1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<link rel="stylesheet" href="style.css" type="text/css">
<meta content="text/html; charset=iso-8859-1" http-equiv="Content-Type">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="Start" href="index.html">
<link rel="previous" href="Lexing.html">
<link rel="next" href="ListLabels.html">
<link rel="Up" href="index.html">
<link title="Index of types" rel=Appendix href="index_types.html">
<link title="Index of extensions" rel=Appendix href="index_extensions.html">
<link title="Index of exceptions" rel=Appendix href="index_exceptions.html">
<link title="Index of values" rel=Appendix href="index_values.html">
<link title="Index of modules" rel=Appendix href="index_modules.html">
<link title="Index of module types" rel=Appendix href="index_module_types.html">
<link title="Arg" rel="Chapter" href="Arg.html">
<link title="Array" rel="Chapter" href="Array.html">
<link title="ArrayLabels" rel="Chapter" href="ArrayLabels.html">
<link title="Bigarray" rel="Chapter" href="Bigarray.html">
<link title="Bool" rel="Chapter" href="Bool.html">
<link title="Buffer" rel="Chapter" href="Buffer.html">
<link title="Bytes" rel="Chapter" href="Bytes.html">
<link title="BytesLabels" rel="Chapter" href="BytesLabels.html">
<link title="Callback" rel="Chapter" href="Callback.html">
<link title="CamlinternalFormat" rel="Chapter" href="CamlinternalFormat.html">
<link title="CamlinternalFormatBasics" rel="Chapter" href="CamlinternalFormatBasics.html">
<link title="CamlinternalLazy" rel="Chapter" href="CamlinternalLazy.html">
<link title="CamlinternalMod" rel="Chapter" href="CamlinternalMod.html">
<link title="CamlinternalOO" rel="Chapter" href="CamlinternalOO.html">
<link title="Char" rel="Chapter" href="Char.html">
<link title="Complex" rel="Chapter" href="Complex.html">
<link title="Condition" rel="Chapter" href="Condition.html">
<link title="Digest" rel="Chapter" href="Digest.html">
<link title="Dynlink" rel="Chapter" href="Dynlink.html">
<link title="Ephemeron" rel="Chapter" href="Ephemeron.html">
<link title="Event" rel="Chapter" href="Event.html">
<link title="Filename" rel="Chapter" href="Filename.html">
<link title="Float" rel="Chapter" href="Float.html">
<link title="Format" rel="Chapter" href="Format.html">
<link title="Fun" rel="Chapter" href="Fun.html">
<link title="Gc" rel="Chapter" href="Gc.html">
<link title="Genlex" rel="Chapter" href="Genlex.html">
<link title="Hashtbl" rel="Chapter" href="Hashtbl.html">
<link title="Int" rel="Chapter" href="Int.html">
<link title="Int32" rel="Chapter" href="Int32.html">
<link title="Int64" rel="Chapter" href="Int64.html">
<link title="Lazy" rel="Chapter" href="Lazy.html">
<link title="Lexing" rel="Chapter" href="Lexing.html">
<link title="List" rel="Chapter" href="List.html">
<link title="ListLabels" rel="Chapter" href="ListLabels.html">
<link title="Map" rel="Chapter" href="Map.html">
<link title="Marshal" rel="Chapter" href="Marshal.html">
<link title="MoreLabels" rel="Chapter" href="MoreLabels.html">
<link title="Mutex" rel="Chapter" href="Mutex.html">
<link title="Nativeint" rel="Chapter" href="Nativeint.html">
<link title="Obj" rel="Chapter" href="Obj.html">
<link title="Ocaml_operators" rel="Chapter" href="Ocaml_operators.html">
<link title="Oo" rel="Chapter" href="Oo.html">
<link title="Option" rel="Chapter" href="Option.html">
<link title="Parsing" rel="Chapter" href="Parsing.html">
<link title="Printexc" rel="Chapter" href="Printexc.html">
<link title="Printf" rel="Chapter" href="Printf.html">
<link title="Queue" rel="Chapter" href="Queue.html">
<link title="Random" rel="Chapter" href="Random.html">
<link title="Result" rel="Chapter" href="Result.html">
<link title="Scanf" rel="Chapter" href="Scanf.html">
<link title="Seq" rel="Chapter" href="Seq.html">
<link title="Set" rel="Chapter" href="Set.html">
<link title="Spacetime" rel="Chapter" href="Spacetime.html">
<link title="Stack" rel="Chapter" href="Stack.html">
<link title="StdLabels" rel="Chapter" href="StdLabels.html">
<link title="Stdlib" rel="Chapter" href="Stdlib.html">
