File: objectexamples.html

package info (click to toggle)
ocaml-doc 4.11-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 20,580 kB
  • sloc: sh: 37; makefile: 11
file content (3014 lines) | stat: -rw-r--r-- 118,871 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
<!DOCTYPE html>
<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="generator" content="hevea 2.32">

  <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
<link rel="stylesheet" type="text/css" href="manual.css">
<title>Chapter 3  Objects in OCaml</title>
</head>
<body>
<a href="moduleexamples.html"><img src="previous_motif.svg" alt="Previous"></a>
<a href="index.html"><img src="contents_motif.svg" alt="Up"></a>
<a href="lablexamples.html"><img src="next_motif.svg" alt="Next"></a>
<hr>
<h1 class="chapter" id="sec26">Chapter 3  Objects in OCaml</h1>
<ul>
<li><a href="objectexamples.html#s%3Aclasses-and-objects">3.1  Classes and objects</a>
</li><li><a href="objectexamples.html#s%3Aimmediate-objects">3.2  Immediate objects</a>
</li><li><a href="objectexamples.html#s%3Areference-to-self">3.3  Reference to self</a>
</li><li><a href="objectexamples.html#s%3Ainitializers">3.4  Initializers</a>
</li><li><a href="objectexamples.html#s%3Avirtual-methods">3.5  Virtual methods</a>
</li><li><a href="objectexamples.html#s%3Aprivate-methods">3.6  Private methods</a>
</li><li><a href="objectexamples.html#s%3Aclass-interfaces">3.7  Class interfaces</a>
</li><li><a href="objectexamples.html#s%3Ainheritance">3.8  Inheritance</a>
</li><li><a href="objectexamples.html#s%3Amultiple-inheritance">3.9  Multiple inheritance</a>
</li><li><a href="objectexamples.html#s%3Aparameterized-classes">3.10  Parameterized classes</a>
</li><li><a href="objectexamples.html#s%3Apolymorphic-methods">3.11  Polymorphic methods</a>
</li><li><a href="objectexamples.html#s%3Ausing-coercions">3.12  Using coercions</a>
</li><li><a href="objectexamples.html#s%3Afunctional-objects">3.13  Functional objects</a>
</li><li><a href="objectexamples.html#s%3Acloning-objects">3.14  Cloning objects</a>
</li><li><a href="objectexamples.html#s%3Arecursive-classes">3.15  Recursive classes</a>
</li><li><a href="objectexamples.html#s%3Abinary-methods">3.16  Binary methods</a>
</li><li><a href="objectexamples.html#s%3Afriends">3.17  Friends</a>
</li></ul>
<p>
<a id="c:objectexamples"></a>
</p><p>
<span class="c009">(Chapter written by Jérôme Vouillon, Didier Rémy and Jacques Garrigue)</span></p><p><br>
<br>
</p><p>This chapter gives an overview of the object-oriented features of
OCaml.</p><p>Note that the relationship between object, class and type in OCaml is
different than in mainstream object-oriented languages such as Java and
C++, so you shouldn’t assume that similar keywords mean the same thing.
Object-oriented features are used much less frequently in OCaml than
in those languages. OCaml has alternatives that are often more appropriate,
such as modules and functors. Indeed, many OCaml programs do not use objects
at all.</p>
<h2 class="section" id="s:classes-and-objects"><a class="section-anchor" href="#s:classes-and-objects" aria-hidden="true"></a>3.1  Classes and objects</h2>
<p>The class <span class="c003">point</span> below defines one instance variable <span class="c003">x</span> and two methods
<span class="c003">get_x</span> and <span class="c003">move</span>. The initial value of the instance variable is <span class="c003">0</span>.
The variable <span class="c003">x</span> is declared mutable, so the method <span class="c003">move</span> can change
its value.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> point =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = 0
     <span class="ocamlkeyword">method</span> get_x = x
     <span class="ocamlkeyword">method</span> move d = x &lt;- x + d
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> point :
  <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int <span class="ocamlkeyword">method</span> get_x : int <span class="ocamlkeyword">method</span> move : int -&gt; unit <span class="ocamlkeyword">end</span></div></div>

</div><p>We now create a new point <span class="c003">p</span>, instance of the <span class="c003">point</span> class.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p = <span class="ocamlkeyword">new</span> point;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> p : point = &lt;obj&gt;</div></div>

</div><p>


Note that the type of <span class="c003">p</span> is <span class="c003">point</span>. This is an abbreviation
automatically defined by the class definition above. It stands for the
object type <span class="c003">&lt;get_x : int; move : int -&gt; unit&gt;</span>, listing the methods
of class <span class="c003">point</span> along with their types.</p><p>We now invoke some methods of <span class="c003">p</span>:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> p#get_x;;</div>



<div class="pre caml-output ok">- : int = 0</div></div>
<div class="ocaml">



<div class="pre caml-input"> p#move 3;;</div>



<div class="pre caml-output ok">- : unit = ()</div></div>
<div class="ocaml">



<div class="pre caml-input"> p#get_x;;</div>



<div class="pre caml-output ok">- : int = 3</div></div>

</div><p>The evaluation of the body of a class only takes place at object
creation time. Therefore, in the following example, the instance
variable <span class="c003">x</span> is initialized to different values for two different
objects.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> x0 = <span class="ocamlkeyword">ref</span> 0;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> x0 : int <span class="ocamlkeyword">ref</span> = {contents = 0}</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> point =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = incr x0; !x0
     <span class="ocamlkeyword">method</span> get_x = x
     <span class="ocamlkeyword">method</span> move d = x &lt;- x + d
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> point :
  <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int <span class="ocamlkeyword">method</span> get_x : int <span class="ocamlkeyword">method</span> move : int -&gt; unit <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">new</span> point#get_x;;</div>



<div class="pre caml-output ok">- : int = 1</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">new</span> point#get_x;;</div>



<div class="pre caml-output ok">- : int = 2</div></div>

</div><p>The class <span class="c003">point</span> can also be abstracted over the initial values of
the <span class="c003">x</span> coordinate.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> point = <span class="ocamlkeyword">fun</span> x_init -&gt;
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = x_init
     <span class="ocamlkeyword">method</span> get_x = x
     <span class="ocamlkeyword">method</span> move d = x &lt;- x + d
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> point :
  int -&gt;
  <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int <span class="ocamlkeyword">method</span> get_x : int <span class="ocamlkeyword">method</span> move : int -&gt; unit <span class="ocamlkeyword">end</span></div></div>

</div><p>


Like in function definitions, the definition above can be
abbreviated as:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> point x_init =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = x_init
     <span class="ocamlkeyword">method</span> get_x = x
     <span class="ocamlkeyword">method</span> move d = x &lt;- x + d
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> point :
  int -&gt;
  <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int <span class="ocamlkeyword">method</span> get_x : int <span class="ocamlkeyword">method</span> move : int -&gt; unit <span class="ocamlkeyword">end</span></div></div>

</div><p>


An instance of the class <span class="c003">point</span> is now a function that expects an
initial parameter to create a point object:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">new</span> point;;</div>



<div class="pre caml-output ok">- : int -&gt; point = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p = <span class="ocamlkeyword">new</span> point 7;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> p : point = &lt;obj&gt;</div></div>

</div><p>


The parameter <span class="c003">x_init</span> is, of course, visible in the whole body of the
definition, including methods. For instance, the method <span class="c003">get_offset</span>
in the class below returns the position of the object relative to its
initial position.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> point x_init =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = x_init
     <span class="ocamlkeyword">method</span> get_x = x
     <span class="ocamlkeyword">method</span> get_offset = x - x_init
     <span class="ocamlkeyword">method</span> move d = x &lt;- x + d
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> point :
  int -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> get_offset : int
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>

</div><p>


Expressions can be evaluated and bound before defining the object body
of the class. This is useful to enforce invariants. For instance,
points can be automatically adjusted to the nearest point on a grid,
as follows:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> adjusted_point x_init =
   <span class="ocamlkeyword">let</span> origin = (x_init / 10) * 10 <span class="ocamlkeyword">in</span>
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = origin
     <span class="ocamlkeyword">method</span> get_x = x
     <span class="ocamlkeyword">method</span> get_offset = x - origin
     <span class="ocamlkeyword">method</span> move d = x &lt;- x + d
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> adjusted_point :
  int -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> get_offset : int
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>

</div><p>


(One could also raise an exception if the <span class="c003">x_init</span> coordinate is not
on the grid.) In fact, the same effect could here be obtained by
calling the definition of class <span class="c003">point</span> with the value of the
<span class="c003">origin</span>.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> adjusted_point x_init =  point ((x_init / 10) * 10);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> adjusted_point : int -&gt; point</div></div>

</div><p>


An alternate solution would have been to define the adjustment in
a special allocation function:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> new_adjusted_point x_init = <span class="ocamlkeyword">new</span> point ((x_init / 10) * 10);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> new_adjusted_point : int -&gt; point = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


