File: coreexamples.html

package info (click to toggle)
ocaml-doc 4.11-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 20,580 kB
  • sloc: sh: 37; makefile: 11
file content (2018 lines) | stat: -rw-r--r-- 78,223 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
<!DOCTYPE html>
<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="generator" content="hevea 2.32">

  <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
<link rel="stylesheet" type="text/css" href="manual.css">
<title>Chapter 1  The core language</title>
</head>
<body>
<a href="foreword.html"><img src="previous_motif.svg" alt="Previous"></a>
<a href="index.html"><img src="contents_motif.svg" alt="Up"></a>
<a href="moduleexamples.html"><img src="next_motif.svg" alt="Next"></a>
<hr>
<h1 class="chapter" id="sec7">Chapter 1  The core language</h1>
<ul>
<li><a href="coreexamples.html#s%3Abasics">1.1  Basics</a>
</li><li><a href="coreexamples.html#s%3Adatatypes">1.2  Data types</a>
</li><li><a href="coreexamples.html#s%3Afunctions-as-values">1.3  Functions as values</a>
</li><li><a href="coreexamples.html#s%3Atut-recvariants">1.4  Records and variants</a>
</li><li><a href="coreexamples.html#s%3Aimperative-features">1.5  Imperative features</a>
</li><li><a href="coreexamples.html#s%3Aexceptions">1.6  Exceptions</a>
</li><li><a href="coreexamples.html#s%3Alazy-expr">1.7  Lazy expressions</a>
</li><li><a href="coreexamples.html#s%3Asymb-expr">1.8  Symbolic processing of expressions</a>
</li><li><a href="coreexamples.html#s%3Apretty-printing">1.9  Pretty-printing</a>
</li><li><a href="coreexamples.html#s%3Aprintf">1.10  Printf formats</a>
</li><li><a href="coreexamples.html#s%3Astandalone-programs">1.11  Standalone OCaml programs</a>
</li></ul>
<p> <a id="c:core-xamples"></a>
</p><p>This part of the manual is a tutorial introduction to the
OCaml language. A good familiarity with programming in a conventional
languages (say, C or Java) is assumed, but no prior exposure to
functional languages is required. The present chapter introduces the
core language. Chapter <a href="moduleexamples.html#c%3Amoduleexamples">2</a> deals with the
module system, chapter <a href="objectexamples.html#c%3Aobjectexamples">3</a> with the
object-oriented features, chapter <a href="lablexamples.html#c%3Alabl-examples">4</a> with
extensions to the core language (labeled arguments and polymorphic
variants), and chapter <a href="advexamples.html#c%3Aadvexamples">6</a> gives some advanced examples.</p>
<h2 class="section" id="s:basics"><a class="section-anchor" href="#s:basics" aria-hidden="true"></a>1.1  Basics</h2>
<p>For this overview of OCaml, we use the interactive system, which
is started by running <span class="c003">ocaml</span> from the Unix shell, or by launching the
<span class="c003">OCamlwin.exe</span> application under Windows. This tutorial is presented
as the transcript of a session with the interactive system:
lines starting with <span class="c003">#</span> represent user input; the system responses are
printed below, without a leading <span class="c003">#</span>.</p><p>Under the interactive system, the user types OCaml phrases terminated
by <span class="c003">;;</span> in response to the <span class="c003">#</span> prompt, and the system compiles them
on the fly, executes them, and prints the outcome of evaluation.
Phrases are either simple expressions, or <span class="c003">let</span> definitions of
identifiers (either values or functions).


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> 1+2*3;;</div>



<div class="pre caml-output ok">- : int = 7</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> pi = 4.0 *. atan 1.0;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> pi : float = 3.14159265358979312</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> square x = x *. x;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> square : float -&gt; float = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> square (sin pi) +. square (cos pi);;</div>



<div class="pre caml-output ok">- : float = 1.</div></div>

</div><p>


The OCaml system computes both the value and the type for
each phrase. Even function parameters need no explicit type declaration:
the system infers their types from their usage in the
function. Notice also that integers and floating-point numbers are
distinct types, with distinct operators: <span class="c003">+</span> and <span class="c003">*</span> operate on
integers, but <span class="c003">+.</span> and <span class="c003">*.</span> operate on floats.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlhighlight">1.0</span> * 2;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type float but an expression was expected of type
         int</div></div>

</div><p>Recursive functions are defined with the <span class="c003">let rec</span> binding:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> fib n =
   <span class="ocamlkeyword">if</span> n &lt; 2 <span class="ocamlkeyword">then</span> n <span class="ocamlkeyword">else</span> fib (n-1) + fib (n-2);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> fib : int -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> fib 10;;</div>



<div class="pre caml-output ok">- : int = 55</div></div>

</div>
<h2 class="section" id="s:datatypes"><a class="section-anchor" href="#s:datatypes" aria-hidden="true"></a>1.2  Data types</h2>
<p>In addition to integers and floating-point numbers, OCaml offers the
usual basic data types:
</p><ul class="itemize"><li class="li-itemize">booleans


<div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> (1 &lt; 2) = <span class="ocamlkeyword">false</span>;;</div>



<div class="pre caml-output ok">- : bool = <span class="ocamlkeyword">false</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> one = <span class="ocamlkeyword">if</span> <span class="ocamlkeyword">true</span> <span class="ocamlkeyword">then</span> 1 <span class="ocamlkeyword">else</span> 2;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> one : int = 1</div></div>

</div>


</li><li class="li-itemize">characters


<div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">  'a';;</div>



<div class="pre caml-output ok">- : char = 'a'</div></div>
<div class="ocaml">



<div class="pre caml-input">  int_of_char '\n';;</div>



<div class="pre caml-output ok">- : int = 10</div></div>

</div>


</li><li class="li-itemize">immutable character strings


<div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlstring">"Hello"</span> ^ <span class="ocamlstring">" "</span> ^ <span class="ocamlstring">"world"</span>;;</div>



<div class="pre caml-output ok">- : string = <span class="ocamlstring">"Hello world"</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlstring">{|This is a quoted string, here, neither \ nor " are special characters|}</span>;;</div>



<div class="pre caml-output ok">- : string =
<span class="ocamlstring">"This is a quoted string, here, neither \\ nor \" are special characters"</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlstring">{|"\\"|}</span>=<span class="ocamlstring">"\"\\\\\""</span>;;</div>



<div class="pre caml-output ok">- : bool = <span class="ocamlkeyword">true</span></div></div>
<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlstring">{delimiter|the end of this|}quoted string is here|delimiter}</span>
 =           <span class="ocamlstring">"the end of this|}quoted string is here"</span>;;</div>



<div class="pre caml-output ok">- : bool = <span class="ocamlkeyword">true</span></div></div>

</div>


</li></ul><p>Predefined data structures include tuples, arrays, and lists. There are also
general mechanisms for defining your own data structures, such as records and
variants, which will be covered in more detail later; for now, we concentrate
on lists. Lists are either given in extension as a bracketed list of
semicolon-separated elements, or built from the empty list <span class="c003">[]</span>
(pronounce “nil”) by adding elements in front using the <span class="c003">::</span>
(“cons”) operator.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> l = [<span class="ocamlstring">"is"</span>; <span class="ocamlstring">"a"</span>; <span class="ocamlstring">"tale"</span>; <span class="ocamlstring">"told"</span>; <span class="ocamlstring">"etc."</span>];;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> l : string list = [<span class="ocamlstring">"is"</span>; <span class="ocamlstring">"a"</span>; <span class="ocamlstring">"tale"</span>; <span class="ocamlstring">"told"</span>; <span class="ocamlstring">"etc."</span>]</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlstring">"Life"</span> :: l;;</div>



