inference will always work if a
pattern-matching is annotated with types containing no free type
variables (both on the scrutinee and the return type).
This is the case in the above example, thanks to the type annotation
containing only locally abstract types.</p><p>In practice, type inference is a bit more clever than that: type
annotations do not need to be immediately on the pattern-matching, and
the types do not have to be always closed.
As a result, it is usually enough to only annotate functions, as in
the example above. Type annotations are
propagated in two ways: for the scrutinee, they follow the flow of
type inference, in a way similar to polymorphic methods; for the
return type, they follow the structure of the program, they are split
on functions, propagated to all branches of a pattern matching,
and go through tuples, records, and sum types.
Moreover, the notion of ambiguity used is stronger: a type is only
seen as ambiguous if it was mixed with incompatible types (equated by
constraints), without type annotations between them.
For instance, the following program types correctly.
</p><pre> let rec sum : type a. a term -> _ = fun x ->
let y =
match x with
| Int n -> n
| Add -> 0
| App(f,x) -> sum f + sum x
in y + 1
val sum : 'a term -> int = <fun>
</pre><p>Here the return type <span class="c003">int</span> is never mixed with <span class="c003">a</span>, so it is seen as
non-ambiguous, and can be inferred.
When using such partial type annotations we strongly suggest
specifying the <span class="c003">-principal</span> mode, to check that inference is
principal.</p><p>The exhaustiveness check is aware of GADT constraints, and can
automatically infer that some cases cannot happen.
For instance, the following pattern matching is correctly seen as
exhaustive (the <span class="c003">Add</span> case cannot happen).
</p><pre> let get_int : int term -> int = function
| Int n -> n
| App(_,_) -> 0
</pre>
<h5 class="paragraph" id="sec241">Refutation cases and redundancy</h5>
<p> (Introduced in OCaml 4.03)</p><p>Usually, the exhaustiveness check only tries to check whether the
cases omitted from the pattern matching are typable or not.
However, you can force it to try harder by adding <em>refutation cases</em>:
</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" id="matching-case"><span class="c010">matching-case</span></a></td><td class="c015">::=</td><td class="c017">
<a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a>  [<span class="c004">when</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>] <span class="c004">-></span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a> <span class="c004">-></span> <span class="c004">.</span>
</td></tr>
</table></td></tr>
</table><p>
In presence of a refutation case, the exhaustiveness check will first
compute the intersection of the pattern with the complement of the
cases preceding it. It then checks whether the resulting patterns can
really match any concrete values by trying to type-check them.
Wild cards in the generated patterns are handled in a special way: if
their type is a variant type with only GADT constructors, then the
pattern is split into the different constructors, in order to check whether
any of them is possible (this splitting is not done for arguments of these
constructors, to avoid non-termination.) We also split tuples and
variant types with only one case, since they may contain GADTs inside.
For instance, the following code is deemed exhaustive:</p><pre> type _ t =
| Int : int t
| Bool : bool t
let deep : (char t * int) option -> char = function
| None -> 'c'
| _ -> .
</pre><p>
Namely, the inferred remaining case is <span class="c003">Some _</span>, which is split into
<span class="c003">Some (Int, _)</span> and <span class="c003">Some (Bool, _)</span>, which are both untypable.
Note that the refutation case could be omitted here, because it is
automatically added when there is only one case in the pattern
matching.</p><p>Another addition is that the redundancy check is now aware of GADTs: a
case will be detected as redundant if it could be replaced by a
refutation case using the same pattern.</p>
<h5 class="paragraph" id="sec242">Advanced examples</h5>
<p>
The <span class="c003">term</span> type we have defined above is an <em>indexed</em> type, where
a type parameter reflects a property of the value contents.
Another use of GADTs is <em>singleton</em> types, where a GADT value
represents exactly one type. This value can be used as runtime
representation for this type, and a function receiving it can have a
polytypic behavior.</p><p>Here is an example of a polymorphic function that takes the
runtime representation of some type <span class="c003">t</span> and a value of the same type,
then pretty-prints the value as a string:
</p><pre> type _ typ =
| Int : int typ
| String : string typ
| Pair : 'a typ * 'b typ -> ('a * 'b) typ
let rec to_string: type t. t typ -> t -> string =
fun t x ->
match t with
| Int -> string_of_int x
| String -> Printf.sprintf "%S" x
| Pair(t1,t2) ->
let (x1, x2) = x in
Printf.sprintf "(%s,%s)" (to_string t1 x1) (to_string t2 x2)
</pre><p>
Another frequent application of GADTs is equality witnesses.
</p><pre> type (_,_) eq = Eq : ('a,'a) eq
let cast : type a b. (a,b) eq -> a -> b = fun Eq x -> x
</pre><p>Here type <span class="c003">eq</span> has only one constructor, and by matching on it one
adds a local constraint allowing the conversion between <span class="c003">a</span> and <span class="c003">b</span>.
By building such equality witnesses, one can make equal types which
are syntactically different.</p><p>Here is an example using both singleton types and equality witnesses
to implement dynamic types.
</p><pre> let rec eq_type : type a b. a typ -> b typ -> (a,b) eq option =
fun a b ->
match a, b with
| Int, Int -> Some Eq
| String, String -> Some Eq
| Pair(a1,a2), Pair(b1,b2) ->
begin match eq_type a1 b1, eq_type a2 b2 with
| Some Eq, Some Eq -> Some Eq
| _ -> None
end
| _ -> None
type dyn = Dyn : 'a typ * 'a -> dyn
let get_dyn : type a. a typ -> dyn -> a option =
fun a (Dyn(b,x)) ->
match eq_type a b with
| None -> None
| Some Eq -> Some x
</pre>
<h5 class="paragraph" id="sec243">Existential type names in error messages</h5>
<p><a id="p:existential-names"></a>
(Updated in OCaml 4.03.0)</p><p>The typing of pattern matching in presence of GADT can generate many
existential types. When necessary, error messages refer to these
existential types using compiler-generated names. Currently, the
compiler generates these names according to the following nomenclature:
</p><ul class="itemize"><li class="li-itemize">
First, types whose name starts with a <span class="c003">$</span> are existentials.