However, the former pattern is generally more appropriate, since
the code for adjustment is part of the definition of the class and will be
inherited.</p><p>This ability provides class constructors as can be found in other
languages. Several constructors can be defined this way to build objects of
the same class but with different initialization patterns; an
alternative is to use initializers, as described below in
section <a href="#s%3Ainitializers">3.4</a>.</p>
<h2 class="section" id="s:immediate-objects"><a class="section-anchor" href="#s:immediate-objects" aria-hidden="true"></a>3.2  Immediate objects</h2>
<p>There is another, more direct way to create an object: create it
without going through a class.</p><p>The syntax is exactly the same as for class expressions, but the
result is a single object rather than a class. All the constructs
described in the rest of this section also apply to immediate objects.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = 0
     <span class="ocamlkeyword">method</span> get_x = x
     <span class="ocamlkeyword">method</span> move d = x &lt;- x + d
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> p : &lt; get_x : int; move : int -&gt; unit &gt; = &lt;obj&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> p#get_x;;</div>



<div class="pre caml-output ok">- : int = 0</div></div>
<div class="ocaml">



<div class="pre caml-input"> p#move 3;;</div>



<div class="pre caml-output ok">- : unit = ()</div></div>
<div class="ocaml">



<div class="pre caml-input"> p#get_x;;</div>



<div class="pre caml-output ok">- : int = 3</div></div>

</div><p>Unlike classes, which cannot be defined inside an expression,
immediate objects can appear anywhere, using variables from their
environment.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> minmax x y =
   <span class="ocamlkeyword">if</span> x &lt; y <span class="ocamlkeyword">then</span> <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> min = x <span class="ocamlkeyword">method</span> max = y <span class="ocamlkeyword">end</span>
   <span class="ocamlkeyword">else</span> <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> min = y <span class="ocamlkeyword">method</span> max = x <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> minmax : 'a -&gt; 'a -&gt; &lt; max : 'a; min : 'a &gt; = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>Immediate objects have two weaknesses compared to classes: their types
are not abbreviated, and you cannot inherit from them. But these two
weaknesses can be advantages in some situations, as we will see
in sections <a href="#s%3Areference-to-self">3.3</a> and <a href="#s%3Aparameterized-classes">3.10</a>.</p>
<h2 class="section" id="s:reference-to-self"><a class="section-anchor" href="#s:reference-to-self" aria-hidden="true"></a>3.3  Reference to self</h2>
<p>A method or an initializer can invoke methods on self (that is,
the current object). For that, self must be explicitly bound, here to
the variable <span class="c003">s</span> (<span class="c003">s</span> could be any identifier, even though we will
often choose the name <span class="c003">self</span>.)


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> printable_point x_init =
   <span class="ocamlkeyword">object</span> (s)
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = x_init
     <span class="ocamlkeyword">method</span> get_x = x
     <span class="ocamlkeyword">method</span> move d = x &lt;- x + d
     <span class="ocamlkeyword">method</span> print = print_int s#get_x
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> printable_point :
  int -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
    <span class="ocamlkeyword">method</span> print : unit
  <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p = <span class="ocamlkeyword">new</span> printable_point 7;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> p : printable_point = &lt;obj&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> p#print;;</div>



<div class="pre caml-output ok">7- : unit = ()</div></div>

</div><p>


Dynamically, the variable <span class="c003">s</span> is bound at the invocation of a method. In
particular, when the class <span class="c003">printable_point</span> is inherited, the variable
<span class="c003">s</span> will be correctly bound to the object of the subclass.</p><p>A common problem with self is that, as its type may be extended in
subclasses, you cannot fix it in advance. Here is a simple example.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> ints = <span class="ocamlkeyword">ref</span> [];;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> ints : '_weak1 list <span class="ocamlkeyword">ref</span> = {contents = []}</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> my_int =
   <span class="ocamlkeyword">object</span> (self)
     <span class="ocamlkeyword">method</span> n = 1
     <span class="ocamlkeyword">method</span> register = ints := <span class="ocamlhighlight">self</span> :: !ints
   <span class="ocamlkeyword">end</span> ;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type &lt; n : int; register : 'a; .. &gt;
       but an expression was expected of type 'weak1
       Self type cannot escape its class</div></div>

</div><p>


You can ignore the first two lines of the error message. What matters
is the last one: putting self into an external reference would make it
impossible to extend it through inheritance.
We will see in section <a href="#s%3Ausing-coercions">3.12</a> a workaround to this
problem.
Note however that, since immediate objects are not extensible, the
problem does not occur with them.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> my_int =
   <span class="ocamlkeyword">object</span> (self)
     <span class="ocamlkeyword">method</span> n = 1
     <span class="ocamlkeyword">method</span> register = ints := self :: !ints
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> my_int : &lt; n : int; register : unit &gt; = &lt;obj&gt;</div></div>

</div>
<h2 class="section" id="s:initializers"><a class="section-anchor" href="#s:initializers" aria-hidden="true"></a>3.4  Initializers</h2>
<p>Let-bindings within class definitions are evaluated before the object
is constructed. It is also possible to evaluate an expression
immediately after the object has been built. Such code is written as
an anonymous hidden method called an initializer. Therefore, it can
access self and the instance variables.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> printable_point x_init =
   <span class="ocamlkeyword">let</span> origin = (x_init / 10) * 10 <span class="ocamlkeyword">in</span>
   <span class="ocamlkeyword">object</span> (self)
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = origin
     <span class="ocamlkeyword">method</span> get_x = x
     <span class="ocamlkeyword">method</span> move d = x &lt;- x + d
     <span class="ocamlkeyword">method</span> print = print_int self#get_x
     <span class="ocamlkeyword">initializer</span> print_string <span class="ocamlstring">"new point at "</span>; self#print; print_newline ()
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> printable_point :
  int -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
    <span class="ocamlkeyword">method</span> print : unit
  <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p = <span class="ocamlkeyword">new</span> printable_point 17;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">new</span> point at 10
<span class="ocamlkeyword">val</span> p : printable_point = &lt;obj&gt;</div></div>

</div><p>


Initializers cannot be overridden. On the contrary, all initializers are
evaluated sequentially.
Initializers are particularly useful to enforce invariants.
Another example can be seen in section <a href="advexamples.html#s%3Aextended-bank-accounts">6.1</a>.</p>
<h2 class="section" id="s:virtual-methods"><a class="section-anchor" href="#s:virtual-methods" aria-hidden="true"></a>3.5  Virtual methods</h2>
<p>It is possible to declare a method without actually defining it, using
the keyword <span class="c003">virtual</span>. This method will be provided later in
subclasses. A class containing virtual methods must be flagged
<span class="c003">virtual</span>, and cannot be instantiated (that is, no object of this class
can be created). It still defines type abbreviations (treating virtual methods
as other methods.)


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> <span class="ocamlkeyword">virtual</span> abstract_point x_init =
   <span class="ocamlkeyword">object</span> (self)
     <span class="ocamlkeyword">method</span> <span class="ocamlkeyword">virtual</span> get_x : int
     <span class="ocamlkeyword">method</span> get_offset = self#get_x - x_init
     <span class="ocamlkeyword">method</span> <span class="ocamlkeyword">virtual</span> move : int -&gt; unit
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> <span class="ocamlkeyword">virtual</span> abstract_point :
  int -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">method</span> get_offset : int
    <span class="ocamlkeyword">method</span> <span class="ocamlkeyword">virtual</span> get_x : int
    <span class="ocamlkeyword">method</span> <span class="ocamlkeyword">virtual</span> move : int -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> point x_init =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">inherit</span> abstract_point x_init
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = x_init
     <span class="ocamlkeyword">method</span> get_x = x
     <span class="ocamlkeyword">method</span> move d = x &lt;- x + d
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> point :
  int -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> get_offset : int
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>

</div><p>Instance variables can also be declared as virtual, with the same effect
as with methods.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> <span class="ocamlkeyword">virtual</span> abstract_point2 =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> <span class="ocamlkeyword">virtual</span> x : int
     <span class="ocamlkeyword">method</span> move d = x &lt;- x + d
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> <span class="ocamlkeyword">virtual</span> abstract_point2 :
  <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> <span class="ocamlkeyword">virtual</span> x : int <span class="ocamlkeyword">method</span> move : int -&gt; unit <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> point2 x_init =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">inherit</span> abstract_point2
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = x_init
     <span class="ocamlkeyword">method</span> get_offset = x - x_init
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> point2 :
  int -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> get_offset : int
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>