<link title="Str" rel="Chapter" href="Str.html">
<link title="Stream" rel="Chapter" href="Stream.html">
<link title="String" rel="Chapter" href="String.html">
<link title="StringLabels" rel="Chapter" href="StringLabels.html">
<link title="Sys" rel="Chapter" href="Sys.html">
<link title="Thread" rel="Chapter" href="Thread.html">
<link title="ThreadUnix" rel="Chapter" href="ThreadUnix.html">
<link title="Uchar" rel="Chapter" href="Uchar.html">
<link title="Unit" rel="Chapter" href="Unit.html">
<link title="Unix" rel="Chapter" href="Unix.html">
<link title="UnixLabels" rel="Chapter" href="UnixLabels.html">
<link title="Weak" rel="Chapter" href="Weak.html"><link title="Iterators" rel="Section" href="#1_Iterators">
<link title="Iterators on two lists" rel="Section" href="#1_Iteratorsontwolists">
<link title="List scanning" rel="Section" href="#1_Listscanning">
<link title="List searching" rel="Section" href="#1_Listsearching">
<link title="Association lists" rel="Section" href="#1_Associationlists">
<link title="Lists of pairs" rel="Section" href="#1_Listsofpairs">
<link title="Sorting" rel="Section" href="#1_Sorting">
<link title="Iterators" rel="Section" href="#1_Iterators">
<title>List</title>
</head>
<body>
<div class="navbar"><a class="pre" href="Lexing.html" title="Lexing">Previous</a>
<a class="up" href="index.html" title="Index">Up</a>
<a class="post" href="ListLabels.html" title="ListLabels">Next</a>
</div>
<h1>Module <a href="type_List.html">List</a></h1>
<pre><span id="MODULEList"><span class="keyword">module</span> List</span>: <code class="code"><span class="keyword">sig</span></code> <a href="List.html">..</a> <code class="code"><span class="keyword">end</span></code></pre><div class="info module top">
<div class="info-desc">
<p>List operations.</p>
<p>Some functions are flagged as not tail-recursive. A tail-recursive
function uses constant stack space, while a non-tail-recursive function
uses stack space proportional to the length of its list argument, which
can be a problem with very long lists. When the function takes several
list arguments, an approximate formula giving stack usage (in some
unspecified constant unit) is shown in parentheses.</p>
<p>The above considerations can usually be ignored if your lists are not
longer than about 10000 elements.</p>
</div>
</div>
<hr width="100%">
<pre><span id="TYPEt"><span class="keyword">type</span> <code class="type">'a</code> t</span> = <code class="type">'a list</code> = </pre><table class="typetable">
<tr>
<td align="left" valign="top" >
<code><span class="keyword">|</span></code></td>
<td align="left" valign="top" >
<code><span id="TYPEELTt.[]"><span class="constructor">[]</span></span></code></td>
</tr>
<tr>
<td align="left" valign="top" >
<code><span class="keyword">|</span></code></td>
<td align="left" valign="top" >
<code><span id="TYPEELTt.::"><span class="constructor">::</span></span> <span class="keyword">of</span> <code class="type">'a * 'a list</code></code></td>
</tr></table>
<div class="info ">
<div class="info-desc">
<p>An alias for the type of lists.</p>
</div>
</div>
<pre><span id="VALlength"><span class="keyword">val</span> length</span> : <code class="type">'a list -> int</code></pre><div class="info ">
<div class="info-desc">
<p>Return the length (number of elements) of the given list.</p>
</div>
</div>
<pre><span id="VALcompare_lengths"><span class="keyword">val</span> compare_lengths</span> : <code class="type">'a list -> 'b list -> int</code></pre><div class="info ">
<div class="info-desc">
<p>Compare the lengths of two lists. <code class="code">compare_lengths l1 l2</code> is
equivalent to <code class="code">compare (length l1) (length l2)</code>, except that
the computation stops after itering on the shortest list.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.05.0</li>
</ul>
</div>
<pre><span id="VALcompare_length_with"><span class="keyword">val</span> compare_length_with</span> : <code class="type">'a list -> int -> int</code></pre><div class="info ">
<div class="info-desc">
<p>Compare the length of a list to an integer. <code class="code">compare_length_with l n</code> is