</li><li class="li-itemize"><span class="c003">$Constr_'a</span> denotes an existential type introduced for the type
variable <span class="c003">'a</span> of the GADT constructor <span class="c003">Constr</span>:
<div class="caml-example">
<pre><div class="caml-input"> type any = Any : 'name -> any
let escape (Any x) = <U>x</U>;;
</div><div class="caml-output error">Error: This expression has type $Any_'name
but an expression was expected of type 'a
The type constructor $Any_'name would escape its scope
</div></pre>
</div></li><li class="li-itemize"><span class="c003">$Constr</span> denotes an existential type introduced for an anonymous type variable in the GADT constructor <span class="c003">Constr</span>:
<div class="caml-example">
<pre><div class="caml-input"> type any = Any : _ -> any
let escape (Any x) = <U>x</U>;;
</div><div class="caml-output error">Error: This expression has type $Any but an expression was expected of type
'a
The type constructor $Any would escape its scope
</div></pre>
</div></li><li class="li-itemize"><span class="c003">$'a</span> if the existential variable was unified with the type variable <span class="c003">'a</span> during typing:
<div class="caml-example">
<pre><div class="caml-input"> type ('arg,'result,'aux) fn =
| Fun: ('a ->'b) -> ('a,'b,unit) fn
| Mem1: ('a ->'b) * 'a * 'b -> ('a, 'b, 'a * 'b) fn
let apply: ('arg,'result, _ ) fn -> 'arg -> 'result = fun f x ->
match f with
| Fun f -> f x
| <U>Mem1 (f,y,fy)</U> -> if x = y then fy else f x;;
</div><div class="caml-output error">Error: This pattern matches values of type
($'arg, 'result, $'arg * 'result) fn
but a pattern was expected which matches values of type
($'arg, 'result, unit) fn
The type constructor $'arg would escape its scope
</div></pre>
</div></li><li class="li-itemize"><span class="c003">$n</span> (n a number) is an internally generated existential which could not be named using one of the previous schemes.
</li></ul><p>As shown by the last item, the current behavior is imperfect
and may be improved in future versions.</p>
<h5 class="paragraph" id="sec244">Equations on non-local abstract types</h5>
<p> (Introduced in OCaml
4.04)</p><p>GADT pattern-matching may also add type equations to non-local
abstract types. The behaviour is the same as with local abstract
types. Reusing the above <span class="c003">eq</span> type, one can write:
</p><pre> module M : sig type t val x : t val e : (t,int) eq end = struct
type t = int
let x = 33
let e = Eq
end
let x : int = let Eq = M.e in M.x
</pre><p>
Of course, not all abstract types can be refined, as this would
contradict the exhaustiveness check. Namely, builtin types (those
defined by the compiler itself, such as <span class="c003">int</span> or <span class="c003">array</span>), and
abstract types defined by the local module, are non-instantiable, and
as such cause a type error rather than introduce an equation.</p>
<h2 class="section" id="sec245">7.17  Syntax for Bigarray access</h2>
<p><a id="s:bigarray-access"></a></p><p>(Introduced in Objective Caml 3.00)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">.{</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>  { <span class="c004">,</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> } <span class="c004">}</span>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> <span class="c004">.{</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>  { <span class="c004">,</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> } <span class="c004">}</span> <span class="c004"><-</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
</td></tr>
</table></td></tr>
</table><p>This extension provides syntactic sugar for getting and setting
elements in the arrays provided by the
<span class="c003">Bigarray</span>[<a href="libref/Bigarray.html"><span class="c003">Bigarray</span></a>] library.</p><p>The short expressions are translated into calls to functions of the
<span class="c003">Bigarray</span> module as described in the following table.</p><div class="center"><table class="c000 cellpadding1" border=1><tr><td class="c014"><span class="c013">expression</span></td><td class="c014"><span class="c013">translation</span> </td></tr>
<tr><td class="c016">
<a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub><span class="c004">.{</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">}</span></td><td class="c016"><span class="c003">Bigarray.Array1.get </span><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub> </td></tr>
<tr><td class="c016"><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub><span class="c004">.{</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c002"><span class="c003">}</span> <span class="c003"><-</span></span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a></td><td class="c016"><span class="c003">Bigarray.Array1.set </span><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> </td></tr>
<tr><td class="c016"><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub><span class="c004">.{</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">,</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>2</sub><span class="c004">}</span></td><td class="c016"><span class="c003">Bigarray.Array2.get </span><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>2</sub> </td></tr>
<tr><td class="c016"><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub><span class="c004">.{</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">,</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>2</sub><span class="c002"><span class="c003">}</span> <span class="c003"><-</span></span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a></td><td class="c016"><span class="c003">Bigarray.Array2.set </span><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>2</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> </td></tr>
<tr><td class="c016"><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub><span class="c004">.{</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">,</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>2</sub><span class="c004">,</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>3</sub><span class="c004">}</span></td><td class="c016"><span class="c003">Bigarray.Array3.get </span><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>2</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>3</sub> </td></tr>
<tr><td class="c016"><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub><span class="c004">.{</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">,</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>2</sub><span class="c004">,</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>3</sub><span class="c002"><span class="c003">}</span> <span class="c003"><-</span></span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a></td><td class="c016"><span class="c003">Bigarray.Array3.set </span><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>2</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>3</sub>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> </td></tr>
<tr><td class="c016"><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub><span class="c004">.{</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">,</span> …<span class="c004">,</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">n</span></sub><span class="c004">}</span></td><td class="c016"><span class="c003">Bigarray.Genarray.get </span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub> <span class="c004">[|</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">,</span> … <span class="c004">,</span>
 <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">n</span></sub> <span class="c004">|]</span> </td></tr>
<tr><td class="c016"><a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub><span class="c004">.{</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">,</span> …<span class="c004">,</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">n</span></sub><span class="c002"><span class="c003">}</span> <span class="c003"><-</span></span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a></td><td class="c016"><span class="c003">Bigarray.Genarray.set </span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>0</sub> <span class="c004">[|</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub>1</sub><span class="c004">,</span> … <span class="c004">,</span>
 <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a><sub><span class="c009">n</span></sub> <span class="c004">|]</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a> </td></tr>
</table></div><p>The last two entries are valid for any <span class="c009">n</span> > 3.</p>
<h2 class="section" id="sec246">7.18  Attributes</h2>
<p><a id="s:attributes"></a></p><p><a id="hevea_manual.kwd231"></a></p><p>(Introduced in OCaml 4.02,
infix notations for constructs other than expressions added in 4.03)</p><p>Attributes are “decorations” of the syntax tree which are mostly
ignored by the type-checker but can be used by external tools. An
attribute is made of an identifier and a payload, which can be a
structure, a type expression (prefixed with <span class="c003">:</span>), a signature
(prefixed with <span class="c003">:</span>) or a pattern (prefixed with <span class="c003">?</span>) optionally
followed by a <span class="c003">when</span> clause:</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" id="attr-id"><span class="c010">attr-id</span></a></td><td class="c015">::=</td><td class="c017">