</div>
<h2 class="section" id="s:private-methods"><a class="section-anchor" href="#s:private-methods" aria-hidden="true"></a>3.6  Private methods</h2>
<p>Private methods are methods that do not appear in object interfaces.
They can only be invoked from other methods of the same object.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> restricted_point x_init =
   <span class="ocamlkeyword">object</span> (self)
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = x_init
     <span class="ocamlkeyword">method</span> get_x = x
     <span class="ocamlkeyword">method</span> <span class="ocamlkeyword">private</span> move d = x &lt;- x + d
     <span class="ocamlkeyword">method</span> bump = self#move 1
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> restricted_point :
  int -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> bump : unit
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> <span class="ocamlkeyword">private</span> move : int -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p = <span class="ocamlkeyword">new</span> restricted_point 0;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> p : restricted_point = &lt;obj&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlhighlight">p</span>#move 10 ;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type restricted_point
       It has no method move</div></div>
<div class="ocaml">



<div class="pre caml-input"> p#bump;;</div>



<div class="pre caml-output ok">- : unit = ()</div></div>

</div><p>


Note that this is not the same thing as private and protected methods
in Java or C++, which can be called from other objects of the same
class. This is a direct consequence of the independence between types
and classes in OCaml: two unrelated classes may produce
objects of the same type, and there is no way at the type level to
ensure that an object comes from a specific class. However a possible
encoding of friend methods is given in section <a href="#s%3Afriends">3.17</a>.</p><p>Private methods are inherited (they are by default visible in subclasses),
unless they are hidden by signature matching, as described below.</p><p>Private methods can be made public in a subclass.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> point_again x =
   <span class="ocamlkeyword">object</span> (self)
     <span class="ocamlkeyword">inherit</span> restricted_point x
     <span class="ocamlkeyword">method</span> <span class="ocamlkeyword">virtual</span> move : _
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> point_again :
  int -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> bump : unit
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>

</div><p>


The annotation <span class="c003">virtual</span> here is only used to mention a method without
providing its definition. Since we didn’t add the <span class="c003">private</span>
annotation, this makes the method public, keeping the original
definition.</p><p>An alternative definition is


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> point_again x =
   <span class="ocamlkeyword">object</span> (self : &lt; move : _; ..&gt; )
     <span class="ocamlkeyword">inherit</span> restricted_point x
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> point_again :
  int -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> bump : unit
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>

</div><p>


The constraint on self’s type is requiring a public <span class="c003">move</span> method, and
this is sufficient to override <span class="c003">private</span>.</p><p>One could think that a private method should remain private in a subclass.
However, since the method is visible in a subclass, it is always possible
to pick its code and define a method of the same name that runs that
code, so yet another (heavier) solution would be:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> point_again x =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">inherit</span> restricted_point x <span class="ocamlkeyword">as</span> super
     <span class="ocamlkeyword">method</span> move = super#move
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> point_again :
  int -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> bump : unit
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>

</div><p>Of course, private methods can also be virtual. Then, the keywords must
appear in this order <span class="c003">method private virtual</span>.</p>
<h2 class="section" id="s:class-interfaces"><a class="section-anchor" href="#s:class-interfaces" aria-hidden="true"></a>3.7  Class interfaces</h2>
<p>Class interfaces are inferred from class definitions. They may also
be defined directly and used to restrict the type of a class. Like class
declarations, they also define a new type abbreviation.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> <span class="ocamlkeyword">type</span> restricted_point_type =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">method</span> get_x : int
     <span class="ocamlkeyword">method</span> bump : unit
 <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> <span class="ocamlkeyword">type</span> restricted_point_type =
  <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> bump : unit <span class="ocamlkeyword">method</span> get_x : int <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">fun</span> (x : restricted_point_type) -&gt; x;;</div>



<div class="pre caml-output ok">- : restricted_point_type -&gt; restricted_point_type = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


In addition to program documentation, class interfaces can be used to
constrain the type of a class. Both concrete instance variables and concrete
private methods can be hidden by a class type constraint. Public
methods and virtual members, however, cannot.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> restricted_point' x = (restricted_point x : restricted_point_type);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> restricted_point' : int -&gt; restricted_point_type</div></div>

</div><p>


Or, equivalently:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> restricted_point' = (restricted_point : int -&gt; restricted_point_type);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> restricted_point' : int -&gt; restricted_point_type</div></div>

</div><p>


The interface of a class can also be specified in a module
signature, and used to restrict the inferred signature of a module.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">module</span> <span class="ocamlkeyword">type</span> POINT = <span class="ocamlkeyword">sig</span>
   <span class="ocamlkeyword">class</span> restricted_point' : int -&gt;
     <span class="ocamlkeyword">object</span>
       <span class="ocamlkeyword">method</span> get_x : int
       <span class="ocamlkeyword">method</span> bump : unit
     <span class="ocamlkeyword">end</span>
 <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">module</span> <span class="ocamlkeyword">type</span> POINT =
  <span class="ocamlkeyword">sig</span>
    <span class="ocamlkeyword">class</span> restricted_point' :
      int -&gt; <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> bump : unit <span class="ocamlkeyword">method</span> get_x : int <span class="ocamlkeyword">end</span>
  <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">module</span> Point : POINT = <span class="ocamlkeyword">struct</span>
   <span class="ocamlkeyword">class</span> restricted_point' = restricted_point
 <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">module</span> Point : POINT</div></div>

</div>
<h2 class="section" id="s:inheritance"><a class="section-anchor" href="#s:inheritance" aria-hidden="true"></a>3.8  Inheritance</h2>
<p>We illustrate inheritance by defining a class of colored points that
inherits from the class of points. This class has all instance
variables and all methods of class <span class="c003">point</span>, plus a new instance
variable <span class="c003">c</span> and a new method <span class="c003">color</span>.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> colored_point x (c : string) =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">inherit</span> point x
     <span class="ocamlkeyword">val</span> c = c
     <span class="ocamlkeyword">method</span> color = c
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> colored_point :
  int -&gt;
  string -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> c : string
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> color : string
    <span class="ocamlkeyword">method</span> get_offset : int
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p' = <span class="ocamlkeyword">new</span> colored_point 5 <span class="ocamlstring">"red"</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> p' : colored_point = &lt;obj&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> p'#get_x, p'#color;;</div>



<div class="pre caml-output ok">- : int * string = (5, <span class="ocamlstring">"red"</span>)</div></div>

</div><p>


A point and a colored point have incompatible types, since a point has
no method <span class="c003">color</span>. However, the function <span class="c003">get_x</span> below is a generic
function applying method <span class="c003">get_x</span> to any object <span class="c003">p</span> that has this
method (and possibly some others, which are represented by an ellipsis
in the type). Thus, it applies to both points and colored points.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> get_succ_x p = p#get_x + 1;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> get_succ_x : &lt; get_x : int; .. &gt; -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> get_succ_x p + get_succ_x p';;</div>



<div class="pre caml-output ok">- : int = 8</div></div>

</div><p>


Methods need not be declared previously, as shown by the example:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> set_x p = p#set_x;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> set_x : &lt; set_x : 'a; .. &gt; -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> incr p = set_x p (get_succ_x p);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> incr : &lt; get_x : int; set_x : int -&gt; 'a; .. &gt; -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div>
<h2 class="section" id="s:multiple-inheritance"><a class="section-anchor" href="#s:multiple-inheritance" aria-hidden="true"></a>3.9  Multiple inheritance</h2>
<p>Multiple inheritance is allowed. Only the last definition of a method
is kept: the redefinition in a subclass of a method that was visible in
the parent class overrides the definition in the parent class.
Previous definitions of a method can be reused by binding the related
ancestor. Below, <span class="c003">super</span> is bound to the ancestor <span class="c003">printable_point</span>.
The name <span class="c003">super</span> is a pseudo value identifier that can only be used to
invoke a super-class method, as in <span class="c003">super#print</span>.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> printable_colored_point y c =
   <span class="ocamlkeyword">object</span> (self)
     <span class="ocamlkeyword">val</span> c = c
     <span class="ocamlkeyword">method</span> color = c
     <span class="ocamlkeyword">inherit</span> printable_point y <span class="ocamlkeyword">as</span> super
     <span class="ocamlkeyword">method</span>! print =
       print_string <span class="ocamlstring">"("</span>;
       super#print;
       print_string <span class="ocamlstring">", "</span>;
       print_string (self#color);
       print_string <span class="ocamlstring">")"</span>
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> printable_colored_point :
  int -&gt;
  string -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> c : string
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> color : string
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
    <span class="ocamlkeyword">method</span> print : unit
  <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p' = <span class="ocamlkeyword">new</span> printable_colored_point 17 <span class="ocamlstring">"red"</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">new</span> point at (10, red)
<span class="ocamlkeyword">val</span> p' : printable_colored_point = &lt;obj&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> p'#print;;</div>



