1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
|
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="generator" content="hevea 2.32">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
<link rel="stylesheet" type="text/css" href="manual.css">
<title>Chapter 4 Labels and variants</title>
</head>
<body>
<a href="objectexamples.html"><img src="previous_motif.svg" alt="Previous"></a>
<a href="index.html"><img src="contents_motif.svg" alt="Up"></a>
<a href="polymorphism.html"><img src="next_motif.svg" alt="Next"></a>
<hr>
<h1 class="chapter" id="sec44">Chapter 4 Labels and variants</h1>
<ul>
<li><a href="lablexamples.html#s%3Alabels">4.1 Labels</a>
</li><li><a href="lablexamples.html#s%3Apolymorphic-variants">4.2 Polymorphic variants</a>
</li></ul>
<p> <a id="c:labl-examples"></a>
</p><p>
<span class="c009">(Chapter written by Jacques Garrigue)</span></p><p><br>
<br>
</p><p>This chapter gives an overview of the new features in
OCaml 3: labels, and polymorphic variants.</p>
<h2 class="section" id="s:labels"><a class="section-anchor" href="#s:labels" aria-hidden="true"></a>4.1 Labels</h2>
<p>If you have a look at modules ending in <span class="c003">Labels</span> in the standard
library, you will see that function types have annotations you did not
have in the functions you defined yourself.</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> ListLabels.map;;</div>
<div class="pre caml-output ok">- : f:('a -> 'b) -> 'a list -> 'b list = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> StringLabels.sub;;</div>
<div class="pre caml-output ok">- : string -> pos:int -> len:int -> string = <<span class="ocamlkeyword">fun</span>></div></div>
</div><p>Such annotations of the form <span class="c003">name:</span> are called <em>labels</em>. They are
meant to document the code, allow more checking, and give more
flexibility to function application.
You can give such names to arguments in your programs, by prefixing them
with a tilde <span class="c003">~</span>.</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> f ~x ~y = x - y;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> f : x:int -> y:int -> int = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> x = 3 <span class="ocamlkeyword">and</span> y = 2 <span class="ocamlkeyword">in</span> f ~x ~y;;</div>
<div class="pre caml-output ok">- : int = 1</div></div>
</div><p>When you want to use distinct names for the variable and the label
appearing in the type, you can use a naming label of the form
<span class="c003">~name:</span>. This also applies when the argument is not a variable.</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> f ~x:x1 ~y:y1 = x1 - y1;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> f : x:int -> y:int -> int = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> f ~x:3 ~y:2;;</div>
<div class="pre caml-output ok">- : int = 1</div></div>
</div><p>Labels obey the same rules as other identifiers in OCaml, that is you
cannot use a reserved keyword (like <span class="c003">in</span> or <span class="c003">to</span>) as label.</p><p>Formal parameters and arguments are matched according to their
respective labels<sup><a id="text1" href="#note1">1</a></sup>, the absence of label
being interpreted as the empty label.
This allows commuting arguments in applications. One can also
partially apply a function on any argument, creating a new function of
the remaining parameters.</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> f ~x ~y = x - y;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> f : x:int -> y:int -> int = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> f ~y:2 ~x:3;;</div>
<div class="pre caml-output ok">- : int = 1</div></div>
<div class="ocaml">
<div class="pre caml-input"> ListLabels.fold_left;;</div>
<div class="pre caml-output ok">- : f:('a -> 'b -> 'a) -> init:'a -> 'b list -> 'a = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> ListLabels.fold_left [1;2;3] ~init:0 ~f:( + );;</div>
<div class="pre caml-output ok">- : int = 6</div></div>
<div class="ocaml">
<div class="pre caml-input"> ListLabels.fold_left ~init:0;;</div>
<div class="pre caml-output ok">- : f:(int -> 'a -> int) -> 'a list -> int = <<span class="ocamlkeyword">fun</span>></div></div>
</div><p>If several arguments of a function bear the same label (or no label),
they will not commute among themselves, and order matters. But they
can still commute with other arguments.</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> hline ~x:x1 ~x:x2 ~y = (x1, x2, y);;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> hline : x:'a -> x:'b -> y:'c -> 'a * 'b * 'c = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> hline ~x:3 ~y:2 ~x:5;;</div>
<div class="pre caml-output ok">- : int * int * int = (3, 5, 2)</div></div>
</div><p>As an exception to the above parameter matching rules, if an
application is total (omitting all optional arguments), labels may be
omitted.