<a class="syntax" href="lex.html#lowercase-ident"><span class="c010">lowercase-ident</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017">  <a class="syntax" href="lex.html#capitalized-ident"><span class="c010">capitalized-ident</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017">  <a class="syntax" href="#attr-id"><span class="c010">attr-id</span></a> <span class="c004">.</span>  <a class="syntax" href="#attr-id"><span class="c010">attr-id</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" id="attr-payload"><span class="c010">attr-payload</span></a></td><td class="c015">::=</td><td class="c017">
[ <a class="syntax" href="modules.html#module-items"><span class="c010">module-items</span></a> ]
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017">  <span class="c004">:</span> <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017">  <span class="c004">:</span> [ <a class="syntax" href="modtypes.html#specification"><span class="c010">specification</span></a> ]
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017">  <span class="c004">?</span> <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a>  [<span class="c004">when</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>]
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>The first form of attributes is attached with a postfix notation on
“algebraic” categories:</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" id="attribute"><span class="c010">attribute</span></a></td><td class="c015">::=</td><td class="c017">
<span class="c004">[@</span> <a class="syntax" href="#attr-id"><span class="c010">attr-id</span></a>  <a class="syntax" href="#attr-payload"><span class="c010">attr-payload</span></a> <span class="c004">]</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>  <a class="syntax" href="#attribute"><span class="c010">attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a>  <a class="syntax" href="#attribute"><span class="c010">attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a>  <a class="syntax" href="#attribute"><span class="c010">attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a>  <a class="syntax" href="#attribute"><span class="c010">attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a>  <a class="syntax" href="#attribute"><span class="c010">attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<span class="c010">class-expr</span></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="classes.html#class-expr"><span class="c010">class-expr</span></a>  <a class="syntax" href="#attribute"><span class="c010">attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<span class="c010">class-type</span></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="classes.html#class-type"><span class="c010">class-type</span></a>  <a class="syntax" href="#attribute"><span class="c010">attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>This form of attributes can also be inserted after the <span class="c004">`</span><a class="syntax" href="names.html#tag-name"><span class="c010">tag-name</span></a>
in polymorphic variant type expressions (<a class="syntax" href="types.html#tag-spec-first"><span class="c010">tag-spec-first</span></a>, <a class="syntax" href="types.html#tag-spec"><span class="c010">tag-spec</span></a>,
<a class="syntax" href="types.html#tag-spec-full"><span class="c010">tag-spec-full</span></a>) or after the <a class="syntax" href="names.html#method-name"><span class="c010">method-name</span></a> in <a class="syntax" href="types.html#method-type"><span class="c010">method-type</span></a>.</p><p>The same syntactic form is also used to attach attributes to labels and
constructors in type declarations:</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<span class="c010">field-decl</span></td><td class="c015">::=</td><td class="c017">
[<span class="c004">mutable</span>] <a class="syntax" href="names.html#field-name"><span class="c010">field-name</span></a> <span class="c004">:</span>  <a class="syntax" href="types.html#poly-typexpr"><span class="c010">poly-typexpr</span></a>  {<a class="syntax" href="#attribute"><span class="c010">attribute</span></a>}
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="typedecl.html#constr-decl"><span class="c010">constr-decl</span></a></td><td class="c015">::=</td><td class="c017">
(<a class="syntax" href="names.html#constr-name"><span class="c010">constr-name</span></a> ∣  <span class="c004">()</span>) [ <span class="c004">of</span> <a class="syntax" href="typedecl.html#constr-args"><span class="c010">constr-args</span></a> ]  {<a class="syntax" href="#attribute"><span class="c010">attribute</span></a>}
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>Note: when a label declaration is followed by a semi-colon, attributes
can also be put after the semi-colon (in which case they are merged to
those specified before).</p><p>The second form of attributes are attached to “blocks” such as type
declarations, class fields, etc:</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" id="item-attribute"><span class="c010">item-attribute</span></a></td><td class="c015">::=</td><td class="c017">
<span class="c004">[@@</span> <a class="syntax" href="#attr-id"><span class="c010">attr-id</span></a>  <a class="syntax" href="#attr-payload"><span class="c010">attr-payload</span></a> <span class="c004">]</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<span class="c010">typedef</span></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="typedecl.html#typedef"><span class="c010">typedef</span></a>  <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<span class="c010">exception-definition</span></td><td class="c015">::=</td><td class="c017">
<span class="c004">exception</span> <a class="syntax" href="typedecl.html#constr-decl"><span class="c010">constr-decl</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">exception</span> <a class="syntax" href="names.html#constr-name"><span class="c010">constr-name</span></a> <span class="c004">=</span>  <a class="syntax" href="names.html#constr"><span class="c010">constr</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<span class="c010">module-items</span></td><td class="c015">::=</td><td class="c017">
[<span class="c004">;;</span>] ( <a class="syntax" href="modules.html#definition"><span class="c010">definition</span></a> ∣  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> } )  { [<span class="c004">;;</span>] <a class="syntax" href="modules.html#definition"><span class="c010">definition</span></a> ∣  <span class="c004">;;</span> <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> } }  [<span class="c004">;;</span>]
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<span class="c010">class-binding</span></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="classes.html#class-binding"><span class="c010">class-binding</span></a>  <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<span class="c010">class-spec</span></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="classes.html#class-spec"><span class="c010">class-spec</span></a>  <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<span class="c010">classtype-def</span></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="classes.html#classtype-def"><span class="c010">classtype-def</span></a>  <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modules.html#definition"><span class="c010">definition</span></a></td><td class="c015">::=</td><td class="c017">
<span class="c004">let</span> [<span class="c004">rec</span>] <a class="syntax" href="expr.html#let-binding"><span class="c010">let-binding</span></a>  { <span class="c004">and</span> <a class="syntax" href="expr.html#let-binding"><span class="c010">let-binding</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">external</span> <a class="syntax" href="names.html#value-name"><span class="c010">value-name</span></a> <span class="c004">:</span>  <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a> <span class="c004">=</span>  <a class="syntax" href="intfc.html#external-declaration"><span class="c010">external-declaration</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="typedecl.html#type-definition"><span class="c010">type-definition</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="typedecl.html#exception-definition"><span class="c010">exception-definition</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="classes.html#class-definition"><span class="c010">class-definition</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="classes.html#classtype-definition"><span class="c010">classtype-definition</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a>  { <span class="c004">(</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">:</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a> <span class="c004">)</span> }
 [ <span class="c004">:</span> <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a> ]  <span class="c004">=</span>  <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <span class="c004">type</span> <a class="syntax" href="names.html#modtype-name"><span class="c010">modtype-name</span></a> <span class="c004">=</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">open</span> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">include</span> <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <span class="c004">rec</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">:</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a> <span class="c004">=</span> 
 <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> } 