<div class="pre caml-output ok">(10, red)- : unit = ()</div></div>

</div><p>


A private method that has been hidden in the parent class is no longer
visible, and is thus not overridden. Since initializers are treated as
private methods, all initializers along the class hierarchy are evaluated,
in the order they are introduced.</p><p>Note that for clarity’s sake, the method <span class="c003">print</span> is explicitly marked as
overriding another definition by annotating the <span class="c003">method</span> keyword with
an exclamation mark <span class="c003">!</span>. If the method <span class="c003">print</span> were not overriding the
<span class="c003">print</span> method of <span class="c003">printable_point</span>, the compiler would raise an error:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">object</span>
     <span class="ocamlhighlight">method! m = ()</span>
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: The method `m' has no previous definition</div></div>

</div><p>This explicit overriding annotation also works
for <span class="c003">val</span> and <span class="c003">inherit</span>:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> another_printable_colored_point y c c' =
   <span class="ocamlkeyword">object</span> (self)
   <span class="ocamlkeyword">inherit</span> printable_point y
   <span class="ocamlkeyword">inherit</span>! printable_colored_point y c
   <span class="ocamlkeyword">val</span>! c = c'
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> another_printable_colored_point :
  int -&gt;
  string -&gt;
  string -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> c : string
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> color : string
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
    <span class="ocamlkeyword">method</span> print : unit
  <span class="ocamlkeyword">end</span></div></div>

</div>
<h2 class="section" id="s:parameterized-classes"><a class="section-anchor" href="#s:parameterized-classes" aria-hidden="true"></a>3.10  Parameterized classes</h2>
<p>Reference cells can be implemented as objects.
The naive definition fails to typecheck:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlhighlight">class oref x_init =
   object
     val mutable x = x_init
     method get = x
     method set y = x &lt;- y
   end</span>;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: Some type variables are unbound in this type:
         class oref :
           'a -&gt;
           object
             val mutable x : 'a
             method get : 'a
             method set : 'a -&gt; unit
           end
       The method get has type 'a where 'a is unbound</div></div>

</div><p>


The reason is that at least one of the methods has a polymorphic type
(here, the type of the value stored in the reference cell), thus
either the class should be parametric, or the method type should be
constrained to a monomorphic type. A monomorphic instance of the class could
be defined by:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> oref (x_init:int) =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = x_init
     <span class="ocamlkeyword">method</span> get = x
     <span class="ocamlkeyword">method</span> set y = x &lt;- y
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> oref :
  int -&gt;
  <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int <span class="ocamlkeyword">method</span> get : int <span class="ocamlkeyword">method</span> set : int -&gt; unit <span class="ocamlkeyword">end</span></div></div>

</div><p>


Note that since immediate objects do not define a class type, they have
no such restriction.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> new_oref x_init =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = x_init
     <span class="ocamlkeyword">method</span> get = x
     <span class="ocamlkeyword">method</span> set y = x &lt;- y
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> new_oref : 'a -&gt; &lt; get : 'a; set : 'a -&gt; unit &gt; = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


On the other hand, a class for polymorphic references must explicitly
list the type parameters in its declaration. Class type parameters are
listed between <span class="c003">[</span> and <span class="c003">]</span>. The type parameters must also be
bound somewhere in the class body by a type constraint.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> ['a] oref x_init =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = (x_init : 'a)
     <span class="ocamlkeyword">method</span> get = x
     <span class="ocamlkeyword">method</span> set y = x &lt;- y
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> ['a] oref :
  'a -&gt; <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : 'a <span class="ocamlkeyword">method</span> get : 'a <span class="ocamlkeyword">method</span> set : 'a -&gt; unit <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> r = <span class="ocamlkeyword">new</span> oref 1 <span class="ocamlkeyword">in</span> r#set 2; (r#get);;</div>



<div class="pre caml-output ok">- : int = 2</div></div>

</div><p>


The type parameter in the declaration may actually be constrained in the
body of the class definition. In the class type, the actual value of
the type parameter is displayed in the <span class="c003">constraint</span> clause.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> ['a] oref_succ (x_init:'a) =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x = x_init + 1
     <span class="ocamlkeyword">method</span> get = x
     <span class="ocamlkeyword">method</span> set y = x &lt;- y
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> ['a] oref_succ :
  'a -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">constraint</span> 'a = int
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> get : int
    <span class="ocamlkeyword">method</span> set : int -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>

</div><p>


Let us consider a more complex example: define a circle, whose center
may be any kind of point. We put an additional type
constraint in method <span class="c003">move</span>, since no free variables must remain
unaccounted for by the class type parameters.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> ['a] circle (c : 'a) =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> center = c
     <span class="ocamlkeyword">method</span> center = center
     <span class="ocamlkeyword">method</span> set_center c = center &lt;- c
     <span class="ocamlkeyword">method</span> move = (center#move : int -&gt; unit)
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> ['a] circle :
  'a -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">constraint</span> 'a = &lt; move : int -&gt; unit; .. &gt;
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> center : 'a
    <span class="ocamlkeyword">method</span> center : 'a
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
    <span class="ocamlkeyword">method</span> set_center : 'a -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>

</div><p>


An alternate definition of <span class="c003">circle</span>, using a <span class="c003">constraint</span> clause in
the class definition, is shown below. The type <span class="c003">#point</span> used below in
the <span class="c003">constraint</span> clause is an abbreviation produced by the definition
of class <span class="c003">point</span>. This abbreviation unifies with the type of any
object belonging to a subclass of class <span class="c003">point</span>. It actually expands to
<span class="c003">&lt; get_x : int; move : int -&gt; unit; .. &gt;</span>. This leads to the following
alternate definition of <span class="c003">circle</span>, which has slightly stronger
constraints on its argument, as we now expect <span class="c003">center</span> to have a
method <span class="c003">get_x</span>.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> ['a] circle (c : 'a) =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">constraint</span> 'a = #point
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> center = c
     <span class="ocamlkeyword">method</span> center = center
     <span class="ocamlkeyword">method</span> set_center c = center &lt;- c
     <span class="ocamlkeyword">method</span> move = center#move
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> ['a] circle :
  'a -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">constraint</span> 'a = #point
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> center : 'a
    <span class="ocamlkeyword">method</span> center : 'a
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
    <span class="ocamlkeyword">method</span> set_center : 'a -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>

</div><p>


The class <span class="c003">colored_circle</span> is a specialized version of class
<span class="c003">circle</span> that requires the type of the center to unify with
<span class="c003">#colored_point</span>, and adds a method <span class="c003">color</span>. Note that when specializing a
parameterized class, the instance of type parameter must always be
explicitly given. It is again written between <span class="c003">[</span> and <span class="c003">]</span>.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> ['a] colored_circle c =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">constraint</span> 'a = #colored_point
     <span class="ocamlkeyword">inherit</span> ['a] circle c
     <span class="ocamlkeyword">method</span> color = center#color
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> ['a] colored_circle :
  'a -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">constraint</span> 'a = #colored_point
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> center : 'a
    <span class="ocamlkeyword">method</span> center : 'a
    <span class="ocamlkeyword">method</span> color : string
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
    <span class="ocamlkeyword">method</span> set_center : 'a -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>

</div>
<h2 class="section" id="s:polymorphic-methods"><a class="section-anchor" href="#s:polymorphic-methods" aria-hidden="true"></a>3.11  Polymorphic methods</h2>
<p>While parameterized classes may be polymorphic in their contents, they
are not enough to allow polymorphism of method use.</p><p>A classical example is defining an iterator.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> List.fold_left;;</div>



<div class="pre caml-output ok">- : ('a -&gt; 'b -&gt; 'a) -&gt; 'a -&gt; 'b list -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> ['a] intlist (l : int list) =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">method</span> empty = (l = [])
     <span class="ocamlkeyword">method</span> fold f (accu : 'a) = List.fold_left f accu l
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> ['a] intlist :
  int list -&gt;
  <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> empty : bool <span class="ocamlkeyword">method</span> fold : ('a -&gt; int -&gt; 'a) -&gt; 'a -&gt; 'a <span class="ocamlkeyword">end</span></div></div>

</div><p>


At first look, we seem to have a polymorphic iterator, however this
does not work in practice.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> l = <span class="ocamlkeyword">new</span> intlist [1; 2; 3];;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> l : '_weak2 intlist = &lt;obj&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> l#fold (<span class="ocamlkeyword">fun</span> x y -&gt; x+y) 0;;</div>



<div class="pre caml-output ok">- : int = 6</div></div>
<div class="ocaml">



<div class="pre caml-input"> l;;</div>



<div class="pre caml-output ok">- : int intlist = &lt;obj&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> l#fold (<span class="ocamlkeyword">fun</span> s x -&gt; <span class="ocamlhighlight">s</span> ^ Int.to_string x ^ <span class="ocamlstring">" "</span>) <span class="ocamlstring">""</span> ;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type int but an expression was expected of type
         string</div></div>