equivalent to <code class="code">compare (length l) n</code>, except that
the computation stops after at most <code class="code">n</code> iterations on the list.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.05.0</li>
</ul>
</div>
<pre><span id="VALcons"><span class="keyword">val</span> cons</span> : <code class="type">'a -> 'a list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">cons x xs</code> is <code class="code">x :: xs</code></p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.03.0</li>
</ul>
</div>
<pre><span id="VALhd"><span class="keyword">val</span> hd</span> : <code class="type">'a list -> 'a</code></pre><div class="info ">
<div class="info-desc">
<p>Return the first element of the given list.</p>
</div>
<ul class="info-attributes">
<li><b>Raises</b> <code>Failure</code> if the list is empty.</li>
</ul>
</div>
<pre><span id="VALtl"><span class="keyword">val</span> tl</span> : <code class="type">'a list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p>Return the given list without its first element.</p>
</div>
<ul class="info-attributes">
<li><b>Raises</b> <code>Failure</code> if the list is empty.</li>
</ul>
</div>
<pre><span id="VALnth"><span class="keyword">val</span> nth</span> : <code class="type">'a list -> int -> 'a</code></pre><div class="info ">
<div class="info-desc">
<p>Return the <code class="code">n</code>-th element of the given list.
The first element (head of the list) is at position 0.</p>
</div>
<ul class="info-attributes">
<li><b>Raises</b><ul><li><code>Failure</code> if the list is too short.</li>
<li><code>Invalid_argument</code> if <code class="code">n</code> is negative.</li>
</ul></li>
</ul>
</div>
<pre><span id="VALnth_opt"><span class="keyword">val</span> nth_opt</span> : <code class="type">'a list -> int -> 'a option</code></pre><div class="info ">
<div class="info-desc">
<p>Return the <code class="code">n</code>-th element of the given list.
The first element (head of the list) is at position 0.
Return <code class="code"><span class="constructor">None</span></code> if the list is too short.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.05</li>
<li><b>Raises</b> <code>Invalid_argument</code> if <code class="code">n</code> is negative.</li>
</ul>
</div>
<pre><span id="VALrev"><span class="keyword">val</span> rev</span> : <code class="type">'a list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p>List reversal.</p>
</div>
</div>
<pre><span id="VALinit"><span class="keyword">val</span> init</span> : <code class="type">int -> (int -> 'a) -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code"><span class="constructor">List</span>.init len f</code> is <code class="code">[f 0; f 1; ...; f (len-1)]</code>, evaluated left to right.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.06.0</li>
<li><b>Raises</b> <code>Invalid_argument</code> if len < 0.</li>
</ul>
</div>
<pre><span id="VALappend"><span class="keyword">val</span> append</span> : <code class="type">'a list -> 'a list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p>Concatenate two lists. Same as the infix operator <code class="code">@</code>.
Not tail-recursive (length of the first argument).</p>
</div>
</div>
<pre><span id="VALrev_append"><span class="keyword">val</span> rev_append</span> : <code class="type">'a list -> 'a list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code"><span class="constructor">List</span>.rev_append l1 l2</code> reverses <code class="code">l1</code> and concatenates it to <code class="code">l2</code>.
This is equivalent to <a href="List.html#VALrev"><code class="code"><span class="constructor">List</span>.rev</code></a><code class="code"> l1 @ l2</code>, but <code class="code">rev_append</code> is
tail-recursive and more efficient.</p>
</div>
</div>
<pre><span id="VALconcat"><span class="keyword">val</span> concat</span> : <code class="type">'a list list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p>Concatenate a list of lists. The elements of the argument are all
concatenated together (in the same order) to give the result.