In practice, many applications are total, so that labels can often be
omitted.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> f 3 2;;</div>
<div class="pre caml-output ok">- : int = 1</div></div>
<div class="ocaml">
<div class="pre caml-input"> ListLabels.map succ [1;2;3];;</div>
<div class="pre caml-output ok">- : int list = [2; 3; 4]</div></div>
</div><p>
But beware that functions like <span class="c003">ListLabels.fold_left</span> whose result
type is a type variable will never be considered as totally applied.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> ListLabels.fold_left <span class="ocamlhighlight">( + )</span> 0 [1;2;3];;</div>
<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type int -> int -> int
but an expression was expected of type 'a list</div></div>
</div><p>When a function is passed as an argument to a higher-order function,
labels must match in both types. Neither adding nor removing labels
are allowed.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> h g = g ~x:3 ~y:2;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> h : (x:int -> y:int -> 'a) -> 'a = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> h f;;</div>
<div class="pre caml-output ok">- : int = 1</div></div>
<div class="ocaml">
<div class="pre caml-input"> h <span class="ocamlhighlight">( + )</span> ;;</div>
<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type int -> int -> int
but an expression was expected of type x:int -> y:int -> 'a</div></div>
</div><p>
Note that when you don’t need an argument, you can still use a wildcard
pattern, but you must prefix it with the label.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> h (<span class="ocamlkeyword">fun</span> ~x:_ ~y -> y+1);;</div>
<div class="pre caml-output ok">- : int = 3</div></div>
</div>
<h3 class="subsection" id="ss:optional-arguments"><a class="section-anchor" href="#ss:optional-arguments" aria-hidden="true"></a>4.1.1 Optional arguments</h3>
<p>An interesting feature of labeled arguments is that they can be made
optional. For optional parameters, the question mark <span class="c003">?</span> replaces the
tilde <span class="c003">~</span> of non-optional ones, and the label is also prefixed by <span class="c003">?</span>
in the function type.
Default values may be given for such optional parameters.</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> bump ?(step = 1) x = x + step;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> bump : ?step:int -> int -> int = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> bump 2;;</div>
<div class="pre caml-output ok">- : int = 3</div></div>
<div class="ocaml">
<div class="pre caml-input"> bump ~step:3 2;;</div>
<div class="pre caml-output ok">- : int = 5</div></div>
</div><p>A function taking some optional arguments must also take at least one
non-optional argument. The criterion for deciding whether an optional
argument has been omitted is the non-labeled application of an
argument appearing after this optional argument in the function type.