</div><p>


Our iterator works, as shows its first use for summation. However,
since objects themselves are not polymorphic (only their constructors
are), using the <span class="c003">fold</span> method fixes its type for this individual object.
Our next attempt to use it as a string iterator fails.</p><p>The problem here is that quantification was wrongly located: it is
not the class we want to be polymorphic, but the <span class="c003">fold</span> method.
This can be achieved by giving an explicitly polymorphic type in the
method definition.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> intlist (l : int list) =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">method</span> empty = (l = [])
     <span class="ocamlkeyword">method</span> fold : 'a. ('a -&gt; int -&gt; 'a) -&gt; 'a -&gt; 'a =
       <span class="ocamlkeyword">fun</span> f accu -&gt; List.fold_left f accu l
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> intlist :
  int list -&gt;
  <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> empty : bool <span class="ocamlkeyword">method</span> fold : ('a -&gt; int -&gt; 'a) -&gt; 'a -&gt; 'a <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> l = <span class="ocamlkeyword">new</span> intlist [1; 2; 3];;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> l : intlist = &lt;obj&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> l#fold (<span class="ocamlkeyword">fun</span> x y -&gt; x+y) 0;;</div>



<div class="pre caml-output ok">- : int = 6</div></div>
<div class="ocaml">



<div class="pre caml-input"> l#fold (<span class="ocamlkeyword">fun</span> s x -&gt; s ^ Int.to_string x ^ <span class="ocamlstring">" "</span>) <span class="ocamlstring">""</span>;;</div>



<div class="pre caml-output ok">- : string = <span class="ocamlstring">"1 2 3 "</span></div></div>

</div><p>


As you can see in the class type shown by the compiler, while
polymorphic method types must be fully explicit in class definitions
(appearing immediately after the method name), quantified type
variables can be left implicit in class descriptions. Why require types
to be explicit? The problem is that <span class="c003">(int -&gt; int -&gt; int) -&gt; int -&gt; int</span> would also be a valid type for <span class="c003">fold</span>, and it happens to be
incompatible with the polymorphic type we gave (automatic
instantiation only works for toplevel types variables, not for inner
quantifiers, where it becomes an undecidable problem.) So the compiler
cannot choose between those two types, and must be helped.</p><p>However, the type can be completely omitted in the class definition if
it is already known, through inheritance or type constraints on self.
Here is an example of method overriding.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> intlist_rev l =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">inherit</span> intlist l
     <span class="ocamlkeyword">method</span>! fold f accu = List.fold_left f accu (List.rev l)
   <span class="ocamlkeyword">end</span>;;</div></div>

</div><p>


The following idiom separates description and definition.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> <span class="ocamlkeyword">type</span> ['a] iterator =
   <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> fold : ('b -&gt; 'a -&gt; 'b) -&gt; 'b -&gt; 'b <span class="ocamlkeyword">end</span>;;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> intlist' l =
   <span class="ocamlkeyword">object</span> (self : int #iterator)
     <span class="ocamlkeyword">method</span> empty = (l = [])
     <span class="ocamlkeyword">method</span> fold f accu = List.fold_left f accu l
   <span class="ocamlkeyword">end</span>;;</div></div>

</div><p>


Note here the <span class="c003">(self : int #iterator)</span> idiom, which ensures that this
object implements the interface <span class="c003">iterator</span>.</p><p>Polymorphic methods are called in exactly the same way as normal
methods, but you should be aware of some limitations of type
inference. Namely, a polymorphic method can only be called if its
type is known at the call site. Otherwise, the method will be assumed
to be monomorphic, and given an incompatible type.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> sum lst = lst#fold (<span class="ocamlkeyword">fun</span> x y -&gt; x+y) 0;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> sum : &lt; fold : (int -&gt; int -&gt; int) -&gt; int -&gt; 'a; .. &gt; -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> sum <span class="ocamlhighlight">l</span> ;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type intlist
       but an expression was expected of type
         &lt; fold : (int -&gt; int -&gt; int) -&gt; int -&gt; 'a; .. &gt;
       Types for method fold are incompatible</div></div>

</div><p>


The workaround is easy: you should put a type constraint on the
parameter.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> sum (lst : _ #iterator) = lst#fold (<span class="ocamlkeyword">fun</span> x y -&gt; x+y) 0;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> sum : int #iterator -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


Of course the constraint may also be an explicit method type.
Only occurrences of quantified variables are required.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> sum lst =
   (lst : &lt; fold : 'a. ('a -&gt; _ -&gt; 'a) -&gt; 'a -&gt; 'a; .. &gt;)#fold (+) 0;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> sum : &lt; fold : 'a. ('a -&gt; int -&gt; 'a) -&gt; 'a -&gt; 'a; .. &gt; -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>Another use of polymorphic methods is to allow some form of implicit
subtyping in method arguments. We have already seen in
section <a href="#s%3Ainheritance">3.8</a> how some functions may be polymorphic in the
class of their argument. This can be extended to methods.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> <span class="ocamlkeyword">type</span> point0 = <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> get_x : int <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> <span class="ocamlkeyword">type</span> point0 = <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> get_x : int <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> distance_point x =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">inherit</span> point x
     <span class="ocamlkeyword">method</span> distance : 'a. (#point0 <span class="ocamlkeyword">as</span> 'a) -&gt; int =
       <span class="ocamlkeyword">fun</span> other -&gt; abs (other#get_x - x)
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> distance_point :
  int -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : int
    <span class="ocamlkeyword">method</span> distance : #point0 -&gt; int
    <span class="ocamlkeyword">method</span> get_offset : int
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p = <span class="ocamlkeyword">new</span> distance_point 3 <span class="ocamlkeyword">in</span>
 (p#distance (<span class="ocamlkeyword">new</span> point 8), p#distance (<span class="ocamlkeyword">new</span> colored_point 1 <span class="ocamlstring">"blue"</span>));;</div>



<div class="pre caml-output ok">- : int * int = (5, 2)</div></div>

</div><p>


Note here the special syntax <span class="c003">(#point0 as 'a)</span> we have to use to
quantify the extensible part of <span class="c003">#point0</span>. As for the variable binder,
it can be omitted in class specifications. If you want polymorphism
inside object field it must be quantified independently.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> multi_poly =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">method</span> m1 : 'a. (&lt; n1 : 'b. 'b -&gt; 'b; .. &gt; <span class="ocamlkeyword">as</span> 'a) -&gt; _ =
       <span class="ocamlkeyword">fun</span> o -&gt; o#n1 <span class="ocamlkeyword">true</span>, o#n1 <span class="ocamlstring">"hello"</span>
     <span class="ocamlkeyword">method</span> m2 : 'a 'b. (&lt; n2 : 'b -&gt; bool; .. &gt; <span class="ocamlkeyword">as</span> 'a) -&gt; 'b -&gt; _ =
       <span class="ocamlkeyword">fun</span> o x -&gt; o#n2 x
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> multi_poly :
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">method</span> m1 : &lt; n1 : 'b. 'b -&gt; 'b; .. &gt; -&gt; bool * string
    <span class="ocamlkeyword">method</span> m2 : &lt; n2 : 'b -&gt; bool; .. &gt; -&gt; 'b -&gt; bool
  <span class="ocamlkeyword">end</span></div></div>

</div><p>


In method <span class="c003">m1</span>, <span class="c003">o</span> must be an object with at least a method <span class="c003">n1</span>,
itself polymorphic. In method <span class="c003">m2</span>, the argument of <span class="c003">n2</span> and <span class="c003">x</span> must
have the same type, which is quantified at the same level as <span class="c003">'a</span>.</p>
<h2 class="section" id="s:using-coercions"><a class="section-anchor" href="#s:using-coercions" aria-hidden="true"></a>3.12  Using coercions</h2>
<p>Subtyping is never implicit. There are, however, two ways to perform
subtyping. The most general construction is fully explicit: both the
domain and the codomain of the type coercion must be given.</p><p>We have seen that points and colored points have incompatible types.
For instance, they cannot be mixed in the same list. However, a
colored point can be coerced to a point, hiding its <span class="c003">color</span> method:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> colored_point_to_point cp = (cp : colored_point :&gt; point);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> colored_point_to_point : colored_point -&gt; point = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p = <span class="ocamlkeyword">new</span> point 3 <span class="ocamlkeyword">and</span> q = <span class="ocamlkeyword">new</span> colored_point 4 <span class="ocamlstring">"blue"</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> p : point = &lt;obj&gt;
<span class="ocamlkeyword">val</span> q : colored_point = &lt;obj&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> l = [p; (colored_point_to_point q)];;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> l : point list = [&lt;obj&gt;; &lt;obj&gt;]</div></div>

</div><p>


An object of type <span class="c003">t</span> can be seen as an object of type <span class="c003">t'</span>
only if <span class="c003">t</span> is a subtype of <span class="c003">t'</span>. For instance, a point cannot be
seen as a colored point.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlhighlight">(p : point :&gt; colored_point)</span>;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: Type point = &lt; get_offset : int; get_x : int; move : int -&gt; unit &gt;
       is not a subtype of
         colored_point =
           &lt; color : string; get_offset : int; get_x : int;
             move : int -&gt; unit &gt;
       The first object type has no method color</div></div>