<div class="pre caml-output ok">- : string list = [<span class="ocamlstring">"Life"</span>; <span class="ocamlstring">"is"</span>; <span class="ocamlstring">"a"</span>; <span class="ocamlstring">"tale"</span>; <span class="ocamlstring">"told"</span>; <span class="ocamlstring">"etc."</span>]</div></div>

</div><p>


As with all other OCaml data structures, lists do not need to be
explicitly allocated and deallocated from memory: all memory
management is entirely automatic in OCaml. Similarly, there is no
explicit handling of pointers: the OCaml compiler silently introduces
pointers where necessary.</p><p>As with most OCaml data structures, inspecting and destructuring lists
is performed by pattern-matching. List patterns have exactly the same
form as list expressions, with identifiers representing unspecified
parts of the list. As an example, here is insertion sort on a list:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> sort lst =
   <span class="ocamlkeyword">match</span> lst <span class="ocamlkeyword">with</span>
     [] -&gt; []
   | head :: tail -&gt; insert head (sort tail)
 <span class="ocamlkeyword">and</span> insert elt lst =
   <span class="ocamlkeyword">match</span> lst <span class="ocamlkeyword">with</span>
     [] -&gt; [elt]
   | head :: tail -&gt; <span class="ocamlkeyword">if</span> elt &lt;= head <span class="ocamlkeyword">then</span> elt :: lst <span class="ocamlkeyword">else</span> head :: insert elt tail
 ;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> sort : 'a list -&gt; 'a list = &lt;<span class="ocamlkeyword">fun</span>&gt;
<span class="ocamlkeyword">val</span> insert : 'a -&gt; 'a list -&gt; 'a list = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> sort l;;</div>



<div class="pre caml-output ok">- : string list = [<span class="ocamlstring">"a"</span>; <span class="ocamlstring">"etc."</span>; <span class="ocamlstring">"is"</span>; <span class="ocamlstring">"tale"</span>; <span class="ocamlstring">"told"</span>]</div></div>

</div><p>The type inferred for <span class="c003">sort</span>, <span class="c003">'a list -&gt; 'a list</span>, means that <span class="c003">sort</span>
can actually apply to lists of any type, and returns a list of the
same type. The type <span class="c003">'a</span> is a <em>type variable</em>, and stands for any
given type. The reason why <span class="c003">sort</span> can apply to lists of any type is
that the comparisons (<span class="c003">=</span>, <span class="c003">&lt;=</span>, etc.) are <em>polymorphic</em> in OCaml:
they operate between any two values of the same type. This makes
<span class="c003">sort</span> itself polymorphic over all list types.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> sort [6;2;5;3];;</div>



<div class="pre caml-output ok">- : int list = [2; 3; 5; 6]</div></div>
<div class="ocaml">



<div class="pre caml-input"> sort [3.14; 2.718];;</div>



<div class="pre caml-output ok">- : float list = [2.718; 3.14]</div></div>

</div><p>The <span class="c003">sort</span> function above does not modify its input list: it builds
and returns a new list containing the same elements as the input list,
in ascending order. There is actually no way in OCaml to modify
a list in-place once it is built: we say that lists are <em>immutable</em>
data structures. Most OCaml data structures are immutable, but a few
(most notably arrays) are <em>mutable</em>, meaning that they can be
modified in-place at any time.</p><p>The OCaml notation for the type of a function with multiple arguments is <br>
<span class="c003">arg1_type -&gt; arg2_type -&gt; ... -&gt; return_type</span>. For example,
the type inferred for <span class="c003">insert</span>, <span class="c003">'a -&gt; 'a list -&gt; 'a list</span>, means that <span class="c003">insert</span>
takes two arguments, an element of any type <span class="c003">'a</span> and a list with elements of
the same type <span class="c003">'a</span> and returns a list of the same type.
</p>
<h2 class="section" id="s:functions-as-values"><a class="section-anchor" href="#s:functions-as-values" aria-hidden="true"></a>1.3  Functions as values</h2>
<p>OCaml is a functional language: functions in the full mathematical
sense are supported and can be passed around freely just as any other
piece of data. For instance, here is a <span class="c003">deriv</span> function that takes any
float function as argument and returns an approximation of its
derivative function:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> deriv f dx = <span class="ocamlkeyword">function</span> x -&gt; (f (x +. dx) -. f x) /. dx;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> deriv : (float -&gt; float) -&gt; float -&gt; float -&gt; float = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> sin' = deriv sin 1e-6;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> sin' : float -&gt; float = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> sin' pi;;</div>



<div class="pre caml-output ok">- : float = -1.00000000013961143</div></div>

</div><p>


Even function composition is definable:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> compose f g = <span class="ocamlkeyword">function</span> x -&gt; f (g x);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> compose : ('a -&gt; 'b) -&gt; ('c -&gt; 'a) -&gt; 'c -&gt; 'b = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> cos2 = compose square cos;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> cos2 : float -&gt; float = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>Functions that take other functions as arguments are called
“functionals”, or “higher-order functions”. Functionals are
especially useful to provide iterators or similar generic operations
over a data structure. For instance, the standard OCaml library
provides a <span class="c003">List.map</span> functional that applies a given function to each
element of a list, and returns the list of the results:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> List.map (<span class="ocamlkeyword">function</span> n -&gt; n * 2 + 1) [0;1;2;3;4];;</div>



<div class="pre caml-output ok">- : int list = [1; 3; 5; 7; 9]</div></div>

</div><p>


This functional, along with a number of other list and array
functionals, is predefined because it is often useful, but there is
nothing magic with it: it can easily be defined as follows.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> map f l =
   <span class="ocamlkeyword">match</span> l <span class="ocamlkeyword">with</span>
     [] -&gt; []
   | hd :: tl -&gt; f hd :: map f tl;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> map : ('a -&gt; 'b) -&gt; 'a list -&gt; 'b list = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div>
<h2 class="section" id="s:tut-recvariants"><a class="section-anchor" href="#s:tut-recvariants" aria-hidden="true"></a>1.4  Records and variants</h2>
<p>User-defined data structures include records and variants. Both are
defined with the <span class="c003">type</span> declaration. Here, we declare a record type to
represent rational numbers.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> ratio = {num: int; denom: int};;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> ratio = { num : int; denom : int; }</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> add_ratio r1 r2 =
   {num = r1.num * r2.denom + r2.num * r1.denom;
    denom = r1.denom * r2.denom};;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> add_ratio : ratio -&gt; ratio -&gt; ratio = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> add_ratio {num=1; denom=3} {num=2; denom=5};;</div>



<div class="pre caml-output ok">- : ratio = {num = 11; denom = 15}</div></div>

</div><p>


Record fields can also be accessed through pattern-matching:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> integer_part r =
   <span class="ocamlkeyword">match</span> r <span class="ocamlkeyword">with</span>
     {num=num; denom=denom} -&gt; num / denom;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> integer_part : ratio -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


Since there is only one case in this pattern matching, it
is safe to expand directly the argument <span class="c003">r</span> in a record pattern:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> integer_part {num=num; denom=denom} = num / denom;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> integer_part : ratio -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


Unneeded fields can be omitted:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> get_denom {denom=denom} = denom;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> get_denom : ratio -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