 { <span class="c004">and</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">:</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a> <span class="c004">=</span>  <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a> 
 { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> } }
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modtypes.html#specification"><span class="c010">specification</span></a></td><td class="c015">::=</td><td class="c017">
<span class="c004">val</span> <a class="syntax" href="names.html#value-name"><span class="c010">value-name</span></a> <span class="c004">:</span>  <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">external</span> <a class="syntax" href="names.html#value-name"><span class="c010">value-name</span></a> <span class="c004">:</span>  <a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a> <span class="c004">=</span>  <a class="syntax" href="intfc.html#external-declaration"><span class="c010">external-declaration</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="typedecl.html#type-definition"><span class="c010">type-definition</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">exception</span> <a class="syntax" href="typedecl.html#constr-decl"><span class="c010">constr-decl</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="classes.html#class-specification"><span class="c010">class-specification</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="classes.html#classtype-definition"><span class="c010">classtype-definition</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">:</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a>  { <span class="c004">(</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">:</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a> <span class="c004">)</span> }
<span class="c004">:</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <span class="c004">type</span> <a class="syntax" href="names.html#modtype-name"><span class="c010">modtype-name</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <span class="c004">type</span> <a class="syntax" href="names.html#modtype-name"><span class="c010">modtype-name</span></a> <span class="c004">=</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">open</span> <a class="syntax" href="names.html#module-path"><span class="c010">module-path</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">include</span> <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a>  { <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a> }
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<span class="c010">class-field-spec</span></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="classes.html#class-field-spec"><span class="c010">class-field-spec</span></a>  <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="classes.html#class-field"><span class="c010">class-field</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="classes.html#class-field"><span class="c010">class-field</span></a>  <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>A third form of attributes appears as stand-alone structure or
signature items in the module or class sub-languages. They are not
attached to any specific node in the syntax tree:</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" id="floating-attribute"><span class="c010">floating-attribute</span></a></td><td class="c015">::=</td><td class="c017">
<span class="c004">[@@@</span> <a class="syntax" href="#attr-id"><span class="c010">attr-id</span></a>  <a class="syntax" href="#attr-payload"><span class="c010">attr-payload</span></a> <span class="c004">]</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modules.html#definition"><span class="c010">definition</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#floating-attribute"><span class="c010">floating-attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modtypes.html#specification"><span class="c010">specification</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#floating-attribute"><span class="c010">floating-attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<span class="c010">class-field-spec</span></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#floating-attribute"><span class="c010">floating-attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="classes.html#class-field"><span class="c010">class-field</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#floating-attribute"><span class="c010">floating-attribute</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>(Note: contrary to what the grammar above describes, <span class="c010">item-attributes</span>
cannot be attached to these floating attributes in <a class="syntax" href="classes.html#class-field-spec"><span class="c010">class-field-spec</span></a>
and <a class="syntax" href="classes.html#class-field"><span class="c010">class-field</span></a>.)</p><p>It is also possible to specify attributes using an infix syntax. For instance:</p><pre>let[@foo] x = 2 in x + 1 === (let x = 2 [@@foo] in x + 1)
begin[@foo][@bar x] ... end === (begin ... end)[@foo][@@bar x]
module[@foo] M = ... === module M = ... [@@foo]
type[@foo] t = T === type t = T [@@foo]
method[@foo] m = ... === method m = ... [@@foo]
</pre><p>
For <span class="c003">let</span>, the attributes are applied to each bindings:</p><pre>let[@foo] x = 2 and y = 3 in x + y === (let x = 2 [@@foo] and y = 3 in x + y)
let[@foo] x = 2
and[@bar] y = 3 in x + y === (let x = 2 [@@foo] and y = 3 [@bar] in x + y)
</pre>
<h3 class="subsection" id="sec247">7.18.1  Built-in attributes</h3>
<p>
<a id="ss:builtin-attributes"></a></p><p>Some attributes are understood by the type-checker:
</p><ul class="itemize"><li class="li-itemize">
“ocaml.warning” or “warning”, with a string literal payload.
This can be used as floating attributes in a
signature/structure/object/object type. The string is parsed and has
the same effect as the <span class="c003">-w</span> command-line option, in the scope between
the attribute and the end of the current
signature/structure/object/object type. The attribute can also be
used on an expression,
in which case its scope is limited to that expression.
Note that it is not well-defined which scope is used for a specific
warning. This is implementation dependant and can change between versions.
For instance, warnings triggered by the “ppwarning” attribute (see below)
are issued using the global warning configuration.
</li><li class="li-itemize">“ocaml.warnerror” or “warnerror”, with a string literal payload.
Same as “ocaml.warning”, for the <span class="c003">-warn-error</span> command-line option.
</li><li class="li-itemize">“ocaml.deprecated” or “deprecated”.
Can be applied to most kind of items in signatures or
structures. When the element is later referenced, a warning (3) is
triggered. If the payload of the attribute is a string literal,
the warning message includes this text. It is also possible
to use this “ocaml.deprecated” as a floating attribute
on top of an “.mli” file (i.e. before any other non-attribute
item) or on top of an “.ml” file without a corresponding
interface; this marks the unit itself as being deprecated.
</li><li class="li-itemize">“ocaml.deprecated_mutable” or “deprecated_mutable”.
Can be applied to a mutable record label. If the label is later
used to modify the field (with “expr.l <- expr”), a warning (3)
will be triggered. If the payload of the attribute is a string literal,
the warning message includes this text.
</li><li class="li-itemize">“ocaml.ppwarning” or “ppwarning”, in any context, with
a string literal payload. The text is reported as warning (22)
by the compiler (currently, the warning location is the location
of the string payload). This is mostly useful for preprocessors which
need to communicate warnings to the user. This could also be used
to mark explicitly some code location for further inspection.
</li><li class="li-itemize">“ocaml.warn_on_literal_pattern” or “warn_on_literal_pattern” annotate
constructors in type definition. A warning (52) is then emitted when this
constructor is pattern matched with a constant literal as argument. This
attribute denotes constructors whose argument is purely informative and
may change in the future. Therefore, pattern matching on this argument
with a constant literal is unreliable. For instance, all built-in exception
constructors are marked as “warn_on_literal_pattern”.
Note that, due to an implementation limitation, this warning (52) is only
triggered for single argument constructor.
</li><li class="li-itemize">“ocaml.tailcall” or “tailcall” can be applied to function
application in order to check that the call is tailcall optimized.
If it it not the case, a warning (51) is emitted.
</li><li class="li-itemize">“ocaml.inline” or “inline” take either “never”, “always”
or nothing as payload on a function or functor definition. If no payload
is provided, the default value is “always”. This payload controls when
applications of the annotated functions should be inlined.
</li><li class="li-itemize">“ocaml.inlined” or “inlined” can be applied to any function or functor
application to check that the call is inlined by the compiler. If the call
is not inlined, a warning (55) is emitted.
</li><li class="li-itemize">“ocaml.noalloc”, “ocaml.unboxed”and “ocaml.untagged” or
“noalloc”, “unboxed” and “untagged” can be used on external
definitions to obtain finer control over the C-to-OCaml interface. See
<a href="intfc.html#s%3AC-cheaper-call">19.10</a> for more details.