Note that if that argument is labeled, you will only be able to
eliminate optional arguments by totally applying the function,
omitting all optional arguments and omitting all labels for all
remaining arguments.</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> test ?(x = 0) ?(y = 0) () ?(z = 0) () = (x, y, z);;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> test : ?x:int -> ?y:int -> unit -> ?z:int -> unit -> int * int * int =
<<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> test ();;</div>
<div class="pre caml-output ok">- : ?z:int -> unit -> int * int * int = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> test ~x:2 () ~z:3 ();;</div>
<div class="pre caml-output ok">- : int * int * int = (2, 0, 3)</div></div>
</div><p>Optional parameters may also commute with non-optional or unlabeled
ones, as long as they are applied simultaneously. By nature, optional
arguments do not commute with unlabeled arguments applied
independently.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> test ~y:2 ~x:3 () ();;</div>
<div class="pre caml-output ok">- : int * int * int = (3, 2, 0)</div></div>
<div class="ocaml">
<div class="pre caml-input"> test () () ~z:1 ~y:2 ~x:3;;</div>
<div class="pre caml-output ok">- : int * int * int = (3, 2, 1)</div></div>
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlhighlight">(test () ())</span> ~z:1 ;;</div>
<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type int * int * int
This is not a function; it cannot be applied.</div></div>
</div><p>
Here <span class="c003">(test () ())</span> is already <span class="c003">(0,0,0)</span> and cannot be further
applied.</p><p>Optional arguments are actually implemented as option types. If
you do not give a default value, you have access to their internal
representation, <span class="c003">type 'a option = None | Some of 'a</span>. You can then
provide different behaviors when an argument is present or not.</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> bump ?step x =
<span class="ocamlkeyword">match</span> step <span class="ocamlkeyword">with</span>
| None -> x * 2
| Some y -> x + y
;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> bump : ?step:int -> int -> int = <<span class="ocamlkeyword">fun</span>></div></div>
</div><p>It may also be useful to relay an optional argument from a function
call to another. This can be done by prefixing the applied argument
with <span class="c003">?</span>. This question mark disables the wrapping of optional
argument in an option type.</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> test2 ?x ?y () = test ?x ?y () ();;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> test2 : ?x:int -> ?y:int -> unit -> int * int * int = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> test2 ?x:None;;</div>
<div class="pre caml-output ok">- : ?y:int -> unit -> int * int * int = <<span class="ocamlkeyword">fun</span>></div></div>
</div>
<h3 class="subsection" id="ss:label-inference"><a class="section-anchor" href="#ss:label-inference" aria-hidden="true"></a>4.1.2 Labels and type inference</h3>
<p>While they provide an increased comfort for writing function
applications, labels and optional arguments have the pitfall that they
cannot be inferred as completely as the rest of the language.</p><p>You can see it in the following two examples.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> h' g = g ~y:2 ~x:3;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> h' : (y:int -> x:int -> 'a) -> 'a = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> h' <span class="ocamlhighlight">f</span> ;;</div>
<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type x:int -> y:int -> int
but an expression was expected of type y:int -> x:int -> 'a</div></div>
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> bump_it bump x =
bump ~step:2 x;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> bump_it : (step:int -> 'a -> 'b) -> 'a -> 'b = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> bump_it <span class="ocamlhighlight">bump</span> 1 ;;</div>
<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type ?step:int -> int -> int
but an expression was expected of type step:int -> 'a -> 'b</div></div>
</div><p>
The first case is simple: <span class="c003">g</span> is passed <span class="c003">~y</span> and then <span class="c003">~x</span>, but <span class="c003">f</span>
expects <span class="c003">~x</span> and then <span class="c003">~y</span>. This is correctly handled if we know the
type of <span class="c003">g</span> to be <span class="c003">x:int -> y:int -> int</span> in advance, but otherwise
this causes the above type clash. The simplest workaround is to apply
formal parameters in a standard order.</p><p>The second example is more subtle: while we intended the argument
<span class="c003">bump</span> to be of type <span class="c003">?step:int -> int -> int</span>, it is inferred as
<span class="c003">step:int -> int -> 'a</span>.
These two types being incompatible (internally normal and optional
arguments are different), a type error occurs when applying <span class="c003">bump_it</span>
to the real <span class="c003">bump</span>.</p><p>We will not try here to explain in detail how type inference works.
One must just understand that there is not enough information in the
above program to deduce the correct type of <span class="c003">g</span> or <span class="c003">bump</span>. That is,
there is no way to know whether an argument is optional or not, or
which is the correct order, by looking only at how a function is
applied. The strategy used by the compiler is to assume that there are
no optional arguments, and that applications are done in the right
order.</p><p>The right way to solve this problem for optional parameters is to add
a type annotation to the argument <span class="c003">bump</span>.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> bump_it (bump : ?step:int -> int -> int) x =
bump ~step:2 x;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> bump_it : (?step:int -> int -> int) -> int -> int = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> bump_it bump 1;;</div>
<div class="pre caml-output ok">- : int = 3</div></div>
</div><p>
In practice, such problems appear mostly when using objects whose
methods have optional arguments, so that writing the type of object
arguments is often a good idea.</p><p>Normally the compiler generates a type error if you attempt to pass to
a function a parameter whose type is different from the expected one.