Optionally, missing fields can be made explicit by ending the list of
fields with a trailing wildcard <span class="c003">_</span>::


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> get_num {num=num; _ } = num;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> get_num : ratio -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


When both sides of the <span class="c003">=</span> sign are the same, it is possible to avoid
repeating the field name by eliding the <span class="c003">=field</span> part:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> integer_part {num; denom} = num / denom;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> integer_part : ratio -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


This short notation for fields also works when constructing records:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> ratio num denom = {num; denom};;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> ratio : int -&gt; int -&gt; ratio = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


At last, it is possible to update few fields of a record at once:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> integer_product integer ratio = { ratio <span class="ocamlkeyword">with</span> num = integer * ratio.num };;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> integer_product : int -&gt; ratio -&gt; ratio = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


With this functional update notation, the record on the left-hand side
of <span class="c003">with</span> is copied except for the fields on the right-hand side which
are updated.</p><p>The declaration of a variant type lists all possible forms for values
of that type. Each case is identified by a name, called a constructor,
which serves both for constructing values of the variant type and
inspecting them by pattern-matching. Constructor names are capitalized
to distinguish them from variable names (which must start with a
lowercase letter). For instance, here is a variant
type for doing mixed arithmetic (integers and floats):


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> number = Int <span class="ocamlkeyword">of</span> int | Float <span class="ocamlkeyword">of</span> float | Error;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> number = Int <span class="ocamlkeyword">of</span> int | Float <span class="ocamlkeyword">of</span> float | Error</div></div>

</div><p>


This declaration expresses that a value of type <span class="c003">number</span> is either an
integer, a floating-point number, or the constant <span class="c003">Error</span> representing
the result of an invalid operation (e.g. a division by zero).</p><p>Enumerated types are a special case of variant types, where all
alternatives are constants:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> sign = Positive | Negative;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> sign = Positive | Negative</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> sign_int n = <span class="ocamlkeyword">if</span> n &gt;= 0 <span class="ocamlkeyword">then</span> Positive <span class="ocamlkeyword">else</span> Negative;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> sign_int : int -&gt; sign = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>To define arithmetic operations for the <span class="c003">number</span> type, we use
pattern-matching on the two numbers involved:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> add_num n1 n2 =
   <span class="ocamlkeyword">match</span> (n1, n2) <span class="ocamlkeyword">with</span>
     (Int i1, Int i2) -&gt;
       <span class="ocamlcomment">(* Check for overflow of integer addition *)</span>
       <span class="ocamlkeyword">if</span> sign_int i1 = sign_int i2 &amp;&amp; sign_int (i1 + i2) &lt;&gt; sign_int i1
       <span class="ocamlkeyword">then</span> Float(float i1 +. float i2)
       <span class="ocamlkeyword">else</span> Int(i1 + i2)
   | (Int i1, Float f2) -&gt; Float(float i1 +. f2)
   | (Float f1, Int i2) -&gt; Float(f1 +. float i2)
   | (Float f1, Float f2) -&gt; Float(f1 +. f2)
   | (Error, _) -&gt; Error
   | (_, Error) -&gt; Error;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> add_num : number -&gt; number -&gt; number = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> add_num (Int 123) (Float 3.14159);;</div>



<div class="pre caml-output ok">- : number = Float 126.14159</div></div>

</div><p>Another interesting example of variant type is the built-in
<span class="c003">'a option</span> type which represents either a value of type <span class="c003">'a</span> or an
absence of value:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> 'a option = Some <span class="ocamlkeyword">of</span> 'a | None;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> 'a option = Some <span class="ocamlkeyword">of</span> 'a | None</div></div>

</div><p>


This type is particularly useful when defining function that can
fail in common situations, for instance


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> safe_square_root x = <span class="ocamlkeyword">if</span> x &gt; 0. <span class="ocamlkeyword">then</span> Some(sqrt x) <span class="ocamlkeyword">else</span> None;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> safe_square_root : float -&gt; float option = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>The most common usage of variant types is to describe recursive data
structures. Consider for example the type of binary trees:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> 'a btree = Empty | Node <span class="ocamlkeyword">of</span> 'a * 'a btree * 'a btree;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> 'a btree = Empty | Node <span class="ocamlkeyword">of</span> 'a * 'a btree * 'a btree</div></div>

</div><p>


This definition reads as follows: a binary tree containing values of
type <span class="c003">'a</span> (an arbitrary type) is either empty, or is a node containing
one value of type <span class="c003">'a</span> and two subtrees also containing values of type
<span class="c003">'a</span>, that is, two <span class="c003">'a btree</span>.</p><p>Operations on binary trees are naturally expressed as recursive functions
following the same structure as the type definition itself. For
instance, here are functions performing lookup and insertion in
ordered binary trees (elements increase from left to right):


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> member x btree =
   <span class="ocamlkeyword">match</span> btree <span class="ocamlkeyword">with</span>
     Empty -&gt; <span class="ocamlkeyword">false</span>
   | Node(y, left, right) -&gt;
       <span class="ocamlkeyword">if</span> x = y <span class="ocamlkeyword">then</span> <span class="ocamlkeyword">true</span> <span class="ocamlkeyword">else</span>
       <span class="ocamlkeyword">if</span> x &lt; y <span class="ocamlkeyword">then</span> member x left <span class="ocamlkeyword">else</span> member x right;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> member : 'a -&gt; 'a btree -&gt; bool = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> insert x btree =
   <span class="ocamlkeyword">match</span> btree <span class="ocamlkeyword">with</span>
     Empty -&gt; Node(x, Empty, Empty)
   | Node(y, left, right) -&gt;
       <span class="ocamlkeyword">if</span> x &lt;= y <span class="ocamlkeyword">then</span> Node(y, insert x left, right)
                 <span class="ocamlkeyword">else</span> Node(y, left, insert x right);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> insert : 'a -&gt; 'a btree -&gt; 'a btree = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div>
<h3 class="subsection" id="ss:record-and-variant-disambiguation"><a class="section-anchor" href="#ss:record-and-variant-disambiguation" aria-hidden="true"></a>1.4.1  Record and variant disambiguation</h3>
<p>
( This subsection can be skipped on the first reading )</p><p>Astute readers may have wondered what happens when two or more record
fields or constructors share the same name</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> first_record  = { x:int; y:int; z:int }
 <span class="ocamlkeyword">type</span> middle_record = { x:int; z:int }
 <span class="ocamlkeyword">type</span> last_record   = { x:int };;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> first_variant = A | B | C
 <span class="ocamlkeyword">type</span> last_variant  = A;;</div></div>