</div><p>


Indeed, narrowing coercions without runtime checks would be unsafe.
Runtime type checks might raise exceptions, and they would require
the presence of type information at runtime, which is not the case in
the OCaml system.
For these reasons, there is no such operation available in the language.</p><p>Be aware that subtyping and inheritance are not related. Inheritance is a
syntactic relation between classes while subtyping is a semantic relation
between types. For instance, the class of colored points could have been
defined directly, without inheriting from the class of points; the type of
colored points would remain unchanged and thus still be a subtype of
points.
</p><p>The domain of a coercion can often be omitted. For instance, one can
define:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> to_point cp = (cp :&gt; point);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> to_point : #point -&gt; point = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


In this case, the function <span class="c003">colored_point_to_point</span> is an instance of the
function <span class="c003">to_point</span>. This is not always true, however. The fully
explicit coercion is more precise and is sometimes unavoidable.
Consider, for example, the following class:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> c0 = <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> m = {&lt; &gt;} <span class="ocamlkeyword">method</span> n = 0 <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> c0 : <span class="ocamlkeyword">object</span> ('a) <span class="ocamlkeyword">method</span> m : 'a <span class="ocamlkeyword">method</span> n : int <span class="ocamlkeyword">end</span></div></div>

</div><p>


The object type <span class="c003">c0</span> is an abbreviation for <span class="c003">&lt;m : 'a; n : int&gt; as 'a</span>.
Consider now the type declaration:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> <span class="ocamlkeyword">type</span> c1 =  <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> m : c1 <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> <span class="ocamlkeyword">type</span> c1 = <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> m : c1 <span class="ocamlkeyword">end</span></div></div>

</div><p>


The object type <span class="c003">c1</span> is an abbreviation for the type <span class="c003">&lt;m : 'a&gt; as 'a</span>.
The coercion from an object of type <span class="c003">c0</span> to an object of type <span class="c003">c1</span> is
correct:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">fun</span> (x:c0) -&gt; (x : c0 :&gt; c1);;</div>



<div class="pre caml-output ok">- : c0 -&gt; c1 = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


However, the domain of the coercion cannot always be omitted.
In that case, the solution is to use the explicit form.
Sometimes, a change in the class-type definition can also solve the problem


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> <span class="ocamlkeyword">type</span> c2 = <span class="ocamlkeyword">object</span> ('a) <span class="ocamlkeyword">method</span> m : 'a <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> <span class="ocamlkeyword">type</span> c2 = <span class="ocamlkeyword">object</span> ('a) <span class="ocamlkeyword">method</span> m : 'a <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">fun</span> (x:c0) -&gt; (x :&gt; c2);;</div>



<div class="pre caml-output ok">- : c0 -&gt; c2 = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


While class types <span class="c003">c1</span> and <span class="c003">c2</span> are different, both object types
<span class="c003">c1</span> and <span class="c003">c2</span> expand to the same object type (same method names and types).
Yet, when the domain of a coercion is left implicit and its co-domain
is an abbreviation of a known class type, then the class type, rather
than the object type, is used to derive the coercion function. This
allows leaving the domain implicit in most cases when coercing form a
subclass to its superclass.
The type of a coercion can always be seen as below:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> to_c1 x = (x :&gt; c1);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> to_c1 : &lt; m : #c1; .. &gt; -&gt; c1 = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> to_c2 x = (x :&gt; c2);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> to_c2 : #c2 -&gt; c2 = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


Note the difference between these two coercions: in the case of <span class="c003">to_c2</span>,
the type
<span class="c003">#c2 = &lt; m : 'a; .. &gt; as 'a</span> is polymorphically recursive (according
to the explicit recursion in the class type of <span class="c003">c2</span>); hence the
success of applying this coercion to an object of class <span class="c003">c0</span>.
On the other hand, in the first case, <span class="c003">c1</span> was only expanded and
unrolled twice to obtain <span class="c003">&lt; m : &lt; m : c1; .. &gt;; .. &gt;</span> (remember <span class="c003">#c1 = &lt; m : c1; .. &gt;</span>), without introducing recursion.
You may also note that the type of <span class="c003">to_c2</span> is <span class="c003">#c2 -&gt; c2</span> while
the type of <span class="c003">to_c1</span> is more general than <span class="c003">#c1 -&gt; c1</span>. This is not always true,
since there are class types for which some instances of <span class="c003">#c</span> are not subtypes
of <span class="c003">c</span>, as explained in section <a href="#s%3Abinary-methods">3.16</a>. Yet, for
parameterless classes the coercion <span class="c003">(_ :&gt; c)</span> is always more general than
<span class="c003">(_ : #c :&gt; c)</span>.
</p><p>A common problem may occur when one tries to define a coercion to a
class <span class="c003">c</span> while defining class <span class="c003">c</span>. The problem is due to the type
abbreviation not being completely defined yet, and so its subtypes are not
clearly known. Then, a coercion <span class="c003">(_ :&gt; c)</span> or <span class="c003">(_ : #c :&gt; c)</span> is taken to be
the identity function, as in


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">function</span> x -&gt; (x :&gt; 'a);;</div>



<div class="pre caml-output ok">- : 'a -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


As a consequence, if the coercion is applied to <span class="c003">self</span>, as in the
following example, the type of <span class="c003">self</span> is unified with the closed type
<span class="c003">c</span> (a closed object type is an object type without ellipsis). This
would constrain the type of self be closed and is thus rejected.
Indeed, the type of self cannot be closed: this would prevent any
further extension of the class. Therefore, a type error is generated
when the unification of this type with another type would result in a
closed object type.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> c = <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> m = 1 <span class="ocamlkeyword">end</span>
 <span class="ocamlkeyword">and</span> d = <span class="ocamlkeyword">object</span> (self)
   <span class="ocamlkeyword">inherit</span> c
   <span class="ocamlkeyword">method</span> n = 2
   <span class="ocamlkeyword">method</span> as_c = (<span class="ocamlhighlight">self</span> :&gt; c)
 <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression cannot be coerced to type c = &lt; m : int &gt;; it has type
         &lt; as_c : c; m : int; n : int; .. &gt;
       but is here used with type c
       Self type cannot escape its class</div></div>

</div><p>


However, the most common instance of this problem, coercing self to
its current class, is detected as a special case by the type checker,
and properly typed.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> c = <span class="ocamlkeyword">object</span> (self) <span class="ocamlkeyword">method</span> m = (self :&gt; c) <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> c : <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> m : c <span class="ocamlkeyword">end</span></div></div>

</div><p>


This allows the following idiom, keeping a list of all objects
belonging to a class or its subclasses:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> all_c = <span class="ocamlkeyword">ref</span> [];;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> all_c : '_weak3 list <span class="ocamlkeyword">ref</span> = {contents = []}</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> c (m : int) =
   <span class="ocamlkeyword">object</span> (self)
     <span class="ocamlkeyword">method</span> m = m
     <span class="ocamlkeyword">initializer</span> all_c := (self :&gt; c) :: !all_c
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> c : int -&gt; <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> m : int <span class="ocamlkeyword">end</span></div></div>

</div><p>


This idiom can in turn be used to retrieve an object whose type has
been weakened:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> lookup_obj obj = <span class="ocamlkeyword">function</span> [] -&gt; raise Not_found
   | obj' :: l -&gt;
      <span class="ocamlkeyword">if</span> (obj :&gt; &lt; &gt;) = (obj' :&gt; &lt; &gt;) <span class="ocamlkeyword">then</span> obj' <span class="ocamlkeyword">else</span> lookup_obj obj l ;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> lookup_obj : &lt; .. &gt; -&gt; (&lt; .. &gt; <span class="ocamlkeyword">as</span> 'a) list -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> lookup_c obj = lookup_obj obj !all_c;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> lookup_c : &lt; .. &gt; -&gt; &lt; m : int &gt; = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


The type <span class="c003">&lt; m : int &gt;</span> we see here is just the expansion of <span class="c003">c</span>, due
to the use of a reference; we have succeeded in getting back an object
of type <span class="c003">c</span>.</p><p><br>
The previous coercion problem can often be avoided by first
defining the abbreviation, using a class type:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> <span class="ocamlkeyword">type</span> c' = <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> m : int <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> <span class="ocamlkeyword">type</span> c' = <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> m : int <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> c : c' = <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> m = 1 <span class="ocamlkeyword">end</span>
 <span class="ocamlkeyword">and</span> d = <span class="ocamlkeyword">object</span> (self)
   <span class="ocamlkeyword">inherit</span> c
   <span class="ocamlkeyword">method</span> n = 2
   <span class="ocamlkeyword">method</span> as_c = (self :&gt; c')
 <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> c : c'
<span class="ocamlkeyword">and</span> d : <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> as_c : c' <span class="ocamlkeyword">method</span> m : int <span class="ocamlkeyword">method</span> n : int <span class="ocamlkeyword">end</span></div></div>