However, in the specific case where the expected type is a non-labeled
function type, and the argument is a function expecting optional
parameters, the compiler will attempt to transform the argument to
have it match the expected type, by passing <span class="c003">None</span> for all optional
parameters.</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> twice f (x : int) = f(f x);;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> twice : (int -> int) -> int -> int = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> twice bump 2;;</div>
<div class="pre caml-output ok">- : int = 8</div></div>
</div><p>This transformation is coherent with the intended semantics,
including side-effects. That is, if the application of optional
parameters shall produce side-effects, these are delayed until the
received function is really applied to an argument.</p>
<h3 class="subsection" id="ss:label-suggestions"><a class="section-anchor" href="#ss:label-suggestions" aria-hidden="true"></a>4.1.3 Suggestions for labeling</h3>
<p>Like for names, choosing labels for functions is not an easy task. A
good labeling is a labeling which</p><ul class="itemize"><li class="li-itemize">
makes programs more readable,
</li><li class="li-itemize">is easy to remember,
</li><li class="li-itemize">when possible, allows useful partial applications.
</li></ul><p>We explain here the rules we applied when labeling OCaml
libraries.</p><p>To speak in an “object-oriented” way, one can consider that each
function has a main argument, its <em>object</em>, and other arguments
related with its action, the <em>parameters</em>. To permit the
combination of functions through functionals in commuting label mode, the
object will not be labeled. Its role is clear from the function
itself. The parameters are labeled with names reminding of
their nature or their role. The best labels combine nature and
role. When this is not possible the role is to be preferred, since the
nature will
often be given by the type itself. Obscure abbreviations should be
avoided.
</p><pre>
<span class="c003">ListLabels.map : f:('a -> 'b) -> 'a list -> 'b list</span>
UnixLabels.write : file_descr -> buf:bytes -> pos:int -> len:int -> unit
</pre><p>When there are several objects of same nature and role, they are all
left unlabeled.
</p><pre>
<span class="c003">ListLabels.iter2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> unit</span>
</pre><p>When there is no preferable object, all arguments are labeled.
</p><pre>
BytesLabels.blit :
src:bytes -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit
</pre><p>However, when there is only one argument, it is often left unlabeled.
</p><pre>
BytesLabels.create : int -> bytes
</pre><p>
This principle also applies to functions of several arguments whose
return type is a type variable, as long as the role of each argument
is not ambiguous. Labeling such functions may lead to awkward error
messages when one attempts to omit labels in an application, as we
have seen with <span class="c003">ListLabels.fold_left</span>.</p><p>Here are some of the label names you will find throughout the
libraries.</p><div class="tableau">
<div class="center"><table class="c000 cellpadding1" border=1><tr><td class="c014"><span class="c013">Label</span></td><td class="c014"><span class="c013">Meaning</span> </td></tr>
<tr><td class="c016">
<span class="c003">f:</span></td><td class="c016">a function to be applied </td></tr>
<tr><td class="c016"><span class="c003">pos:</span></td><td class="c016">a position in a string, array or byte sequence </td></tr>
<tr><td class="c016"><span class="c003">len:</span></td><td class="c016">a length </td></tr>
<tr><td class="c016"><span class="c003">buf:</span></td><td class="c016">a byte sequence or string used as buffer </td></tr>
<tr><td class="c016"><span class="c003">src:</span></td><td class="c016">the source of an operation </td></tr>
<tr><td class="c016"><span class="c003">dst:</span></td><td class="c016">the destination of an operation </td></tr>