</div><p>The answer is that when confronted with multiple options, OCaml tries to
use locally available information to disambiguate between the various fields
and constructors. First, if the type of the record or variant is known,
OCaml can pick unambiguously the corresponding field or constructor.
For instance:</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> look_at_x_then_z (r:first_record) =
   <span class="ocamlkeyword">let</span> x = r.x <span class="ocamlkeyword">in</span>
   x + r.z;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> look_at_x_then_z : first_record -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> permute (x:first_variant) = <span class="ocamlkeyword">match</span> x <span class="ocamlkeyword">with</span>
   | A -&gt; (B:first_variant)
   | B -&gt; A
   | C -&gt; C;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> permute : first_variant -&gt; first_variant = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> wrapped = First <span class="ocamlkeyword">of</span> first_record
 <span class="ocamlkeyword">let</span> f (First r) = r, r.x;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> wrapped = First <span class="ocamlkeyword">of</span> first_record
<span class="ocamlkeyword">val</span> f : wrapped -&gt; first_record * int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>In the first example, <span class="c003">(r:first_record)</span> is an explicit annotation
telling OCaml that the type of <span class="c003">r</span> is <span class="c003">first_record</span>. With this
annotation, Ocaml knows that <span class="c003">r.x</span> refers to the <span class="c003">x</span> field of the first
record type. Similarly, the type annotation in the second example makes
it clear to OCaml that the constructors <span class="c003">A</span>, <span class="c003">B</span> and <span class="c003">C</span> come from the
first variant type. Contrarily, in the last example, OCaml has inferred
by itself that the type of <span class="c003">r</span> can only be <span class="c003">first_record</span> and there are
no needs for explicit type annotations.</p><p>Those explicit type annotations can in fact be used anywhere.
Most of the time they are unnecessary, but they are useful to guide
disambiguation, to debug unexpected type errors, or combined with some
of the more advanced features of OCaml described in later chapters.</p><p>Secondly, for records, OCaml can also deduce the right record type by
looking at the whole set of fields used in a expression or pattern:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> project_and_rotate {x;y; _ } = { x= - y; y = x ; z = 0} ;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> project_and_rotate : first_record -&gt; first_record = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


Since the fields <span class="c003">x</span> and <span class="c003">y</span> can only appear simultaneously in the first
record type, OCaml infers that the type of <span class="c003">project_and_rotate</span> is
<span class="c003">first_record -&gt; first_record</span>.</p><p>In last resort, if there is not enough information to disambiguate between
different fields or constructors, Ocaml picks the last defined type
amongst all locally valid choices:</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> look_at_xz {x;z} = x;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> look_at_xz : middle_record -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>Here, OCaml has inferred that the possible choices for the type of
<span class="c003">{x;z}</span> are <span class="c003">first_record</span> and <span class="c003">middle_record</span>, since the type
<span class="c003">last_record</span> has no field <span class="c003">z</span>. Ocaml then picks the type <span class="c003">middle_record</span>
as the last defined type between the two possibilities.</p><p>Beware that this last resort disambiguation is local: once Ocaml has
chosen a disambiguation, it sticks to this choice, even if it leads to
an ulterior type error:</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> look_at_x_then_y r =
   <span class="ocamlkeyword">let</span> x = r.x <span class="ocamlkeyword">in</span> <span class="ocamlcomment">(* Ocaml deduces [r: last_record] *)</span>
   x + r.<span class="ocamlhighlight">y</span>;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type last_record
       The field y does not belong to type last_record</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> is_a_or_b x = <span class="ocamlkeyword">match</span> x <span class="ocamlkeyword">with</span>
   | A -&gt; <span class="ocamlkeyword">true</span> <span class="ocamlcomment">(* OCaml infers [x: last_variant] *)</span>
   | <span class="ocamlhighlight">B</span> -&gt; <span class="ocamlkeyword">true</span>;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This variant pattern is expected to have type last_variant
       The constructor B does not belong to type last_variant</div></div>

</div><p>Moreover, being the last defined type is a quite unstable position that
may change surreptitiously after adding or moving around a type
definition, or after opening a module (see chapter <a href="moduleexamples.html#c%3Amoduleexamples">2</a>).
Consequently, adding explicit type annotations to guide disambiguation is
more robust than relying on the last defined type disambiguation.</p>
<h2 class="section" id="s:imperative-features"><a class="section-anchor" href="#s:imperative-features" aria-hidden="true"></a>1.5  Imperative features</h2>
<p>Though all examples so far were written in purely applicative style,
OCaml is also equipped with full imperative features. This includes the
usual <span class="c003">while</span> and <span class="c003">for</span> loops, as well as mutable data structures such
as arrays. Arrays are either created by listing semicolon-separated element
values between <span class="c003">[|</span> and <span class="c003">|]</span> brackets, or allocated and initialized with the
<span class="c003">Array.make</span> function, then filled up later by assignments. For instance, the
function below sums two vectors (represented as float arrays) componentwise.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> add_vect v1 v2 =
   <span class="ocamlkeyword">let</span> len = min (Array.length v1) (Array.length v2) <span class="ocamlkeyword">in</span>
   <span class="ocamlkeyword">let</span> res = Array.make len 0.0 <span class="ocamlkeyword">in</span>
   <span class="ocamlkeyword">for</span> i = 0 <span class="ocamlkeyword">to</span> len - 1 <span class="ocamlkeyword">do</span>
     res.(i) &lt;- v1.(i) +. v2.(i)
   <span class="ocamlkeyword">done</span>;
   res;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> add_vect : float array -&gt; float array -&gt; float array = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> add_vect [| 1.0; 2.0 |] [| 3.0; 4.0 |];;</div>



<div class="pre caml-output ok">- : float array = [|4.; 6.|]</div></div>

</div><p>Record fields can also be modified by assignment, provided they are
declared <span class="c003">mutable</span> in the definition of the record type:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> mutable_point = { <span class="ocamlkeyword">mutable</span> x: float; <span class="ocamlkeyword">mutable</span> y: float };;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> mutable_point = { <span class="ocamlkeyword">mutable</span> x : float; <span class="ocamlkeyword">mutable</span> y : float; }</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> translate p dx dy =
   p.x &lt;- p.x +. dx; p.y &lt;- p.y +. dy;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> translate : mutable_point -&gt; float -&gt; float -&gt; unit = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> mypoint = { x = 0.0; y = 0.0 };;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> mypoint : mutable_point = {x = 0.; y = 0.}</div></div>
<div class="ocaml">