</li><li class="li-itemize">“ocaml.immediate” or “immediate” applied on an abstract type mark the type as
having a non-pointer implementation (e.g. “int”, “bool”, “char” or
enumerated types). Mutation of these immediate types does not activate the
garbage collector’s write barrier, which can significantly boost performance in
programs relying heavily on mutable state.
</li><li class="li-itemize"><span class="c003">ocaml.unboxed</span> or <span class="c003">unboxed</span> can be used on a type definition if the
type is a single-field record or a concrete type with a single
constructor that has a single argument. It tells the compiler to
optimize the representation of the type by removing the block that
represents the record or the constructor (i.e. a value of this type
is physically equal to its argument). In the case of GADTs, an
additional restriction applies: the argument must not be an
existential variable, represented by an existential type variable,
or an abstract type constructor applied to an existential type
variable.
</li><li class="li-itemize"><span class="c003">ocaml.boxed</span> or <span class="c003">boxed</span> can be used on type definitions to mean
the opposite of <span class="c003">ocaml.unboxed</span>: keep the unoptimized
representation of the type. When there is no annotation, the
default is currently <span class="c003">boxed</span> but it may change in the future.
</li></ul><pre>module X = struct
[@@@warning "+9"] (* locally enable warning 9 in this structure *)
...
end
[@@deprecated "Please use module 'Y' instead."]
let x = begin[@warning "+9"] ... end in ....
type t = A | B
[@@deprecated "Please use type 's' instead."]
let f x =
assert (x >= 0) [@ppwarning "TODO: remove this later"];
let rec no_op = function
| [] -> ()
| _ :: q -> (no_op[@tailcall]) q;;
let f x = x [@@inline]
let () = (f[@inlined]) ()
type fragile =
| Int of int [@warn_on_literal_pattern]
| String of string [@warn_on_literal_pattern]
let f = function
| Int 0 | String "constant" -> () (* trigger warning 52 *)
| _ -> ()
module Immediate: sig
type t [@@immediate]
val x: t ref
end = struct
type t = A | B
let x = ref 0
end
....
</pre>
<h2 class="section" id="sec248">7.19  Extension nodes</h2>
<p><a id="s:extension-nodes"></a></p><p>(Introduced in OCaml 4.02,
infix notations for constructs other than expressions added in 4.03,
infix notation (e1 ;%ext e2) added in 4.04.
)</p><p>Extension nodes are generic placeholders in the syntax tree. They are
rejected by the type-checker and are intended to be “expanded” by external
tools such as <span class="c003">-ppx</span> rewriters.</p><p>Extension nodes share the same notion of identifier and payload as
attributes <a href="#s%3Aattributes">7.18</a>.</p><p>The first form of extension node is used for “algebraic” categories:</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" id="extension"><span class="c010">extension</span></a></td><td class="c015">::=</td><td class="c017">
<span class="c004">[%</span> <a class="syntax" href="#attr-id"><span class="c010">attr-id</span></a>  <a class="syntax" href="#attr-payload"><span class="c010">attr-payload</span></a> <span class="c004">]</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#extension"><span class="c010">extension</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="types.html#typexpr"><span class="c010">typexpr</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#extension"><span class="c010">extension</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#extension"><span class="c010">extension</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#extension"><span class="c010">extension</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#extension"><span class="c010">extension</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<span class="c010">class-expr</span></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#extension"><span class="c010">extension</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<span class="c010">class-type</span></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#extension"><span class="c010">extension</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>A second form of extension node can be used in structures and
signatures, both in the module and object languages:</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" id="item-extension"><span class="c010">item-extension</span></a></td><td class="c015">::=</td><td class="c017">
<span class="c004">[%%</span> <a class="syntax" href="#attr-id"><span class="c010">attr-id</span></a>  <a class="syntax" href="#attr-payload"><span class="c010">attr-payload</span></a> <span class="c004">]</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modules.html#definition"><span class="c010">definition</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#item-extension"><span class="c010">item-extension</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modtypes.html#specification"><span class="c010">specification</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#item-extension"><span class="c010">item-extension</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<span class="c010">class-field-spec</span></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#item-extension"><span class="c010">item-extension</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="classes.html#class-field"><span class="c010">class-field</span></a></td><td class="c015">::=</td><td class="c017">
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="#item-extension"><span class="c010">item-extension</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>An infix form is available for extension nodes when
the payload is of the same kind
(expression with expression, pattern with pattern ...).</p><p>Examples:</p><pre>let%foo x = 2 in x + 1 === [%foo let x = 2 in x + 1]
begin%foo ... end === [%foo begin ... end]
x ;%foo 2 === [%foo x; 2]
module%foo M = .. === [%%foo module M = ... ]
val%foo x : t === [%%foo: val x : t]
</pre><p>
When this form is used together with the infix syntax for attributes,
the attributes are considered to apply to the payload:</p><pre>fun%foo[@bar] x -> x + 1 === [%foo (fun x -> x + 1)[@foo ] ];
</pre>
<h3 class="subsection" id="sec249">7.19.1  Built-in extension nodes</h3>
<p>(Introduced in OCaml 4.03)</p><p>Some extension nodes are understood by the compiler itself:
</p><ul class="itemize"><li class="li-itemize">
“ocaml.extension_constructor” or “extension_constructor”
take as payload a constructor from an extensible variant type
(see <a href="#s%3Aextensible-variants">7.22</a>) and return its extension
constructor slot.
</li></ul><div class="caml-example">
<pre><div class="caml-input"> type t = ..