Not tail-recursive
(length of the argument + length of the longest sub-list).</p>
</div>
</div>
<pre><span id="VALflatten"><span class="keyword">val</span> flatten</span> : <code class="type">'a list list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p>An alias for <code class="code">concat</code>.</p>
</div>
</div>
<h2 id="1_Iterators">Iterators</h2>
<pre><span id="VALiter"><span class="keyword">val</span> iter</span> : <code class="type">('a -> unit) -> 'a list -> unit</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code"><span class="constructor">List</span>.iter f [a1; ...; an]</code> applies function <code class="code">f</code> in turn to
<code class="code">a1; ...; an</code>. It is equivalent to
<code class="code"><span class="keyword">begin</span> f a1; f a2; ...; f an; () <span class="keyword">end</span></code>.</p>
</div>
</div>
<pre><span id="VALiteri"><span class="keyword">val</span> iteri</span> : <code class="type">(int -> 'a -> unit) -> 'a list -> unit</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALiter"><code class="code"><span class="constructor">List</span>.iter</code></a>, but the function is applied to the index of
the element as first argument (counting from 0), and the element
itself as second argument.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.00.0</li>
</ul>
</div>
<pre><span id="VALmap"><span class="keyword">val</span> map</span> : <code class="type">('a -> 'b) -> 'a list -> 'b list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code"><span class="constructor">List</span>.map f [a1; ...; an]</code> applies function <code class="code">f</code> to <code class="code">a1, ..., an</code>,
and builds the list <code class="code">[f a1; ...; f an]</code>
with the results returned by <code class="code">f</code>. Not tail-recursive.</p>
</div>
</div>
<pre><span id="VALmapi"><span class="keyword">val</span> mapi</span> : <code class="type">(int -> 'a -> 'b) -> 'a list -> 'b list</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALmap"><code class="code"><span class="constructor">List</span>.map</code></a>, but the function is applied to the index of
the element as first argument (counting from 0), and the element
itself as second argument. Not tail-recursive.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.00.0</li>
</ul>
</div>
<pre><span id="VALrev_map"><span class="keyword">val</span> rev_map</span> : <code class="type">('a -> 'b) -> 'a list -> 'b list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code"><span class="constructor">List</span>.rev_map f l</code> gives the same result as
<a href="List.html#VALrev"><code class="code"><span class="constructor">List</span>.rev</code></a><code class="code"> (</code><a href="List.html#VALmap"><code class="code"><span class="constructor">List</span>.map</code></a><code class="code"> f l)</code>, but is tail-recursive and
more efficient.</p>
</div>
</div>
<pre><span id="VALfilter_map"><span class="keyword">val</span> filter_map</span> : <code class="type">('a -> 'b option) -> 'a list -> 'b list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">filter_map f l</code> applies <code class="code">f</code> to every element of <code class="code">l</code>, filters
out the <code class="code"><span class="constructor">None</span></code> elements and returns the list of the arguments of
the <code class="code"><span class="constructor">Some</span></code> elements.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.08.0</li>
</ul>
</div>
<pre><span id="VALconcat_map"><span class="keyword">val</span> concat_map</span> : <code class="type">('a -> 'b list) -> 'a list -> 'b list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code"><span class="constructor">List</span>.concat_map f l</code> gives the same result as
<a href="List.html#VALconcat"><code class="code"><span class="constructor">List</span>.concat</code></a><code class="code"> (</code><a href="List.html#VALmap"><code class="code"><span class="constructor">List</span>.map</code></a><code class="code"> f l)</code>. Tail-recursive.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.10.0</li>
</ul>
</div>
<pre><span id="VALfold_left_map"><span class="keyword">val</span> fold_left_map</span> : <code class="type">('a -> 'b -> 'a * 'c) -> 'a -> 'b list -> 'a * 'c list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">fold_left_map</code> is a combination of <code class="code">fold_left</code> and <code class="code">map</code> that threads an
accumulator through calls to <code class="code">f</code></p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.11.0</li>
</ul>
</div>
<pre><span id="VALfold_left"><span class="keyword">val</span> fold_left</span> : <code class="type">('a -> 'b -> 'a) -> 'a -> 'b list -> 'a</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code"><span class="constructor">List</span>.fold_left f a [b1; ...; bn]</code> is