<tr><td class="c016"><span class="c003">init:</span></td><td class="c016">the initial value for an iterator </td></tr>
<tr><td class="c016"><span class="c003">cmp:</span></td><td class="c016">a comparison function, <span class="c009">e.g.</span> <span class="c003">Stdlib.compare</span> </td></tr>
<tr><td class="c016"><span class="c003">mode:</span></td><td class="c016">an operation mode or a flag list </td></tr>
</table></div></div><p>All these are only suggestions, but keep in mind that the
choice of labels is essential for readability. Bizarre choices will
make the program harder to maintain.</p><p>In the ideal, the right function name with right labels should be
enough to understand the function’s meaning. Since one can get this
information with OCamlBrowser or the <span class="c003">ocaml</span> toplevel, the documentation
is only used when a more detailed specification is needed.</p>
<h2 class="section" id="s:polymorphic-variants"><a class="section-anchor" href="#s:polymorphic-variants" aria-hidden="true"></a>4.2 Polymorphic variants</h2>
<p>Variants as presented in section <a href="coreexamples.html#s%3Atut-recvariants">1.4</a> are a
powerful tool to build data structures and algorithms. However they
sometimes lack flexibility when used in modular programming. This is
due to the fact that every constructor is assigned to a unique type
when defined and used. Even if the same name appears in the definition
of multiple types, the constructor itself belongs to only one type.
Therefore, one cannot decide that a given constructor belongs to
multiple types, or consider a value of some type to belong to some
other type with more constructors.</p><p>With polymorphic variants, this original assumption is removed. That
is, a variant tag does not belong to any type in particular, the type
system will just check that it is an admissible value according to its
use. You need not define a type before using a variant tag. A variant
type will be inferred independently for each of its uses.</p><h3 class="subsection" id="ss:polyvariant:basic-use"><a class="section-anchor" href="#ss:polyvariant:basic-use" aria-hidden="true"></a>Basic use</h3>
<p>In programs, polymorphic variants work like usual ones. You just have
to prefix their names with a backquote character <span class="c003">`</span>.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> [`On; `Off];;</div>
<div class="pre caml-output ok">- : [> `Off | `On ] list = [`On; `Off]</div></div>
<div class="ocaml">
<div class="pre caml-input"> `Number 1;;</div>
<div class="pre caml-output ok">- : [> `Number <span class="ocamlkeyword">of</span> int ] = `Number 1</div></div>
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> f = <span class="ocamlkeyword">function</span> `On -> 1 | `Off -> 0 | `Number n -> n;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> f : [< `Number <span class="ocamlkeyword">of</span> int | `Off | `On ] -> int = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> List.map f [`On; `Off];;</div>
<div class="pre caml-output ok">- : int list = [1; 0]</div></div>
</div><p>
<span class="c003">[>`Off|`On] list</span> means that to match this list, you should at
least be able to match <span class="c003">`Off</span> and <span class="c003">`On</span>, without argument.
<span class="c003">[<`On|`Off|`Number of int]</span> means that <span class="c003">f</span> may be applied to <span class="c003">`Off</span>,
<span class="c003">`On</span> (both without argument), or <span class="c003">`Number</span> <span class="c009">n</span> where
<span class="c009">n</span> is an integer.
The <span class="c003">></span> and <span class="c003"><</span> inside the variant types show that they may still be
refined, either by defining more tags or by allowing less. As such, they
contain an implicit type variable. Because each of the variant types
appears only once in the whole type, their implicit type variables are
not shown.</p><p>The above variant types were polymorphic, allowing further refinement.