</div><p>


It is also possible to use a virtual class. Inheriting from this class
simultaneously forces all methods of <span class="c003">c</span> to have the same
type as the methods of <span class="c003">c'</span>.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> <span class="ocamlkeyword">virtual</span> c' = <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> <span class="ocamlkeyword">virtual</span> m : int <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> <span class="ocamlkeyword">virtual</span> c' : <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> <span class="ocamlkeyword">virtual</span> m : int <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> c = <span class="ocamlkeyword">object</span> (self) <span class="ocamlkeyword">inherit</span> c' <span class="ocamlkeyword">method</span> m = 1 <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> c : <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> m : int <span class="ocamlkeyword">end</span></div></div>

</div><p>


One could think of defining the type abbreviation directly:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> c' = &lt;m : int&gt;;;</div></div>

</div><p>


However, the abbreviation <span class="c003">#c'</span> cannot be defined directly in a similar way.
It can only be defined by a class or a class-type definition.
This is because a <span class="c003">#</span>-abbreviation carries an implicit anonymous
variable <span class="c003">..</span> that cannot be explicitly named.
The closer you get to it is:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">type</span> 'a c'_class = 'a <span class="ocamlkeyword">constraint</span> 'a = &lt; m : int; .. &gt;;;</div></div>

</div><p>


with an extra type variable capturing the open object type.</p>
<h2 class="section" id="s:functional-objects"><a class="section-anchor" href="#s:functional-objects" aria-hidden="true"></a>3.13  Functional objects</h2>
<p>It is possible to write a version of class <span class="c003">point</span> without assignments
on the instance variables. The override construct <span class="c003">{&lt; ... &gt;}</span> returns a copy of
“self” (that is, the current object), possibly changing the value of
some instance variables.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> functional_point y =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> x = y
     <span class="ocamlkeyword">method</span> get_x = x
     <span class="ocamlkeyword">method</span> move d = {&lt; x = x + d &gt;}
     <span class="ocamlkeyword">method</span> move_to x = {&lt; x &gt;}
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> functional_point :
  int -&gt;
  <span class="ocamlkeyword">object</span> ('a)
    <span class="ocamlkeyword">val</span> x : int
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; 'a
    <span class="ocamlkeyword">method</span> move_to : int -&gt; 'a
  <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p = <span class="ocamlkeyword">new</span> functional_point 7;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> p : functional_point = &lt;obj&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> p#get_x;;</div>



<div class="pre caml-output ok">- : int = 7</div></div>
<div class="ocaml">



<div class="pre caml-input"> (p#move 3)#get_x;;</div>



<div class="pre caml-output ok">- : int = 10</div></div>
<div class="ocaml">



<div class="pre caml-input"> (p#move_to 15)#get_x;;</div>



<div class="pre caml-output ok">- : int = 15</div></div>
<div class="ocaml">



<div class="pre caml-input"> p#get_x;;</div>



<div class="pre caml-output ok">- : int = 7</div></div>

</div><p>


As with records, the form <span class="c003">{&lt; x &gt;}</span> is an elided version of
<span class="c003">{&lt; x = x &gt;}</span> which avoids the repetition of the instance variable name.
Note that the type abbreviation <span class="c003">functional_point</span> is recursive, which can
be seen in the class type of <span class="c003">functional_point</span>: the type of self is <span class="c003">'a</span>
and <span class="c003">'a</span> appears inside the type of the method <span class="c003">move</span>.</p><p>The above definition of <span class="c003">functional_point</span> is not equivalent
to the following:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> bad_functional_point y =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> x = y
     <span class="ocamlkeyword">method</span> get_x = x
     <span class="ocamlkeyword">method</span> move d = <span class="ocamlkeyword">new</span> bad_functional_point (x+d)
     <span class="ocamlkeyword">method</span> move_to x = <span class="ocamlkeyword">new</span> bad_functional_point x
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> bad_functional_point :
  int -&gt;
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> x : int
    <span class="ocamlkeyword">method</span> get_x : int
    <span class="ocamlkeyword">method</span> move : int -&gt; bad_functional_point
    <span class="ocamlkeyword">method</span> move_to : int -&gt; bad_functional_point
  <span class="ocamlkeyword">end</span></div></div>

</div><p>


While objects of either class will behave the same, objects of their
subclasses will be different. In a subclass of <span class="c003">bad_functional_point</span>,
the method <span class="c003">move</span> will
keep returning an object of the parent class. On the contrary, in a
subclass of <span class="c003">functional_point</span>, the method <span class="c003">move</span> will return an
object of the subclass.</p><p>Functional update is often used in conjunction with binary methods
as illustrated in section <a href="advexamples.html#ss%3Astring-as-class">6.2.1</a>.</p>
<h2 class="section" id="s:cloning-objects"><a class="section-anchor" href="#s:cloning-objects" aria-hidden="true"></a>3.14  Cloning objects</h2>
<p>Objects can also be cloned, whether they are functional or imperative.
The library function <span class="c003">Oo.copy</span> makes a shallow copy of an object. That is,
it returns a new object that has the same methods and instance
variables as its argument. The
instance variables are copied but their contents are shared.
Assigning a new value to an instance variable of the copy (using a method
call) will not affect instance variables of the original, and conversely.
A deeper assignment (for example if the instance variable is a reference cell)
will of course affect both the original and the copy.</p><p>The type of <span class="c003">Oo.copy</span> is the following:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> Oo.copy;;</div>



<div class="pre caml-output ok">- : (&lt; .. &gt; <span class="ocamlkeyword">as</span> 'a) -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


The keyword <span class="c003">as</span> in that type binds the type variable <span class="c003">'a</span> to
the object type <span class="c003">&lt; .. &gt;</span>. Therefore, <span class="c003">Oo.copy</span> takes an object with
any methods (represented by the ellipsis), and returns an object of
the same type. The type of <span class="c003">Oo.copy</span> is different from type <span class="c003">&lt; .. &gt; -&gt; &lt; .. &gt;</span> as each ellipsis represents a different set of methods.
Ellipsis actually behaves as a type variable.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p = <span class="ocamlkeyword">new</span> point 5;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> p : point = &lt;obj&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> q = Oo.copy p;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> q : point = &lt;obj&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> q#move 7; (p#get_x, q#get_x);;</div>



<div class="pre caml-output ok">- : int * int = (5, 12)</div></div>

</div><p>


In fact, <span class="c003">Oo.copy p</span> will behave as <span class="c003">p#copy</span> assuming that a public
method <span class="c003">copy</span> with body <span class="c003">{&lt; &gt;}</span> has been defined in the class of <span class="c003">p</span>.</p><p>Objects can be compared using the generic comparison functions <span class="c003">=</span> and <span class="c003">&lt;&gt;</span>.
Two objects are equal if and only if they are physically equal. In
particular, an object and its copy are not equal.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> q = Oo.copy p;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> q : point = &lt;obj&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> p = q, p = p;;</div>



<div class="pre caml-output ok">- : bool * bool = (<span class="ocamlkeyword">false</span>, <span class="ocamlkeyword">true</span>)</div></div>

</div><p>


Other generic comparisons such as (<span class="c003">&lt;</span>, <span class="c003">&lt;=</span>, ...) can also be used on
objects. The
relation <span class="c003">&lt;</span> defines an unspecified but strict ordering on objects. The
ordering relationship between two objects is fixed once for all after the
two objects have been created and it is not affected by mutation of fields.</p><p>Cloning and override have a non empty intersection.
They are interchangeable when used within an object and without
overriding any field:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> copy =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">method</span> copy = {&lt; &gt;}
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> copy : <span class="ocamlkeyword">object</span> ('a) <span class="ocamlkeyword">method</span> copy : 'a <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> copy =
   <span class="ocamlkeyword">object</span> (self)
     <span class="ocamlkeyword">method</span> copy = Oo.copy self
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> copy : <span class="ocamlkeyword">object</span> ('a) <span class="ocamlkeyword">method</span> copy : 'a <span class="ocamlkeyword">end</span></div></div>

</div><p>


Only the override can be used to actually override fields, and
only the <span class="c003">Oo.copy</span> primitive can be used externally.</p><p>Cloning can also be used to provide facilities for saving and
restoring the state of objects.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> backup =
   <span class="ocamlkeyword">object</span> (self : 'mytype)
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> copy = None
     <span class="ocamlkeyword">method</span> save = copy &lt;- Some {&lt; copy = None &gt;}
     <span class="ocamlkeyword">method</span> restore = <span class="ocamlkeyword">match</span> copy <span class="ocamlkeyword">with</span> Some x -&gt; x | None -&gt; self
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> backup :
  <span class="ocamlkeyword">object</span> ('a)
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> copy : 'a option
    <span class="ocamlkeyword">method</span> restore : 'a
    <span class="ocamlkeyword">method</span> save : unit
  <span class="ocamlkeyword">end</span></div></div>