type t += X of int | Y of string
let x = [%extension_constructor X]
let y = [%extension_constructor Y];;
</div>
</pre>
</div><div class="caml-example">
<pre><div class="caml-input"> x <> y;;
</div><div class="caml-output ok">- : bool = true
</div></pre>
</div>
<h2 class="section" id="sec250">7.20  Quoted strings</h2>
<p><a id="s:quoted-strings"></a></p><p>(Introduced in OCaml 4.02)</p><p>Quoted strings <span class="c003">{foo|...|foo}</span> provide a different lexical syntax to
write string literals in OCaml code. They are useful to represent
strings of arbitrary content without escaping – as long as the
delimiter you chose (here <span class="c003">|foo}</span>) does not occur in the string
itself.</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<span class="c010">string-literal</span></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017">  <span class="c004">{</span> <a class="syntax" href="#quoted-string-id"><span class="c010">quoted-string-id</span></a> <span class="c004">|</span>  ........ <span class="c004">|</span>  <a class="syntax" href="#quoted-string-id"><span class="c010">quoted-string-id</span></a> <span class="c004">}</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" id="quoted-string-id"><span class="c010">quoted-string-id</span></a></td><td class="c015">::=</td><td class="c017">
{ <span class="c004">a</span>...<span class="c004">z</span> ∣  <span class="c004">_</span> }
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>The opening delimiter has the form <span class="c003">{id|</span> where <span class="c003">id</span> is a (possibly
empty) sequence of lowercase letters and underscores. The
corresponding closing delimiter is <span class="c003">|id}</span> (with the same
identifier). Unlike regular OCaml string literals, quoted
strings do not interpret any character in a special way.</p><p>Example:</p><pre>String.length {|\"|} (* returns 2 *)
String.length {foo|\"|foo} (* returns 2 *)
</pre><p>
Quoted strings are interesting in particular in conjunction to
extension nodes <span class="c003">[%foo ...]</span> (see <a href="#s%3Aextension-nodes">7.19</a>) to embed
foreign syntax fragments to be interpreted by a preprocessor and
turned into OCaml code: you can use <span class="c003">[%sql {|...|}]</span> for example to
represent arbitrary SQL statements – assuming you have a ppx-rewriter
that recognizes the <span class="c003">%sql</span> extension – without requiring escaping
quotes.</p><p>Note that the non-extension form, for example <span class="c003">{sql|...|sql}</span>, should
not be used for this purpose, as the user cannot see in the code that
this string literal has a different semantics than they expect, and
giving a semantics to a specific delimiter limits the freedom to
change the delimiter to avoid escaping issues.</p>
<h2 class="section" id="sec251">7.21  Exception cases in pattern matching</h2>
<p><a id="s:exception-match"></a></p><p>(Introduced in OCaml 4.02)</p><p>A new form of exception patterns is allowed, only as a toplevel
pattern under a <span class="c003">match</span>...<span class="c003">with</span> pattern-matching (other occurrences
are rejected by the type-checker).</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a></td><td class="c015">::=</td><td class="c017"> ...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">exception</span> <a class="syntax" href="patterns.html#pattern"><span class="c010">pattern</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>Cases with such a toplevel pattern are called “exception cases”,
as opposed to regular “value cases”. Exception cases are applied
when the evaluation of the matched expression raises an exception.
The exception value is then matched against all the exception cases
and re-raised if none of them accept the exception (as for a
<span class="c003">try</span>...<span class="c003">with</span> block). Since the bodies of all exception and value
cases is outside the scope of the exception handler, they are all
considered to be in tail-position: if the <span class="c003">match</span>...<span class="c003">with</span> block
itself is in tail position in the current function, any function call
in tail position in one of the case bodies results in an actual tail
call.</p><p>It is an error if all cases are exception cases in a given pattern
matching.</p>
<h2 class="section" id="sec252">7.22  Extensible variant types</h2>
<p><a id="s:extensible-variants"></a></p><p>(Introduced in OCaml 4.02)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="typedecl.html#type-representation"><span class="c010">type-representation</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">=</span> <span class="c004">..</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modtypes.html#specification"><span class="c010">specification</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">type</span> [<a class="syntax" href="typedecl.html#type-params"><span class="c010">type-params</span></a>]  <a class="syntax" href="names.html#typeconstr"><span class="c010">typeconstr</span></a>  <a class="syntax" href="#type-extension-spec"><span class="c010">type-extension-spec</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modules.html#definition"><span class="c010">definition</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">type</span> [<a class="syntax" href="typedecl.html#type-params"><span class="c010">type-params</span></a>]  <a class="syntax" href="names.html#typeconstr"><span class="c010">typeconstr</span></a>  <a class="syntax" href="#type-extension-def"><span class="c010">type-extension-def</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" id="type-extension-spec"><span class="c010">type-extension-spec</span></a></td><td class="c015">::=</td><td class="c017"> <span class="c004">+=</span> [<span class="c004">private</span>] [<span class="c004">|</span>] <a class="syntax" href="typedecl.html#constr-decl"><span class="c010">constr-decl</span></a>  { <span class="c004">|</span> <a class="syntax" href="typedecl.html#constr-decl"><span class="c010">constr-decl</span></a> }
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" id="type-extension-def"><span class="c010">type-extension-def</span></a></td><td class="c015">::=</td><td class="c017"> <span class="c004">+=</span> [<span class="c004">private</span>] [<span class="c004">|</span>] <a class="syntax" href="#constr-def"><span class="c010">constr-def</span></a>  { <span class="c004">|</span> <a class="syntax" href="#constr-def"><span class="c010">constr-def</span></a> }
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" id="constr-def"><span class="c010">constr-def</span></a></td><td class="c015">::=</td><td class="c017">
<a class="syntax" href="typedecl.html#constr-decl"><span class="c010">constr-decl</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="names.html#constr-name"><span class="c010">constr-name</span></a> <span class="c004">=</span>  <a class="syntax" href="names.html#constr"><span class="c010">constr</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>Extensible variant types are variant types which can be extended with
new variant constructors. Extensible variant types are defined using
<span class="c003">..</span>. New variant constructors are added using <span class="c003">+=</span>.
</p><pre> type attr = ..
type attr += Str of string
type attr +=
| Int of int
| Float of float
</pre><p>
Pattern matching on an extensible variant type requires a default case
to handle unknown variant constructors:
</p><pre> let to_string = function
| Str s -> s
| Int i -> string_of_int i
| Float f -> string_of_float f
| _ -> "?"
</pre><p>
A preexisting example of an extensible variant type is the built-in
<span class="c003">exn</span> type used for exceptions. Indeed, exception constructors can be
declared using the type extension syntax:
</p><pre> type exn += Exc of int
</pre><p>
Extensible variant constructors can be rebound to a different name. This
allows exporting variants from another module.
</p><pre> type Expr.attr += Str = Expr.Str
</pre><p>
Extensible variant constructors can be declared <span class="c003">private</span>. As with
regular variants, this prevents them from being constructed directly by
constructor application while still allowing them to be de-structured in
pattern-matching.</p>
<h2 class="section" id="sec253">7.23  Generative functors</h2>
<p><a id="s:generative-functors"></a></p><p>(Introduced in OCaml 4.02)</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">functor</span> <span class="c004">()</span> <span class="c004">-></span> <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a>
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a> <span class="c004">()</span>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modules.html#definition"><span class="c010">definition</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a>  { <span class="c004">(</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">:</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a> <span class="c004">)</span> ∣  <span class="c004">()</span> }
[ <span class="c004">:</span> <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a> ]  <span class="c004">=</span>  <a class="syntax" href="modules.html#module-expr"><span class="c010">module-expr</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">functor</span> <span class="c004">()</span> <span class="c004">-></span> <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" href="modtypes.html#specification"><span class="c010">specification</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">module</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a>  { <span class="c004">(</span> <a class="syntax" href="names.html#module-name"><span class="c010">module-name</span></a> <span class="c004">:</span>  <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a> <span class="c004">)</span> ∣  <span class="c004">()</span> }
<span class="c004">:</span> <a class="syntax" href="modtypes.html#module-type"><span class="c010">module-type</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>A generative functor takes a unit <span class="c003">()</span> argument.