<div class="pre caml-input"> translate mypoint 1.0 2.0;;</div>



<div class="pre caml-output ok">- : unit = ()</div></div>
<div class="ocaml">



<div class="pre caml-input"> mypoint;;</div>



<div class="pre caml-output ok">- : mutable_point = {x = 1.; y = 2.}</div></div>

</div><p>OCaml has no built-in notion of variable – identifiers whose current
value can be changed by assignment. (The <span class="c003">let</span> binding is not an
assignment, it introduces a new identifier with a new scope.)
However, the standard library provides references, which are mutable
indirection cells, with operators <span class="c003">!</span> to fetch
the current contents of the reference and <span class="c003">:=</span> to assign the contents.
Variables can then be emulated by <span class="c003">let</span>-binding a reference. For
instance, here is an in-place insertion sort over arrays:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> insertion_sort a =
   <span class="ocamlkeyword">for</span> i = 1 <span class="ocamlkeyword">to</span> Array.length a - 1 <span class="ocamlkeyword">do</span>
     <span class="ocamlkeyword">let</span> val_i = a.(i) <span class="ocamlkeyword">in</span>
     <span class="ocamlkeyword">let</span> j = <span class="ocamlkeyword">ref</span> i <span class="ocamlkeyword">in</span>
     <span class="ocamlkeyword">while</span> !j &gt; 0 &amp;&amp; val_i &lt; a.(!j - 1) <span class="ocamlkeyword">do</span>
       a.(!j) &lt;- a.(!j - 1);
       j := !j - 1
     <span class="ocamlkeyword">done</span>;
     a.(!j) &lt;- val_i
   <span class="ocamlkeyword">done</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> insertion_sort : 'a array -&gt; unit = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>References are also useful to write functions that maintain a current
state between two calls to the function. For instance, the following
pseudo-random number generator keeps the last returned number in a
reference:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> current_rand = <span class="ocamlkeyword">ref</span> 0;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> current_rand : int <span class="ocamlkeyword">ref</span> = {contents = 0}</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> random () =
   current_rand := !current_rand * 25713 + 1345;
   !current_rand;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> random : unit -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>Again, there is nothing magical with references: they are implemented as
a single-field mutable record, as follows.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> 'a <span class="ocamlkeyword">ref</span> = { <span class="ocamlkeyword">mutable</span> contents: 'a };;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> 'a <span class="ocamlkeyword">ref</span> = { <span class="ocamlkeyword">mutable</span> contents : 'a; }</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> ( ! ) r = r.contents;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> ( ! ) : 'a <span class="ocamlkeyword">ref</span> -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> ( := ) r newval = r.contents &lt;- newval;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> ( := ) : 'a <span class="ocamlkeyword">ref</span> -&gt; 'a -&gt; unit = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>In some special cases, you may need to store a polymorphic function in
a data structure, keeping its polymorphism. Doing this requires
user-provided type annotations, since polymorphism is only introduced
automatically for global definitions. However, you can explicitly give
polymorphic types to record fields.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> idref = { <span class="ocamlkeyword">mutable</span> id: 'a. 'a -&gt; 'a };;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> idref = { <span class="ocamlkeyword">mutable</span> id : 'a. 'a -&gt; 'a; }</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> r = {id = <span class="ocamlkeyword">fun</span> x -&gt; x};;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> r : idref = {id = &lt;<span class="ocamlkeyword">fun</span>&gt;}</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> g s = (s.id 1, s.id <span class="ocamlkeyword">true</span>);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> g : idref -&gt; int * bool = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> r.id &lt;- (<span class="ocamlkeyword">fun</span> x -&gt; print_string <span class="ocamlstring">"called id\n"</span>; x);;</div>



<div class="pre caml-output ok">- : unit = ()</div></div>
<div class="ocaml">



<div class="pre caml-input"> g r;;</div>



<div class="pre caml-output ok">called id
called id
- : int * bool = (1, <span class="ocamlkeyword">true</span>)</div></div>

</div>
<h2 class="section" id="s:exceptions"><a class="section-anchor" href="#s:exceptions" aria-hidden="true"></a>1.6  Exceptions</h2>
<p>OCaml provides exceptions for signalling and handling exceptional
conditions. Exceptions can also be used as a general-purpose non-local
control structure, although this should not be overused since it can
make the code harder to understand. Exceptions are declared with the
<span class="c003">exception</span> construct, and signalled with the <span class="c003">raise</span> operator. For instance,
the function below for taking the head of a list uses an exception to
signal the case where an empty list is given.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">exception</span> Empty_list;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">exception</span> Empty_list</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> head l =
   <span class="ocamlkeyword">match</span> l <span class="ocamlkeyword">with</span>
     [] -&gt; raise Empty_list
   | hd :: tl -&gt; hd;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> head : 'a list -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> head [1;2];;</div>



<div class="pre caml-output ok">- : int = 1</div></div>
<div class="ocaml">



<div class="pre caml-input"> head [];;</div>



<div class="pre caml-output ok">Exception: Empty_list.</div></div>

</div><p>Exceptions are used throughout the standard library to signal cases
where the library functions cannot complete normally. For instance,
the <span class="c003">List.assoc</span> function, which returns the data associated with a
given key in a list of (key, data) pairs, raises the predefined
exception <span class="c003">Not_found</span> when the key does not appear in the list:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> List.assoc 1 [(0, <span class="ocamlstring">"zero"</span>); (1, <span class="ocamlstring">"one"</span>)];;</div>



<div class="pre caml-output ok">- : string = <span class="ocamlstring">"one"</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> List.assoc 2 [(0, <span class="ocamlstring">"zero"</span>); (1, <span class="ocamlstring">"one"</span>)];;</div>



<div class="pre caml-output ok">Exception: Not_found.</div></div>

</div><p>Exceptions can be trapped with the <span class="c003">try</span>…<span class="c003">with</span> construct:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> name_of_binary_digit digit =
   <span class="ocamlkeyword">try</span>
     List.assoc digit [0, <span class="ocamlstring">"zero"</span>; 1, <span class="ocamlstring">"one"</span>]
   <span class="ocamlkeyword">with</span> Not_found -&gt;
     <span class="ocamlstring">"not a binary digit"</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> name_of_binary_digit : int -&gt; string = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> name_of_binary_digit 0;;</div>



<div class="pre caml-output ok">- : string = <span class="ocamlstring">"zero"</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> name_of_binary_digit (-1);;</div>



<div class="pre caml-output ok">- : string = <span class="ocamlstring">"not a binary digit"</span></div></div>

</div><p>The <span class="c003">with</span> part does pattern matching on the
exception value with the same syntax and behavior as <span class="c003">match</span>. Thus,
several exceptions can be caught by one
<span class="c003">try</span>…<span class="c003">with</span> construct:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> first_named_value values names =
   <span class="ocamlkeyword">try</span>
     List.assoc (head values) names
   <span class="ocamlkeyword">with</span>
   | Empty_list -&gt; <span class="ocamlstring">"no named value"</span>
   | Not_found -&gt; first_named_value (List.tl values) names;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> first_named_value : 'a list -&gt; ('a * string) list -&gt; string = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> first_named_value [ 0; 10 ] [ 1, <span class="ocamlstring">"one"</span>; 10, <span class="ocamlstring">"ten"</span>];;</div>



<div class="pre caml-output ok">- : string = <span class="ocamlstring">"ten"</span></div></div>

</div><p>Also, finalization can be performed by
trapping all exceptions, performing the finalization, then re-raising
the exception:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> temporarily_set_reference <span class="ocamlkeyword">ref</span> newval funct =
   <span class="ocamlkeyword">let</span> oldval = !<span class="ocamlkeyword">ref</span> <span class="ocamlkeyword">in</span>
   <span class="ocamlkeyword">try</span>
     <span class="ocamlkeyword">ref</span> := newval;
     <span class="ocamlkeyword">let</span> res = funct () <span class="ocamlkeyword">in</span>
     <span class="ocamlkeyword">ref</span> := oldval;
     res
   <span class="ocamlkeyword">with</span> x -&gt;
     <span class="ocamlkeyword">ref</span> := oldval;
     raise x;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> temporarily_set_reference : 'a <span class="ocamlkeyword">ref</span> -&gt; 'a -&gt; (unit -&gt; 'b) -&gt; 'b = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>An alternative to <span class="c003">try</span>…<span class="c003">with</span> is to catch the exception while
pattern matching:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> assoc_may_map f x l =
   <span class="ocamlkeyword">match</span> List.assoc x l <span class="ocamlkeyword">with</span>
   | <span class="ocamlkeyword">exception</span> Not_found -&gt; None
   | y -&gt; f y;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> assoc_may_map : ('a -&gt; 'b option) -&gt; 'c -&gt; ('c * 'a) list -&gt; 'b option =
  &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


Note that this construction is only useful if the exception is raised
between <span class="c003">match</span>…<span class="c003">with</span>. Exception patterns can be combined
with ordinary patterns at the toplevel,