<code class="code">f (... (f (f a b1) b2) ...) bn</code>.</p>
</div>
</div>
<pre><span id="VALfold_right"><span class="keyword">val</span> fold_right</span> : <code class="type">('a -> 'b -> 'b) -> 'a list -> 'b -> 'b</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code"><span class="constructor">List</span>.fold_right f [a1; ...; an] b</code> is
<code class="code">f a1 (f a2 (... (f an b) ...))</code>. Not tail-recursive.</p>
</div>
</div>
<h2 id="1_Iteratorsontwolists">Iterators on two lists</h2>
<pre><span id="VALiter2"><span class="keyword">val</span> iter2</span> : <code class="type">('a -> 'b -> unit) -> 'a list -> 'b list -> unit</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code"><span class="constructor">List</span>.iter2 f [a1; ...; an] [b1; ...; bn]</code> calls in turn
<code class="code">f a1 b1; ...; f an bn</code>.</p>
</div>
<ul class="info-attributes">
<li><b>Raises</b> <code>Invalid_argument</code> if the two lists are determined
to have different lengths.</li>
</ul>
</div>
<pre><span id="VALmap2"><span class="keyword">val</span> map2</span> : <code class="type">('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code"><span class="constructor">List</span>.map2 f [a1; ...; an] [b1; ...; bn]</code> is
<code class="code">[f a1 b1; ...; f an bn]</code>.</p>
</div>
<ul class="info-attributes">
<li><b>Raises</b> <code>Invalid_argument</code> if the two lists are determined
to have different lengths. Not tail-recursive.</li>
</ul>
</div>
<pre><span id="VALrev_map2"><span class="keyword">val</span> rev_map2</span> : <code class="type">('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code"><span class="constructor">List</span>.rev_map2 f l1 l2</code> gives the same result as
<a href="List.html#VALrev"><code class="code"><span class="constructor">List</span>.rev</code></a><code class="code"> (</code><a href="List.html#VALmap2"><code class="code"><span class="constructor">List</span>.map2</code></a><code class="code"> f l1 l2)</code>, but is tail-recursive and
more efficient.</p>
</div>
</div>
<pre><span id="VALfold_left2"><span class="keyword">val</span> fold_left2</span> : <code class="type">('a -> 'b -> 'c -> 'a) -> 'a -> 'b list -> 'c list -> 'a</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code"><span class="constructor">List</span>.fold_left2 f a [b1; ...; bn] [c1; ...; cn]</code> is
<code class="code">f (... (f (f a b1 c1) b2 c2) ...) bn cn</code>.</p>
</div>
<ul class="info-attributes">
<li><b>Raises</b> <code>Invalid_argument</code> if the two lists are determined
to have different lengths.</li>
</ul>
</div>
<pre><span id="VALfold_right2"><span class="keyword">val</span> fold_right2</span> : <code class="type">('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code"><span class="constructor">List</span>.fold_right2 f [a1; ...; an] [b1; ...; bn] c</code> is
<code class="code">f a1 b1 (f a2 b2 (... (f an bn c) ...))</code>.</p>
</div>
<ul class="info-attributes">
<li><b>Raises</b> <code>Invalid_argument</code> if the two lists are determined
to have different lengths. Not tail-recursive.</li>
</ul>
</div>
<h2 id="1_Listscanning">List scanning</h2>
<pre><span id="VALfor_all"><span class="keyword">val</span> for_all</span> : <code class="type">('a -> bool) -> 'a list -> bool</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">for_all p [a1; ...; an]</code> checks if all elements of the list
satisfy the predicate <code class="code">p</code>. That is, it returns
<code class="code">(p a1) <span class="keywordsign">&&</span> (p a2) <span class="keywordsign">&&</span> ... <span class="keywordsign">&&</span> (p an)</code> for a non-empty list and
<code class="code"><span class="keyword">true</span></code> if the list is empty.</p>
</div>
</div>
<pre><span id="VALexists"><span class="keyword">val</span> exists</span> : <code class="type">('a -> bool) -> 'a list -> bool</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">exists p [a1; ...; an]</code> checks if at least one element of
the list satisfies the predicate <code class="code">p</code>. That is, it returns
<code class="code">(p a1) <span class="keywordsign">||</span> (p a2) <span class="keywordsign">||</span> ... <span class="keywordsign">||</span> (p an)</code> for a non-empty list and
<code class="code"><span class="keyword">false</span></code> if the list is empty.</p>
</div>
</div>
<pre><span id="VALfor_all2"><span class="keyword">val</span> for_all2</span> : <code class="type">('a -> 'b -> bool) -> 'a list -> 'b list -> bool</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALfor_all"><code class="code"><span class="constructor">List</span>.for_all</code></a>, but for a two-argument predicate.</p>