When writing type annotations, one will most often describe fixed
variant types, that is types that cannot be refined. This is
also the case for type abbreviations. Such types do not contain <span class="c003"><</span> or
<span class="c003">></span>, but just an enumeration of the tags and their associated types,
just like in a normal datatype definition.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">type</span> 'a vlist = [`Nil | `Cons <span class="ocamlkeyword">of</span> 'a * 'a vlist];;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> 'a vlist = [ `Cons <span class="ocamlkeyword">of</span> 'a * 'a vlist | `Nil ]</div></div>
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> map f : 'a vlist -> 'b vlist = <span class="ocamlkeyword">function</span>
| `Nil -> `Nil
| `Cons(a, l) -> `Cons(f a, map f l)
;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> map : ('a -> 'b) -> 'a vlist -> 'b vlist = <<span class="ocamlkeyword">fun</span>></div></div>
</div><h3 class="subsection" id="ss:polyvariant-advanced"><a class="section-anchor" href="#ss:polyvariant-advanced" aria-hidden="true"></a>Advanced use</h3>
<p>Type-checking polymorphic variants is a subtle thing, and some
expressions may result in more complex type information.</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> f = <span class="ocamlkeyword">function</span> `A -> `C | `B -> `D | x -> x;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> f : ([> `A | `B | `C | `D ] <span class="ocamlkeyword">as</span> 'a) -> 'a = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> f `E;;</div>
<div class="pre caml-output ok">- : [> `A | `B | `C | `D | `E ] = `E</div></div>
</div><p>
Here we are seeing two phenomena. First, since this matching is open
(the last case catches any tag), we obtain the type <span class="c003">[> `A | `B]</span>
rather than <span class="c003">[< `A | `B]</span> in a closed matching. Then, since <span class="c003">x</span> is
returned as is, input and return types are identical. The notation <span class="c003">as 'a</span> denotes such type sharing. If we apply <span class="c003">f</span> to yet another tag
<span class="c003">`E</span>, it gets added to the list.</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> f1 = <span class="ocamlkeyword">function</span> `A x -> x = 1 | `B -> <span class="ocamlkeyword">true</span> | `C -> <span class="ocamlkeyword">false</span>
<span class="ocamlkeyword">let</span> f2 = <span class="ocamlkeyword">function</span> `A x -> x = <span class="ocamlstring">"a"</span> | `B -> <span class="ocamlkeyword">true</span> ;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> f1 : [< `A <span class="ocamlkeyword">of</span> int | `B | `C ] -> bool = <<span class="ocamlkeyword">fun</span>>
<span class="ocamlkeyword">val</span> f2 : [< `A <span class="ocamlkeyword">of</span> string | `B ] -> bool = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> f x = f1 x && f2 x;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> f : [< `A <span class="ocamlkeyword">of</span> string & int | `B ] -> bool = <<span class="ocamlkeyword">fun</span>></div></div>
</div><p>
Here <span class="c003">f1</span> and <span class="c003">f2</span> both accept the variant tags <span class="c003">`A</span> and <span class="c003">`B</span>, but the
argument of <span class="c003">`A</span> is <span class="c003">int</span> for <span class="c003">f1</span> and <span class="c003">string</span> for <span class="c003">f2</span>. In <span class="c003">f</span>’s
type <span class="c003">`C</span>, only accepted by <span class="c003">f1</span>, disappears, but both argument types
appear for <span class="c003">`A</span> as <span class="c003">int & string</span>. This means that if we
pass the variant tag <span class="c003">`A</span> to <span class="c003">f</span>, its argument should be <em>both</em>
<span class="c003">int</span> and <span class="c003">string</span>. Since there is no such value, <span class="c003">f</span> cannot be
applied to <span class="c003">`A</span>, and <span class="c003">`B</span> is the only accepted input.</p><p>Even if a value has a fixed variant type, one can still give it a
larger type through coercions. Coercions are normally written with
both the source type and the destination type, but in simple cases the