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> flat_assoc_opt x l =
   <span class="ocamlkeyword">match</span> List.assoc x l <span class="ocamlkeyword">with</span>
   | None | <span class="ocamlkeyword">exception</span> Not_found -&gt; None
   | Some _ <span class="ocamlkeyword">as</span> v -&gt; v;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> flat_assoc_opt : 'a -&gt; ('a * 'b option) list -&gt; 'b option = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


but they cannot be nested inside other patterns. For instance,
the pattern <span class="c003">Some (exception A)</span> is invalid.</p><p>When exceptions are used as a control structure, it can be useful to make
them as local as possible by using a locally defined exception.
For instance, with


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> fixpoint f x =
   <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">exception</span> Done <span class="ocamlkeyword">in</span>
   <span class="ocamlkeyword">let</span> x = <span class="ocamlkeyword">ref</span> x <span class="ocamlkeyword">in</span>
   <span class="ocamlkeyword">try</span> <span class="ocamlkeyword">while</span> <span class="ocamlkeyword">true</span> <span class="ocamlkeyword">do</span>
       <span class="ocamlkeyword">let</span> y = f !x <span class="ocamlkeyword">in</span>
       <span class="ocamlkeyword">if</span> !x = y <span class="ocamlkeyword">then</span> raise Done <span class="ocamlkeyword">else</span> x := y
     <span class="ocamlkeyword">done</span>; <span class="ocamlkeyword">assert</span> <span class="ocamlkeyword">false</span>
   <span class="ocamlkeyword">with</span> Done -&gt; !x;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> fixpoint : ('a -&gt; 'a) -&gt; 'a -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


the function <span class="c003">f</span> cannot raise a <span class="c003">Done</span> exception, which removes an
entire class of misbehaving functions.</p>
<h2 class="section" id="s:lazy-expr"><a class="section-anchor" href="#s:lazy-expr" aria-hidden="true"></a>1.7  Lazy expressions</h2>
<p>OCaml allows us to defer some computation until later when we need the result of
that computation. </p><p>We use <span class="c003">lazy (expr)</span> to delay the evaluation of some expression <span class="c003">expr</span>. For 
example, we can defer the computation of <span class="c003">1+1</span> until we need the result of that
expression, <span class="c003">2</span>. Let us see how we initialize a lazy expression. </p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> lazy_two = <span class="ocamlkeyword">lazy</span> ( print_endline <span class="ocamlstring">"lazy_two evaluation"</span>; 1 + 1 );;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> lazy_two : int lazy_t = &lt;<span class="ocamlkeyword">lazy</span>&gt;</div></div>

</div><p>We added <span class="c003">print_endline "lazy_two evaluation"</span> to see when the lazy
expression is being evaluated.</p><p>The value of <span class="c003">lazy_two</span> is displayed as <span class="c003">&lt;lazy&gt;</span>, which means the expression 
has not been evaluated yet, and its final value is unknown.</p><p>Note that <span class="c003">lazy_two</span> has type <span class="c003">int lazy_t</span>. However, the type <span class="c003">'a lazy_t</span> is an 
internal type name, so the type <span class="c003">'a Lazy.t</span> should be preferred when possible.</p><p>When we finally need the result of a lazy expression, we can call <span class="c003">Lazy.force</span> 
on that expression to force its evaluation. The function <span class="c003">force</span> comes from 
standard-library module <a href="libref/Lazy.html"><span class="c003">Lazy</span></a>.</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   Lazy.force lazy_two;;</div>



<div class="pre caml-output ok">lazy_two evaluation
- : int = 2</div></div>

</div><p>Notice that our function call above prints “lazy_two evaluation” and then 
returns the plain value of the computation. </p><p>Now if we look at the value of <span class="c003">lazy_two</span>, we see that it is not displayed as 
<span class="c003">&lt;lazy&gt;</span> anymore but as <span class="c003">lazy 2</span>.</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   lazy_two;;</div>



<div class="pre caml-output ok">- : int lazy_t = <span class="ocamlkeyword">lazy</span> 2</div></div>

</div><p>This is because <span class="c003">Lazy.force</span> memoizes the result of the forced expression. In other 
words, every subsequent call of <span class="c003">Lazy.force</span> on that expression returns the 
result of the first computation without recomputing the lazy expression. Let us 
force <span class="c003">lazy_two</span> once again. </p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   Lazy.force lazy_two;;</div>



<div class="pre caml-output ok">- : int = 2</div></div>

</div><p>The expression is not evaluated this time; notice that “lazy_two evaluation” is
not printed. The result of the initial computation is simply returned. </p><p>Lazy patterns provide another way to force a lazy expression. </p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> lazy_l = <span class="ocamlkeyword">lazy</span> ([1; 2] @ [3; 4]);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> lazy_l : int list lazy_t = &lt;<span class="ocamlkeyword">lazy</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">lazy</span> l = lazy_l;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> l : int list = [1; 2; 3; 4]</div></div>

</div><p>We can also use lazy patterns in pattern matching.</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> maybe_eval lazy_guard lazy_expr =
     <span class="ocamlkeyword">match</span> lazy_guard, lazy_expr <span class="ocamlkeyword">with</span>
     | <span class="ocamlkeyword">lazy</span> <span class="ocamlkeyword">false</span>, _ -&gt; <span class="ocamlstring">"matches if (Lazy.force lazy_guard = false); lazy_expr not forced"</span>
     | <span class="ocamlkeyword">lazy</span> <span class="ocamlkeyword">true</span>, <span class="ocamlkeyword">lazy</span> _ -&gt; <span class="ocamlstring">"matches if (Lazy.force lazy_guard = true); lazy_expr forced"</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> maybe_eval : bool lazy_t -&gt; 'a lazy_t -&gt; string = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>The lazy expression <span class="c003">lazy_expr</span> is forced only if the <span class="c003">lazy_guard</span> value yields 
<span class="c003">true</span> once computed. Indeed, a simple wildcard pattern (not lazy) never forces 
the lazy expression’s evaluation. However, a pattern with keyword <span class="c003">lazy</span>, even 
if it is wildcard, always forces the evaluation of the deferred computation.</p>
<h2 class="section" id="s:symb-expr"><a class="section-anchor" href="#s:symb-expr" aria-hidden="true"></a>1.8  Symbolic processing of expressions</h2>
<p>We finish this introduction with a more complete example
representative of the use of OCaml for symbolic processing: formal
manipulations of arithmetic expressions containing variables. The
following variant type describes the expressions we shall manipulate:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> expression =
     Const <span class="ocamlkeyword">of</span> float
   | Var <span class="ocamlkeyword">of</span> string
   | Sum <span class="ocamlkeyword">of</span> expression * expression    <span class="ocamlcomment">(* e1 + e2 *)</span>
   | Diff <span class="ocamlkeyword">of</span> expression * expression   <span class="ocamlcomment">(* e1 - e2 *)</span>
   | Prod <span class="ocamlkeyword">of</span> expression * expression   <span class="ocamlcomment">(* e1 * e2 *)</span>
   | Quot <span class="ocamlkeyword">of</span> expression * expression   <span class="ocamlcomment">(* e1 / e2 *)</span>
 ;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> expression =
    Const <span class="ocamlkeyword">of</span> float
  | Var <span class="ocamlkeyword">of</span> string
  | Sum <span class="ocamlkeyword">of</span> expression * expression
  | Diff <span class="ocamlkeyword">of</span> expression * expression
  | Prod <span class="ocamlkeyword">of</span> expression * expression
  | Quot <span class="ocamlkeyword">of</span> expression * expression</div></div>