</div>
<ul class="info-attributes">
<li><b>Raises</b> <code>Invalid_argument</code> if the two lists are determined
to have different lengths.</li>
</ul>
</div>
<pre><span id="VALexists2"><span class="keyword">val</span> exists2</span> : <code class="type">('a -> 'b -> bool) -> 'a list -> 'b list -> bool</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALexists"><code class="code"><span class="constructor">List</span>.exists</code></a>, but for a two-argument predicate.</p>
</div>
<ul class="info-attributes">
<li><b>Raises</b> <code>Invalid_argument</code> if the two lists are determined
to have different lengths.</li>
</ul>
</div>
<pre><span id="VALmem"><span class="keyword">val</span> mem</span> : <code class="type">'a -> 'a list -> bool</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">mem a l</code> is true if and only if <code class="code">a</code> is equal
to an element of <code class="code">l</code>.</p>
</div>
</div>
<pre><span id="VALmemq"><span class="keyword">val</span> memq</span> : <code class="type">'a -> 'a list -> bool</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALmem"><code class="code"><span class="constructor">List</span>.mem</code></a>, but uses physical equality instead of structural
equality to compare list elements.</p>
</div>
</div>
<h2 id="1_Listsearching">List searching</h2>
<pre><span id="VALfind"><span class="keyword">val</span> find</span> : <code class="type">('a -> bool) -> 'a list -> 'a</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">find p l</code> returns the first element of the list <code class="code">l</code>
that satisfies the predicate <code class="code">p</code>.</p>
</div>
<ul class="info-attributes">
<li><b>Raises</b> <code>Not_found</code> if there is no value that satisfies <code class="code">p</code> in the
list <code class="code">l</code>.</li>
</ul>
</div>
<pre><span id="VALfind_opt"><span class="keyword">val</span> find_opt</span> : <code class="type">('a -> bool) -> 'a list -> 'a option</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">find_opt p l</code> returns the first element of the list <code class="code">l</code> that
satisfies the predicate <code class="code">p</code>, or <code class="code"><span class="constructor">None</span></code> if there is no value that
satisfies <code class="code">p</code> in the list <code class="code">l</code>.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.05</li>
</ul>
</div>
<pre><span id="VALfind_map"><span class="keyword">val</span> find_map</span> : <code class="type">('a -> 'b option) -> 'a list -> 'b option</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">find_map f l</code> applies <code class="code">f</code> to the elements of <code class="code">l</code> in order,
and returns the first result of the form <code class="code"><span class="constructor">Some</span> v</code>, or <code class="code"><span class="constructor">None</span></code>
if none exist.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.10.0</li>
</ul>
</div>
<pre><span id="VALfilter"><span class="keyword">val</span> filter</span> : <code class="type">('a -> bool) -> 'a list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">filter p l</code> returns all the elements of the list <code class="code">l</code>
that satisfy the predicate <code class="code">p</code>. The order of the elements
in the input list is preserved.</p>
</div>
</div>
<pre><span id="VALfind_all"><span class="keyword">val</span> find_all</span> : <code class="type">('a -> bool) -> 'a list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">find_all</code> is another name for <a href="List.html#VALfilter"><code class="code"><span class="constructor">List</span>.filter</code></a>.</p>
</div>
</div>
<pre><span id="VALfilteri"><span class="keyword">val</span> filteri</span> : <code class="type">(int -> 'a -> bool) -> 'a list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALfilter"><code class="code"><span class="constructor">List</span>.filter</code></a>, but the predicate is applied to the index of
the element as first argument (counting from 0), and the element
itself as second argument.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.11.0</li>
</ul>
</div>
<pre><span id="VALpartition"><span class="keyword">val</span> partition</span> : <code class="type">('a -> bool) -> 'a list -> 'a list * 'a list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">partition p l</code> returns a pair of lists <code class="code">(l1, l2)</code>, where
<code class="code">l1</code> is the list of all the elements of <code class="code">l</code> that
satisfy the predicate <code class="code">p</code>, and <code class="code">l2</code> is the list of all the
elements of <code class="code">l</code> that do not satisfy <code class="code">p</code>.