source type may be omitted.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">type</span> 'a wlist = [`Nil | `Cons <span class="ocamlkeyword">of</span> 'a * 'a wlist | `Snoc <span class="ocamlkeyword">of</span> 'a wlist * 'a];;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> 'a wlist = [ `Cons <span class="ocamlkeyword">of</span> 'a * 'a wlist | `Nil | `Snoc <span class="ocamlkeyword">of</span> 'a wlist * 'a ]</div></div>
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> wlist_of_vlist l = (l : 'a vlist :> 'a wlist);;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> wlist_of_vlist : 'a vlist -> 'a wlist = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> open_vlist l = (l : 'a vlist :> [> 'a vlist]);;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> open_vlist : 'a vlist -> [> 'a vlist ] = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">fun</span> x -> (x :> [`A|`B|`C]);;</div>
<div class="pre caml-output ok">- : [< `A | `B | `C ] -> [ `A | `B | `C ] = <<span class="ocamlkeyword">fun</span>></div></div>
</div><p>You may also selectively coerce values through pattern matching.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> split_cases = <span class="ocamlkeyword">function</span>
| `Nil | `Cons _ <span class="ocamlkeyword">as</span> x -> `A x
| `Snoc _ <span class="ocamlkeyword">as</span> x -> `B x
;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> split_cases :
[< `Cons <span class="ocamlkeyword">of</span> 'a | `Nil | `Snoc <span class="ocamlkeyword">of</span> 'b ] ->
[> `A <span class="ocamlkeyword">of</span> [> `Cons <span class="ocamlkeyword">of</span> 'a | `Nil ] | `B <span class="ocamlkeyword">of</span> [> `Snoc <span class="ocamlkeyword">of</span> 'b ] ] = <<span class="ocamlkeyword">fun</span>></div></div>
</div><p>
When an or-pattern composed of variant tags is wrapped inside an
alias-pattern, the alias is given a type containing only the tags
enumerated in the or-pattern. This allows for many useful idioms, like
incremental definition of functions.</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> num x = `Num x
<span class="ocamlkeyword">let</span> eval1 eval (`Num x) = x
<span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> eval x = eval1 eval x ;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> num : 'a -> [> `Num <span class="ocamlkeyword">of</span> 'a ] = <<span class="ocamlkeyword">fun</span>>
<span class="ocamlkeyword">val</span> eval1 : 'a -> [< `Num <span class="ocamlkeyword">of</span> 'b ] -> 'b = <<span class="ocamlkeyword">fun</span>>
<span class="ocamlkeyword">val</span> eval : [< `Num <span class="ocamlkeyword">of</span> 'a ] -> 'a = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> plus x y = `Plus(x,y)
<span class="ocamlkeyword">let</span> eval2 eval = <span class="ocamlkeyword">function</span>
| `Plus(x,y) -> eval x + eval y
| `Num _ <span class="ocamlkeyword">as</span> x -> eval1 eval x
<span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> eval x = eval2 eval x ;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> plus : 'a -> 'b -> [> `Plus <span class="ocamlkeyword">of</span> 'a * 'b ] = <<span class="ocamlkeyword">fun</span>>
<span class="ocamlkeyword">val</span> eval2 : ('a -> int) -> [< `Num <span class="ocamlkeyword">of</span> int | `Plus <span class="ocamlkeyword">of</span> 'a * 'a ] -> int = <<span class="ocamlkeyword">fun</span>>
<span class="ocamlkeyword">val</span> eval : ([< `Num <span class="ocamlkeyword">of</span> int | `Plus <span class="ocamlkeyword">of</span> 'a * 'a ] <span class="ocamlkeyword">as</span> 'a) -> int = <<span class="ocamlkeyword">fun</span>></div></div>
</div><p>To make this even more comfortable, you may use type definitions as
abbreviations for or-patterns. That is, if you have defined <span class="c003">type myvariant = [`Tag1 of int | `Tag2 of bool]</span>, then the pattern <span class="c003">#myvariant</span> is
equivalent to writing <span class="c003">(`Tag1(_ : int) | `Tag2(_ : bool))</span>.</p><p>Such abbreviations may be used alone,
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> f = <span class="ocamlkeyword">function</span>
| #myvariant -> <span class="ocamlstring">"myvariant"</span>
| `Tag3 -> <span class="ocamlstring">"Tag3"</span>;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> f : [< `Tag1 <span class="ocamlkeyword">of</span> int | `Tag2 <span class="ocamlkeyword">of</span> bool | `Tag3 ] -> string = <<span class="ocamlkeyword">fun</span>></div></div>