In order to use it, one must necessarily apply it to this unit argument,
ensuring that all type components in the result of the functor behave
in a generative way, <em>i.e.</em> they are different from types obtained
by other applications of the same functor.
This is equivalent to taking an argument of signature <span class="c003">sig end</span>, and always
applying to <span class="c003">struct end</span>, but not to some defined module (in the
latter case, applying twice to the same module would return identical
types).</p><p>As a side-effect of this generativity, one is allowed to unpack
first-class modules in the body of generative functors.</p>
<h2 class="section" id="sec254">7.24  Extension-only syntax</h2>
<p>
(Introduced in OCaml 4.02.2, extended in 4.03)</p><p>Some syntactic constructions are accepted during parsing and rejected
during type checking. These syntactic constructions can therefore not
be used directly in vanilla OCaml. However, <span class="c003">-ppx</span> rewriters and other
external tools can exploit this parser leniency to extend the language
with these new syntactic constructions by rewriting them to
vanilla constructions.
</p>
<h3 class="subsection" id="sec255">7.24.1  Extension operators</h3>
<p> <a id="s:ext-ops"></a>
(Introduced in OCaml 4.02.2)
</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<span class="c010">infix-symbol</span></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">#</span> {<span class="c010">operator-chars</span>} <span class="c004">#</span>   {<a class="syntax" href="lex.html#operator-char"><span class="c010">operator-char</span></a> <span class="c004">|</span> <span class="c004">#</span>}
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>Operator names starting with a <span class="c003">#</span> character and containing more than
one <span class="c003">#</span> character are reserved for extensions.</p>
<h3 class="subsection" id="sec256">7.24.2  Extension literals</h3>
<p> <a id="s:extension-literals"></a>
(Introduced in OCaml 4.03)
</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<span class="c010">float-literal</span></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> [<span class="c004">-</span>] (<span class="c004">0</span>…<span class="c004">9</span>) { <span class="c004">0</span>…<span class="c004">9</span>∣ <span class="c004">_</span> } [<span class="c004">.</span> { <span class="c004">0</span>…<span class="c004">9</span>∣ <span class="c004">_</span> }]
[(<span class="c004">e</span>∣ <span class="c004">E</span>) [<span class="c004">+</span>∣ <span class="c004">-</span>] (<span class="c004">0</span>…<span class="c004">9</span>) { <span class="c004">0</span>…<span class="c004">9</span>∣ <span class="c004">_</span> }]
[<span class="c004">g</span>…<span class="c004">z</span>∣ <span class="c004">G</span>…<span class="c004">Z</span>]
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> [<span class="c004">-</span>] (<span class="c004">0x</span>∣ <span class="c004">0X</span>)
(<span class="c004">0</span>…<span class="c004">9</span>∣ <span class="c004">A</span>…<span class="c004">F</span>∣ <span class="c004">a</span>…<span class="c004">f</span>)
{ <span class="c004">0</span>…<span class="c004">9</span>∣ <span class="c004">A</span>…<span class="c004">F</span>∣ <span class="c004">a</span>…<span class="c004">f</span>∣ <span class="c004">_</span> }
[<span class="c004">.</span> { <span class="c004">0</span>…<span class="c004">9</span>∣ <span class="c004">A</span>…<span class="c004">F</span>∣ <span class="c004">a</span>…<span class="c004">f</span>∣ <span class="c004">_</span> }
[(<span class="c004">p</span>∣ <span class="c004">P</span>) [<span class="c004">+</span>∣ <span class="c004">-</span>] (<span class="c004">0</span>…<span class="c004">9</span>) { <span class="c004">0</span>…<span class="c004">9</span>∣ <span class="c004">_</span> }]
[<span class="c004">g</span>…<span class="c004">z</span>∣ <span class="c004">G</span>…<span class="c004">Z</span>]
 </td></tr>
<tr><td class="c018"> </td></tr>
<tr><td class="c018">
<a class="syntax" id="int-literal"><span class="c010">int-literal</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> [<span class="c004">-</span>] (<span class="c004">0</span>…<span class="c004">9</span>) { <span class="c004">0</span>…<span class="c004">9</span> ∣  <span class="c004">_</span> }[<span class="c004">g</span>…<span class="c004">z</span>∣ <span class="c004">G</span>…<span class="c004">Z</span>]
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> [<span class="c004">-</span>] (<span class="c004">0x</span>∣ <span class="c004">0X</span>) (<span class="c004">0</span>…<span class="c004">9</span>∣ <span class="c004">A</span>…<span class="c004">F</span>∣ <span class="c004">a</span>…<span class="c004">f</span>)
{ <span class="c004">0</span>…<span class="c004">9</span>∣ <span class="c004">A</span>…<span class="c004">F</span>∣ <span class="c004">a</span>…<span class="c004">f</span>∣ <span class="c004">_</span> }
[<span class="c004">g</span>…<span class="c004">z</span>∣ <span class="c004">G</span>…<span class="c004">Z</span>]
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> [<span class="c004">-</span>] (<span class="c004">0o</span>∣ <span class="c004">0O</span>) (<span class="c004">0</span>…<span class="c004">7</span>) { <span class="c004">0</span>…<span class="c004">7</span>∣ <span class="c004">_</span> }
[<span class="c004">g</span>…<span class="c004">z</span>∣ <span class="c004">G</span>…<span class="c004">Z</span>]
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> [<span class="c004">-</span>] (<span class="c004">0b</span>∣ <span class="c004">0B</span>) (<span class="c004">0</span>…<span class="c004">1</span>) { <span class="c004">0</span>…<span class="c004">1</span>∣ <span class="c004">_</span> }
[<span class="c004">g</span>…<span class="c004">z</span>∣ <span class="c004">G</span>…<span class="c004">Z</span>]
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>
Int and float literals followed by an one-letter identifier in the
range [<span class="c004">g</span>..<span class="c004">z</span>∣ <span class="c004">G</span>..<span class="c004">Z</span>] are extension-only literals.</p>
<h2 class="section" id="sec257">7.25  Inline records</h2>
<p> <a id="s:inline-records"></a>
(Introduced in OCaml 4.03)
</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<span class="c010">constr-args</span></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <a class="syntax" href="typedecl.html#record-decl"><span class="c010">record-decl</span></a>
 </td></tr>
<tr><td class="c018"> </td></tr>
</table></td></tr>
</table><p>The arguments of a sum-type constructors can now be defined using the
same syntax as records. Mutable and polymorphic fields are allowed.