The order of the elements in the input list is preserved.</p>
</div>
</div>
<h2 id="1_Associationlists">Association lists</h2>
<pre><span id="VALassoc"><span class="keyword">val</span> assoc</span> : <code class="type">'a -> ('a * 'b) list -> 'b</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">assoc a l</code> returns the value associated with key <code class="code">a</code> in the list of
pairs <code class="code">l</code>. That is,
<code class="code">assoc a [ ...; (a,b); ...] = b</code>
if <code class="code">(a,b)</code> is the leftmost binding of <code class="code">a</code> in list <code class="code">l</code>.</p>
</div>
<ul class="info-attributes">
<li><b>Raises</b> <code>Not_found</code> if there is no value associated with <code class="code">a</code> in the
list <code class="code">l</code>.</li>
</ul>
</div>
<pre><span id="VALassoc_opt"><span class="keyword">val</span> assoc_opt</span> : <code class="type">'a -> ('a * 'b) list -> 'b option</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">assoc_opt a l</code> returns the value associated with key <code class="code">a</code> in the list of
pairs <code class="code">l</code>. That is,
<code class="code">assoc_opt a [ ...; (a,b); ...] = b</code>
if <code class="code">(a,b)</code> is the leftmost binding of <code class="code">a</code> in list <code class="code">l</code>.
Returns <code class="code"><span class="constructor">None</span></code> if there is no value associated with <code class="code">a</code> in the
list <code class="code">l</code>.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.05</li>
</ul>
</div>
<pre><span id="VALassq"><span class="keyword">val</span> assq</span> : <code class="type">'a -> ('a * 'b) list -> 'b</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALassoc"><code class="code"><span class="constructor">List</span>.assoc</code></a>, but uses physical equality instead of structural
equality to compare keys.</p>
</div>
</div>
<pre><span id="VALassq_opt"><span class="keyword">val</span> assq_opt</span> : <code class="type">'a -> ('a * 'b) list -> 'b option</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALassoc_opt"><code class="code"><span class="constructor">List</span>.assoc_opt</code></a>, but uses physical equality instead of structural
equality to compare keys.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.05</li>
</ul>
</div>
<pre><span id="VALmem_assoc"><span class="keyword">val</span> mem_assoc</span> : <code class="type">'a -> ('a * 'b) list -> bool</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALassoc"><code class="code"><span class="constructor">List</span>.assoc</code></a>, but simply return true if a binding exists,
and false if no bindings exist for the given key.</p>
</div>
</div>
<pre><span id="VALmem_assq"><span class="keyword">val</span> mem_assq</span> : <code class="type">'a -> ('a * 'b) list -> bool</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALmem_assoc"><code class="code"><span class="constructor">List</span>.mem_assoc</code></a>, but uses physical equality instead of
structural equality to compare keys.</p>
</div>
</div>
<pre><span id="VALremove_assoc"><span class="keyword">val</span> remove_assoc</span> : <code class="type">'a -> ('a * 'b) list -> ('a * 'b) list</code></pre><div class="info ">
<div class="info-desc">
<p><code class="code">remove_assoc a l</code> returns the list of
pairs <code class="code">l</code> without the first pair with key <code class="code">a</code>, if any.
Not tail-recursive.</p>
</div>
</div>
<pre><span id="VALremove_assq"><span class="keyword">val</span> remove_assq</span> : <code class="type">'a -> ('a * 'b) list -> ('a * 'b) list</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALremove_assoc"><code class="code"><span class="constructor">List</span>.remove_assoc</code></a>, but uses physical equality instead
of structural equality to compare keys. Not tail-recursive.</p>
</div>
</div>
<h2 id="1_Listsofpairs">Lists of pairs</h2>
<pre><span id="VALsplit"><span class="keyword">val</span> split</span> : <code class="type">('a * 'b) list -> 'a list * 'b list</code></pre><div class="info ">
<div class="info-desc">
<p>Transform a list of pairs into a pair of lists:
<code class="code">split [(a1,b1); ...; (an,bn)]</code> is <code class="code">([a1; ...; an], [b1; ...; bn])</code>.