</div><p>We first define a function to evaluate an expression given an
environment that maps variable names to their values. For simplicity,
the environment is represented as an association list.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">exception</span> Unbound_variable <span class="ocamlkeyword">of</span> string;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">exception</span> Unbound_variable <span class="ocamlkeyword">of</span> string</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> eval env exp =
   <span class="ocamlkeyword">match</span> exp <span class="ocamlkeyword">with</span>
     Const c -&gt; c
   | Var v -&gt;
       (<span class="ocamlkeyword">try</span> List.assoc v env <span class="ocamlkeyword">with</span> Not_found -&gt; raise (Unbound_variable v))
   | Sum(f, g) -&gt; eval env f +. eval env g
   | Diff(f, g) -&gt; eval env f -. eval env g
   | Prod(f, g) -&gt; eval env f *. eval env g
   | Quot(f, g) -&gt; eval env f /. eval env g;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> eval : (string * float) list -&gt; expression -&gt; float = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> eval [(<span class="ocamlstring">"x"</span>, 1.0); (<span class="ocamlstring">"y"</span>, 3.14)] (Prod(Sum(Var <span class="ocamlstring">"x"</span>, Const 2.0), Var <span class="ocamlstring">"y"</span>));;</div>



<div class="pre caml-output ok">- : float = 9.42</div></div>

</div><p>Now for a real symbolic processing, we define the derivative of an
expression with respect to a variable <span class="c003">dv</span>:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> deriv exp dv =
   <span class="ocamlkeyword">match</span> exp <span class="ocamlkeyword">with</span>
     Const c -&gt; Const 0.0
   | Var v -&gt; <span class="ocamlkeyword">if</span> v = dv <span class="ocamlkeyword">then</span> Const 1.0 <span class="ocamlkeyword">else</span> Const 0.0
   | Sum(f, g) -&gt; Sum(deriv f dv, deriv g dv)
   | Diff(f, g) -&gt; Diff(deriv f dv, deriv g dv)
   | Prod(f, g) -&gt; Sum(Prod(f, deriv g dv), Prod(deriv f dv, g))
   | Quot(f, g) -&gt; Quot(Diff(Prod(deriv f dv, g), Prod(f, deriv g dv)),
                        Prod(g, g))
 ;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> deriv : expression -&gt; string -&gt; expression = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> deriv (Quot(Const 1.0, Var <span class="ocamlstring">"x"</span>)) <span class="ocamlstring">"x"</span>;;</div>



<div class="pre caml-output ok">- : expression =
Quot (Diff (Prod (Const 0., Var <span class="ocamlstring">"x"</span>), Prod (Const 1., Const 1.)),
 Prod (Var <span class="ocamlstring">"x"</span>, Var <span class="ocamlstring">"x"</span>))</div></div>

</div>
<h2 class="section" id="s:pretty-printing"><a class="section-anchor" href="#s:pretty-printing" aria-hidden="true"></a>1.9  Pretty-printing</h2>
<p>As shown in the examples above, the internal representation (also
called <em>abstract syntax</em>) of expressions quickly becomes hard to
read and write as the expressions get larger. We need a printer and a
parser to go back and forth between the abstract syntax and the <em>concrete syntax</em>, which in the case of expressions is the familiar
algebraic notation (e.g. <span class="c003">2*x+1</span>).</p><p>For the printing function, we take into account the usual precedence
rules (i.e. <span class="c003">*</span> binds tighter than <span class="c003">+</span>) to avoid printing unnecessary
parentheses. To this end, we maintain the current operator precedence
and print parentheses around an operator only if its precedence is
less than the current precedence.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> print_expr exp =
   <span class="ocamlcomment">(* Local function definitions *)</span>
   <span class="ocamlkeyword">let</span> open_paren prec op_prec =
     <span class="ocamlkeyword">if</span> prec &gt; op_prec <span class="ocamlkeyword">then</span> print_string <span class="ocamlstring">"("</span> <span class="ocamlkeyword">in</span>
   <span class="ocamlkeyword">let</span> close_paren prec op_prec =
     <span class="ocamlkeyword">if</span> prec &gt; op_prec <span class="ocamlkeyword">then</span> print_string <span class="ocamlstring">")"</span> <span class="ocamlkeyword">in</span>
   <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> print prec exp =     <span class="ocamlcomment">(* prec is the current precedence *)</span>
     <span class="ocamlkeyword">match</span> exp <span class="ocamlkeyword">with</span>
       Const c -&gt; print_float c
     | Var v -&gt; print_string v
     | Sum(f, g) -&gt;
         open_paren prec 0;
         print 0 f; print_string <span class="ocamlstring">" + "</span>; print 0 g;
         close_paren prec 0
     | Diff(f, g) -&gt;
         open_paren prec 0;
         print 0 f; print_string <span class="ocamlstring">" - "</span>; print 1 g;
         close_paren prec 0
     | Prod(f, g) -&gt;
         open_paren prec 2;
         print 2 f; print_string <span class="ocamlstring">" * "</span>; print 2 g;
         close_paren prec 2
     | Quot(f, g) -&gt;
         open_paren prec 2;
         print 2 f; print_string <span class="ocamlstring">" / "</span>; print 3 g;
         close_paren prec 2
   <span class="ocamlkeyword">in</span> print 0 exp;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> print_expr : expression -&gt; unit = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> e = Sum(Prod(Const 2.0, Var <span class="ocamlstring">"x"</span>), Const 1.0);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> e : expression = Sum (Prod (Const 2., Var <span class="ocamlstring">"x"</span>), Const 1.)</div></div>
<div class="ocaml">



<div class="pre caml-input"> print_expr e; print_newline ();;</div>



<div class="pre caml-output ok">2. * x + 1.
- : unit = ()</div></div>
<div class="ocaml">



<div class="pre caml-input"> print_expr (deriv e <span class="ocamlstring">"x"</span>); print_newline ();;</div>



<div class="pre caml-output ok">2. * 1. + 0. * x + 0.
- : unit = ()</div></div>

</div>
<h2 class="section" id="s:printf"><a class="section-anchor" href="#s:printf" aria-hidden="true"></a>1.10  Printf formats</h2>
<p>There is a <span class="c003">printf</span> function in the <a href="libref/Printf.html"><span class="c003">Printf</span></a> module
(see chapter <a href="moduleexamples.html#c%3Amoduleexamples">2</a>) that allows you to make formatted
output more concisely.
It follows the behavior of the <span class="c003">printf</span> function from the C standard library.
The <span class="c003">printf</span> function takes a format string that describes the desired output
as a text interspered with specifiers (for instance <span class="c003">%d</span>, <span class="c003">%f</span>).
Next, the specifiers are substituted by the following arguments in their order
of apparition in the format string:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> Printf.printf <span class="ocamlstring">"%i + %i is an integer value, %F * %F is a float, %S\n"</span>
 3 2 4.5 1. <span class="ocamlstring">"this is a string"</span>;;</div>



<div class="pre caml-output ok">3 + 2 is an integer value, 4.5 * 1. is a float, <span class="ocamlstring">"this is a string"</span>
- : unit = ()</div></div>

</div><p>


The OCaml type system checks that the type of the arguments and the specifiers are
compatible. If you pass it an argument of a type that does not correspond to
the format specifier, the compiler will display an error message:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> Printf.printf <span class="ocamlstring">"Float value: %F"</span> <span class="ocamlhighlight">42</span>;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type int but an expression was expected of type
         float
  Hint: Did you mean `42.'?</div></div>