GADT syntax is supported. Attributes can be specified on individual
fields.</p><p>Syntactically, building or matching constructors with such an inline
record argument is similar to working with a unary constructor whose
unique argument is a declared record type. A pattern can bind
the inline record as a pseudo-value, but the record cannot escape the
scope of the binding and can only be used with the dot-notation to
extract or modify fields or to build new constructor values.</p><pre>type t =
| Point of {width: int; mutable x: float; mutable y: float}
| ...
let v = Point {width = 10; x = 0.; y = 0.}
let scale l = function
| Point p -> Point {p with x = l *. p.x; y = l *. p.y}
| ....
let print = function
| Point {x; y; _} -> Printf.printf "%f/%f" x y
| ....
let reset = function
| Point p -> p.x <- 0.; p.y <- 0.
| ...
let invalid = function
| Point p -> p (* INVALID *)
| ...
</pre>
<h2 class="section" id="sec258">7.26  Local exceptions</h2>
<p>
<a id="hevea_manual.kwd232"></a>
<a id="hevea_manual.kwd233"></a> <a id="s:local-exceptions"></a></p><p>(Introduced in OCaml 4.04)</p><p>It is possible to define local exceptions in expressions:</p><table class="display dcenter"><tr class="c019"><td class="dcell"><table class="c001 cellpading0"><tr><td class="c018">
<a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a></td><td class="c015">::=</td><td class="c017">
...
 </td></tr>
<tr><td class="c018"> </td><td class="c015">∣</td><td class="c017"> <span class="c004">let</span> <span class="c004">exception</span> <a class="syntax" href="typedecl.html#constr-decl"><span class="c010">constr-decl</span></a> <span class="c004">in</span>  <a class="syntax" href="expr.html#expr"><span class="c010">expr</span></a>
</td></tr>
</table></td></tr>
</table><p>The syntactic scope of the exception constructor is the inner
expression, but nothing prevents exception values created with this
constructor from escaping this scope. Two executions of the definition
above result in two incompatible exception constructors (as for any
exception definition).</p>
<h2 class="section" id="sec259">7.27  Documentation comments</h2>
<p>
(Introduced in OCaml 4.03)</p><p>Comments which start with <span class="c003">**</span> are treated specially by the
compiler. They are automatically converted during parsing into
attributes (see <a href="#s%3Aattributes">7.18</a>) to allow tools to process them as
documentation.</p><p>Such comments can take three forms: <em>floating comments</em>, <em>item
comments</em> and <em>label comments</em>. Any comment starting with <span class="c003">**</span> which
does not match one of these forms will cause the compiler to emit
warning 50.</p><p>Comments which start with <span class="c003">**</span> are also used by the ocamldoc
documentation generator (see <a href="ocamldoc.html#c%3Aocamldoc">15</a>). The three comment forms
recognised by the compiler are a subset of the forms accepted by
ocamldoc (see <a href="ocamldoc.html#s%3Aocamldoc-comments">15.2</a>).</p>
<h3 class="subsection" id="sec260">7.27.1  Floating comments</h3>
<p>Comments surrounded by blank lines that appear within structures,
signatures, classes or class types are converted into
<a class="syntax" href="#floating-attribute"><span class="c010">floating-attribute</span></a>s. For example:</p><pre>type t = T
(** Now some definitions for [t] *)
let mkT = T
</pre><p>
will be converted to:</p><pre>type t = T
[@@@ocaml.text " Now some definitions for [t] "]
let mkT = T
</pre>
<h3 class="subsection" id="sec261">7.27.2  Item comments</h3>
<p>Comments which appear <em>immediately before</em> or <em>immediately
after</em> a structure item, signature item, class item or class type item
are converted into <a class="syntax" href="#item-attribute"><span class="c010">item-attribute</span></a>s. Immediately before or immediately
after means that there must be no blank lines, <span class="c003">;;</span>, or other
documentation comments between them. For example:</p><pre>type t = T
(** A description of [t] *)
</pre><p>
or</p><pre>
(** A description of [t] *)
type t = T
</pre><p>
will be converted to:</p><pre>type t = T
[@@ocaml.doc " A description of [t] "]
</pre><p>
Note that, if a comment appears immediately next to multiple items,
as in:</p><pre>type t = T
(** An ambiguous comment *)
type s = S
</pre><p>
then it will be attached to both items:</p><pre>type t = T
[@@ocaml.doc " An ambiguous comment "]
type s = S
[@@ocaml.doc " An ambiguous comment "]
</pre><p>
and the compiler will emit warning 50.</p>
<h3 class="subsection" id="sec262">7.27.3  Label comments</h3>
<p>Comments which appear <em>immediately after</em> a labelled argument,
record field, variant constructor, object method or polymorphic variant
constructor are are converted into <a class="syntax" href="#attribute"><span class="c010">attribute</span></a>s. Immediately
after means that there must be no blank lines or other documentation
comments between them. For example:</p><pre>type t1 = lbl:int (** Labelled argument *) -> unit
type t2 = {
fld: int; (** Record field *)
fld2: float;
}
type t3 =
| Cstr of string (** Variant constructor *)
| Cstr2 of string
type t4 = < meth: int * int; (** Object method *) >
type t5 = [
`PCstr (** Polymorphic variant constructor *)
]
</pre><p>
will be converted to:</p><pre>type t1 = lbl:(int [@ocaml.doc " Labelled argument "]) -> unit
type t2 = {
fld: int [@ocaml.doc " Record field "];
fld2: float;
}
type t3 =
| Cstr of string [@ocaml.doc " Variant constructor "]
| Cstr2 of string
type t4 = < meth : int * int [@ocaml.doc " Object method "] >
type t5 = [
`PCstr [@ocaml.doc " Polymorphic variant constructor "]
]
</pre><p>
Note that label comments take precedence over item comments, so:</p><pre>type t = T of string
(** Attaches to T not t *)
</pre><p>
will be converted to:</p><pre>type t = T of string [@ocaml.doc " Attaches to T not t "]
</pre><p>
whilst:</p><pre>type t = T of string
(** Attaches to T not t *)
(** Attaches to t *)
</pre><p>
will be converted to:</p><pre>type t = T of string [@ocaml.doc " Attaches to T not t "]
[@@ocaml.doc " Attaches to t "]
</pre><p>
In the absence of meaningful comment on the last constructor of
a type, an empty comment <span class="c003">(**)</span> can be used instead:</p><pre>type t = T of string
(**)
(** Attaches to t *)
</pre><p>
will be converted directly to</p><pre>type t = T of string
[@@ocaml.doc " Attaches to t "]
</pre>
<hr>
<a href="language.html"><img src="previous_motif.gif" alt="Previous"></a>
<a href="index.html"><img src="contents_motif.gif" alt="Up"></a>
<a href="comp.html"><img src="next_motif.gif" alt="Next"></a>
</body>
</html>
|