</div><p>
or combined with with aliases.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> g1 = <span class="ocamlkeyword">function</span> `Tag1 _ -> <span class="ocamlstring">"Tag1"</span> | `Tag2 _ -> <span class="ocamlstring">"Tag2"</span>;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> g1 : [< `Tag1 <span class="ocamlkeyword">of</span> 'a | `Tag2 <span class="ocamlkeyword">of</span> 'b ] -> string = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> g = <span class="ocamlkeyword">function</span>
| #myvariant <span class="ocamlkeyword">as</span> x -> g1 x
| `Tag3 -> <span class="ocamlstring">"Tag3"</span>;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> g : [< `Tag1 <span class="ocamlkeyword">of</span> int | `Tag2 <span class="ocamlkeyword">of</span> bool | `Tag3 ] -> string = <<span class="ocamlkeyword">fun</span>></div></div>
</div>
<h3 class="subsection" id="ss:polyvariant-weaknesses"><a class="section-anchor" href="#ss:polyvariant-weaknesses" aria-hidden="true"></a>4.2.1 Weaknesses of polymorphic variants</h3>
<p>After seeing the power of polymorphic variants, one may wonder why
they were added to core language variants, rather than replacing them.</p><p>The answer is twofold. One first aspect is that while being pretty
efficient, the lack of static type information allows for less
optimizations, and makes polymorphic variants slightly heavier than
core language ones. However noticeable differences would only
appear on huge data structures.</p><p>More important is the fact that polymorphic variants, while being
type-safe, result in a weaker type discipline. That is, core language
variants do actually much more than ensuring type-safety, they also
check that you use only declared constructors, that all constructors
present in a data-structure are compatible, and they enforce typing
constraints to their parameters.</p><p>For this reason, you must be more careful about making types explicit
when you use polymorphic variants. When you write a library, this is
easy since you can describe exact types in interfaces, but for simple
programs you are probably better off with core language variants.</p><p>Beware also that some idioms make trivial errors very hard to find.
For instance, the following code is probably wrong but the compiler
has no way to see it.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">type</span> abc = [`A | `B | `C] ;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> abc = [ `A | `B | `C ]</div></div>
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> f = <span class="ocamlkeyword">function</span>
| `As -> <span class="ocamlstring">"A"</span>
| #abc -> <span class="ocamlstring">"other"</span> ;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> f : [< `A | `As | `B | `C ] -> string = <<span class="ocamlkeyword">fun</span>></div></div>
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> f : abc -> string = f ;;</div>
<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> f : abc -> string = <<span class="ocamlkeyword">fun</span>></div></div>
</div><p>
You can avoid such risks by annotating the definition itself.
</p><div class="caml-example toplevel">
<div class="ocaml">
<div class="pre caml-input"> <span class="ocamlkeyword">let</span> f : abc -> string = <span class="ocamlkeyword">function</span>
| <span class="ocamlhighlight">`As</span> -> <span class="ocamlstring">"A"</span>
| #abc -> <span class="ocamlstring">"other"</span> ;;</div>
<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This pattern matches values of type [? `As ]
but a pattern was expected which matches values of type abc
The second variant type does not allow tag(s) `As</div></div>
</div>
<hr class="footnoterule"><dl class="thefootnotes"><dt class="dt-thefootnotes">
<a id="note1" href="#text1">1</a></dt><dd class="dd-thefootnotes"><div class="footnotetext">This correspond to the commuting label mode
of Objective Caml 3.00 through 3.02, with some additional flexibility
on total applications. The so-called classic mode (<span class="c003">-nolabels</span>
options) is now deprecated for normal use.</div></dd></dl>
<hr>
<a href="objectexamples.html"><img src="previous_motif.svg" alt="Previous"></a>
<a href="index.html"><img src="contents_motif.svg" alt="Up"></a>
<a href="polymorphism.html"><img src="next_motif.svg" alt="Next"></a>
</body>
</html>
|