</div><p>


The <span class="c003">fprintf</span> function is like <span class="c003">printf</span> except that it takes an output channel as
the first argument. The <span class="c003">%a</span> specifier can be useful to define custom printer
(for custom types). For instance, we can create a printing template that converts
an integer argument to signed decimal:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> pp_int ppf n = Printf.fprintf ppf <span class="ocamlstring">"%d"</span> n;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> pp_int : out_channel -&gt; int -&gt; unit = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> Printf.printf <span class="ocamlstring">"Outputting an integer using a custom printer: %a "</span> pp_int 42;;</div>



<div class="pre caml-output ok">Outputting an integer using a custom printer: 42 - : unit = ()</div></div>

</div><p>


The advantage of those printers based on the <span class="c003">%a</span> specifier is that they can be
composed together to create more complex printers step by step.
We can define a combinator that can turn a printer for <span class="c003">'a</span> type into a printer
for <span class="c003">'a optional</span>:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> pp_option printer ppf = <span class="ocamlkeyword">function</span>
   | None -&gt; Printf.fprintf ppf <span class="ocamlstring">"None"</span>
   | Some v -&gt; Printf.fprintf ppf <span class="ocamlstring">"Some(%a)"</span> printer v;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> pp_option :
  (out_channel -&gt; 'a -&gt; unit) -&gt; out_channel -&gt; 'a option -&gt; unit = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> Printf.fprintf stdout
   <span class="ocamlstring">"The current setting is %a. \nThere is only %a\n"</span>
   (pp_option pp_int) (Some 3)
   (pp_option pp_int) None
 ;;</div>



<div class="pre caml-output ok">The current setting is Some(3).
There is only None
- : unit = ()</div></div>

</div><p>


If the value of its argument its <span class="c003">None</span>, the printer returned by pp_option
printer prints <span class="c003">None</span> otherwise it uses the provided printer to print <span class="c003">Some </span>.</p><p>Here is how to rewrite the pretty-printer using <span class="c003">fprintf</span>:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> pp_expr ppf expr =
   <span class="ocamlkeyword">let</span> open_paren prec op_prec output =
     <span class="ocamlkeyword">if</span> prec &gt; op_prec <span class="ocamlkeyword">then</span> Printf.fprintf output <span class="ocamlstring">"%s"</span> <span class="ocamlstring">"("</span> <span class="ocamlkeyword">in</span>
   <span class="ocamlkeyword">let</span> close_paren prec op_prec output =
     <span class="ocamlkeyword">if</span> prec &gt; op_prec <span class="ocamlkeyword">then</span> Printf.fprintf output <span class="ocamlstring">"%s"</span> <span class="ocamlstring">")"</span> <span class="ocamlkeyword">in</span>
   <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> print prec ppf expr =
       <span class="ocamlkeyword">match</span> expr <span class="ocamlkeyword">with</span>
       | Const c -&gt; Printf.fprintf ppf <span class="ocamlstring">"%F"</span> c
       | Var v -&gt; Printf.fprintf ppf <span class="ocamlstring">"%s"</span> v
       | Sum(f, g) -&gt;
           open_paren prec 0 ppf;
           Printf.fprintf ppf <span class="ocamlstring">"%a + %a"</span> (print 0) f (print 0) g;
           close_paren prec 0 ppf
       | Diff(f, g) -&gt;
           open_paren prec 0 ppf;
           Printf.fprintf ppf <span class="ocamlstring">"%a - %a"</span> (print 0) f (print 1) g;
           close_paren prec 0 ppf
       | Prod(f, g) -&gt;
           open_paren prec 2 ppf;
           Printf.fprintf ppf <span class="ocamlstring">"%a * %a"</span> (print 2) f (print 2) g;
           close_paren prec 2 ppf
       | Quot(f, g) -&gt;
           open_paren prec 2 ppf;
           Printf.fprintf ppf <span class="ocamlstring">"%a / %a"</span> (print 2) f (print 3) g;
           close_paren prec 2 ppf
   <span class="ocamlkeyword">in</span> print 0 ppf expr;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> pp_expr : out_channel -&gt; expression -&gt; unit = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> pp_expr stdout e; print_newline ();;</div>



<div class="pre caml-output ok">2. * x + 1.
- : unit = ()</div></div>
<div class="ocaml">



<div class="pre caml-input"> pp_expr stdout (deriv e <span class="ocamlstring">"x"</span>); print_newline ();;</div>



<div class="pre caml-output ok">2. * 1. + 0. * x + 0.
- : unit = ()</div></div>

</div><p>Due to the way that format string are build, storing a format string requires
an explicit type annotation:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> str : _ format =
     <span class="ocamlstring">"%i is an integer value, %F is a float, %S\n"</span>;;</div></div>

</div><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> Printf.printf str 3 4.5 <span class="ocamlstring">"string value"</span>;;</div>



<div class="pre caml-output ok">3 is an integer value, 4.5 is a float, <span class="ocamlstring">"string value"</span>
- : unit = ()</div></div>

</div>
<h2 class="section" id="s:standalone-programs"><a class="section-anchor" href="#s:standalone-programs" aria-hidden="true"></a>1.11  Standalone OCaml programs</h2>
<p>All examples given so far were executed under the interactive system.
OCaml code can also be compiled separately and executed
non-interactively using the batch compilers <span class="c003">ocamlc</span> and <span class="c003">ocamlopt</span>.
The source code must be put in a file with extension <span class="c003">.ml</span>. It
consists of a sequence of phrases, which will be evaluated at runtime
in their order of appearance in the source file. Unlike in interactive
mode, types and values are not printed automatically; the program must
call printing functions explicitly to produce some output. The <span class="c003">;;</span> used
in the interactive examples is not required in
source files created for use with OCaml compilers, but can be helpful
to mark the end of a top-level expression unambiguously even when
there are syntax errors.
Here is a
sample standalone program to print the greatest common divisor
(gcd) of two numbers:
</p><pre>(* File gcd.ml *)
let rec gcd a b =
  if b = 0 then a
  else gcd b (a mod b);;

let main () =
  let a = int_of_string Sys.argv.(1) in
  let b = int_of_string Sys.argv.(2) in
  Printf.printf "%d\n" (gcd a b);
  exit 0;;
main ();;
</pre><p><span class="c003">Sys.argv</span> is an array of strings containing the command-line
parameters. <span class="c003">Sys.argv.(1)</span> is thus the first command-line parameter.
The program above is compiled and executed with the following shell
commands:
</p><pre>$ ocamlc -o gcd gcd.ml
$ ./gcd 6 9
3
$ ./fib 7 11
1
</pre><p>
More complex standalone OCaml programs are typically composed of
multiple source files, and can link with precompiled libraries.
Chapters <a href="comp.html#c%3Acamlc">9</a> and <a href="native.html#c%3Anativecomp">12</a> explain how to use the
batch compilers <span class="c003">ocamlc</span> and <span class="c003">ocamlopt</span>. Recompilation of
multi-file OCaml projects can be automated using third-party
build systems, such as the
<a href="https://github.com/ocaml/ocamlbuild/">ocamlbuild</a>
compilation manager.

</p>
<hr>
<a href="foreword.html"><img src="previous_motif.svg" alt="Previous"></a>
<a href="index.html"><img src="contents_motif.svg" alt="Up"></a>
<a href="moduleexamples.html"><img src="next_motif.svg" alt="Next"></a>
</body>
</html>