Not tail-recursive.</p>
</div>
</div>
<pre><span id="VALcombine"><span class="keyword">val</span> combine</span> : <code class="type">'a list -> 'b list -> ('a * 'b) list</code></pre><div class="info ">
<div class="info-desc">
<p>Transform a pair of lists into a list of pairs:
<code class="code">combine [a1; ...; an] [b1; ...; bn]</code> is
<code class="code">[(a1,b1); ...; (an,bn)]</code>.</p>
</div>
<ul class="info-attributes">
<li><b>Raises</b> <code>Invalid_argument</code> if the two lists
have different lengths. Not tail-recursive.</li>
</ul>
</div>
<h2 id="1_Sorting">Sorting</h2>
<pre><span id="VALsort"><span class="keyword">val</span> sort</span> : <code class="type">('a -> 'a -> int) -> 'a list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p>Sort a list in increasing order according to a comparison
function. The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see Array.sort for
a complete specification). For example,
<a href="Stdlib.html#VALcompare"><code class="code">compare</code></a> is a suitable comparison function.
The resulting list is sorted in increasing order.
<code class="code"><span class="constructor">List</span>.sort</code> is guaranteed to run in constant heap space
(in addition to the size of the result list) and logarithmic
stack space.</p>
<p>The current implementation uses Merge Sort. It runs in constant
heap space and logarithmic stack space.</p>
</div>
</div>
<pre><span id="VALstable_sort"><span class="keyword">val</span> stable_sort</span> : <code class="type">('a -> 'a -> int) -> 'a list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALsort"><code class="code"><span class="constructor">List</span>.sort</code></a>, but the sorting algorithm is guaranteed to
be stable (i.e. elements that compare equal are kept in their
original order) .</p>
<p>The current implementation uses Merge Sort. It runs in constant
heap space and logarithmic stack space.</p>
</div>
</div>
<pre><span id="VALfast_sort"><span class="keyword">val</span> fast_sort</span> : <code class="type">('a -> 'a -> int) -> 'a list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALsort"><code class="code"><span class="constructor">List</span>.sort</code></a> or <a href="List.html#VALstable_sort"><code class="code"><span class="constructor">List</span>.stable_sort</code></a>, whichever is faster
on typical input.</p>
</div>
</div>
<pre><span id="VALsort_uniq"><span class="keyword">val</span> sort_uniq</span> : <code class="type">('a -> 'a -> int) -> 'a list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p>Same as <a href="List.html#VALsort"><code class="code"><span class="constructor">List</span>.sort</code></a>, but also remove duplicates.</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.02.0</li>
</ul>
</div>
<pre><span id="VALmerge"><span class="keyword">val</span> merge</span> : <code class="type">('a -> 'a -> int) -> 'a list -> 'a list -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p>Merge two lists:
Assuming that <code class="code">l1</code> and <code class="code">l2</code> are sorted according to the
comparison function <code class="code">cmp</code>, <code class="code">merge cmp l1 l2</code> will return a
sorted list containing all the elements of <code class="code">l1</code> and <code class="code">l2</code>.
If several elements compare equal, the elements of <code class="code">l1</code> will be
before the elements of <code class="code">l2</code>.
Not tail-recursive (sum of the lengths of the arguments).</p>
</div>
</div>
<h2 id="1_Iterators">Iterators</h2>
<pre><span id="VALto_seq"><span class="keyword">val</span> to_seq</span> : <code class="type">'a list -> 'a <a href="Seq.html#TYPEt">Seq.t</a></code></pre><div class="info ">
<div class="info-desc">
<p>Iterate on the list</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.07</li>
</ul>
</div>
<pre><span id="VALof_seq"><span class="keyword">val</span> of_seq</span> : <code class="type">'a <a href="Seq.html#TYPEt">Seq.t</a> -> 'a list</code></pre><div class="info ">
<div class="info-desc">
<p>Create a list from the iterator</p>
</div>
<ul class="info-attributes">
<li><b>Since</b> 4.07</li>
</ul>
</div>
</body></html>
|