</div><p>


The above definition will only backup one level.
The backup facility can be added to any class by using multiple inheritance.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> ['a] backup_ref x = <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">inherit</span> ['a] oref x <span class="ocamlkeyword">inherit</span> backup <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> ['a] backup_ref :
  'a -&gt;
  <span class="ocamlkeyword">object</span> ('b)
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> copy : 'b option
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : 'a
    <span class="ocamlkeyword">method</span> get : 'a
    <span class="ocamlkeyword">method</span> restore : 'b
    <span class="ocamlkeyword">method</span> save : unit
    <span class="ocamlkeyword">method</span> set : 'a -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> get p n = <span class="ocamlkeyword">if</span> n = 0 <span class="ocamlkeyword">then</span> p # get <span class="ocamlkeyword">else</span> get (p # restore) (n-1);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> get : (&lt; get : 'b; restore : 'a; .. &gt; <span class="ocamlkeyword">as</span> 'a) -&gt; int -&gt; 'b = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p = <span class="ocamlkeyword">new</span> backup_ref 0  <span class="ocamlkeyword">in</span>
 p # save; p # set 1; p # save; p # set 2;
 [get p 0; get p 1; get p 2; get p 3; get p 4];;</div>



<div class="pre caml-output ok">- : int list = [2; 1; 1; 1; 1]</div></div>

</div><p>


We can define a variant of backup that retains all copies. (We also
add a method <span class="c003">clear</span> to manually erase all copies.)


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> backup =
   <span class="ocamlkeyword">object</span> (self : 'mytype)
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> copy = None
     <span class="ocamlkeyword">method</span> save = copy &lt;- Some {&lt; &gt;}
     <span class="ocamlkeyword">method</span> restore = <span class="ocamlkeyword">match</span> copy <span class="ocamlkeyword">with</span> Some x -&gt; x | None -&gt; self
     <span class="ocamlkeyword">method</span> clear = copy &lt;- None
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> backup :
  <span class="ocamlkeyword">object</span> ('a)
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> copy : 'a option
    <span class="ocamlkeyword">method</span> clear : unit
    <span class="ocamlkeyword">method</span> restore : 'a
    <span class="ocamlkeyword">method</span> save : unit
  <span class="ocamlkeyword">end</span></div></div>

</div><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> ['a] backup_ref x = <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">inherit</span> ['a] oref x <span class="ocamlkeyword">inherit</span> backup <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> ['a] backup_ref :
  'a -&gt;
  <span class="ocamlkeyword">object</span> ('b)
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> copy : 'b option
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> x : 'a
    <span class="ocamlkeyword">method</span> clear : unit
    <span class="ocamlkeyword">method</span> get : 'a
    <span class="ocamlkeyword">method</span> restore : 'b
    <span class="ocamlkeyword">method</span> save : unit
    <span class="ocamlkeyword">method</span> set : 'a -&gt; unit
  <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> p = <span class="ocamlkeyword">new</span> backup_ref 0  <span class="ocamlkeyword">in</span>
 p # save; p # set 1; p # save; p # set 2;
 [get p 0; get p 1; get p 2; get p 3; get p 4];;</div>



<div class="pre caml-output ok">- : int list = [2; 1; 0; 0; 0]</div></div>

</div>
<h2 class="section" id="s:recursive-classes"><a class="section-anchor" href="#s:recursive-classes" aria-hidden="true"></a>3.15  Recursive classes</h2>
<p>Recursive classes can be used to define objects whose types are
mutually recursive.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> window =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> top_widget = (None : widget option)
     <span class="ocamlkeyword">method</span> top_widget = top_widget
   <span class="ocamlkeyword">end</span>
 <span class="ocamlkeyword">and</span> widget (w : window) =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">val</span> window = w
     <span class="ocamlkeyword">method</span> window = window
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> window :
  <span class="ocamlkeyword">object</span>
    <span class="ocamlkeyword">val</span> <span class="ocamlkeyword">mutable</span> top_widget : widget option
    <span class="ocamlkeyword">method</span> top_widget : widget option
  <span class="ocamlkeyword">end</span>
<span class="ocamlkeyword">and</span> widget : window -&gt; <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">val</span> window : window <span class="ocamlkeyword">method</span> window : window <span class="ocamlkeyword">end</span></div></div>

</div><p>


Although their types are mutually recursive, the classes <span class="c003">widget</span> and
<span class="c003">window</span> are themselves independent.</p>
<h2 class="section" id="s:binary-methods"><a class="section-anchor" href="#s:binary-methods" aria-hidden="true"></a>3.16  Binary methods</h2>
<p>A binary method is a method which takes an argument of the same type
as self. The class <span class="c003">comparable</span> below is a template for classes with a
binary method <span class="c003">leq</span> of type <span class="c003">'a -&gt; bool</span> where the type variable <span class="c003">'a</span>
is bound to the type of self. Therefore, <span class="c003">#comparable</span> expands to <span class="c003">&lt; leq : 'a -&gt; bool; .. &gt; as 'a</span>. We see here that the binder <span class="c003">as</span> also
allows writing recursive types.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> <span class="ocamlkeyword">virtual</span> comparable =
   <span class="ocamlkeyword">object</span> (_ : 'a)
     <span class="ocamlkeyword">method</span> <span class="ocamlkeyword">virtual</span> leq : 'a -&gt; bool
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> <span class="ocamlkeyword">virtual</span> comparable : <span class="ocamlkeyword">object</span> ('a) <span class="ocamlkeyword">method</span> <span class="ocamlkeyword">virtual</span> leq : 'a -&gt; bool <span class="ocamlkeyword">end</span></div></div>

</div><p>


We then define a subclass <span class="c003">money</span> of <span class="c003">comparable</span>. The class <span class="c003">money</span>
simply wraps floats as comparable objects. We will extend it below with
more operations. We have to use a type constraint on the class parameter <span class="c003">x</span>
because the primitive <span class="c003">&lt;=</span> is a polymorphic function in
OCaml. The <span class="c003">inherit</span> clause ensures that the type of objects
of this class is an instance of <span class="c003">#comparable</span>.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> money (x : float) =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">inherit</span> comparable
     <span class="ocamlkeyword">val</span> repr = x
     <span class="ocamlkeyword">method</span> value = repr
     <span class="ocamlkeyword">method</span> leq p = repr &lt;= p#value
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> money :
  float -&gt;
  <span class="ocamlkeyword">object</span> ('a)
    <span class="ocamlkeyword">val</span> repr : float
    <span class="ocamlkeyword">method</span> leq : 'a -&gt; bool
    <span class="ocamlkeyword">method</span> value : float
  <span class="ocamlkeyword">end</span></div></div>

</div><p>


Note that the type <span class="c003">money</span> is not a subtype of type
<span class="c003">comparable</span>, as the self type appears in contravariant position
in the type of method <span class="c003">leq</span>.
Indeed, an object <span class="c003">m</span> of class <span class="c003">money</span> has a method <span class="c003">leq</span>
that expects an argument of type <span class="c003">money</span> since it accesses
its <span class="c003">value</span> method. Considering <span class="c003">m</span> of type <span class="c003">comparable</span> would allow a
call to method <span class="c003">leq</span> on <span class="c003">m</span> with an argument that does not have a method
<span class="c003">value</span>, which would be an error.</p><p>Similarly, the type <span class="c003">money2</span> below is not a subtype of type <span class="c003">money</span>.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> money2 x =
   <span class="ocamlkeyword">object</span>
     <span class="ocamlkeyword">inherit</span> money x
     <span class="ocamlkeyword">method</span> times k = {&lt; repr = k *. repr &gt;}
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> money2 :
  float -&gt;
  <span class="ocamlkeyword">object</span> ('a)
    <span class="ocamlkeyword">val</span> repr : float
    <span class="ocamlkeyword">method</span> leq : 'a -&gt; bool
    <span class="ocamlkeyword">method</span> times : float -&gt; 'a
    <span class="ocamlkeyword">method</span> value : float
  <span class="ocamlkeyword">end</span></div></div>

</div><p>


It is however possible to define functions that manipulate objects of
type either <span class="c003">money</span> or <span class="c003">money2</span>: the function <span class="c003">min</span>
will return the minimum of any two objects whose type unifies with
<span class="c003">#comparable</span>. The type of <span class="c003">min</span> is not the same as <span class="c003">#comparable -&gt; #comparable -&gt; #comparable</span>, as the abbreviation <span class="c003">#comparable</span> hides a
type variable (an ellipsis). Each occurrence of this abbreviation
generates a new variable.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> min (x : #comparable) y =
   <span class="ocamlkeyword">if</span> x#leq y <span class="ocamlkeyword">then</span> x <span class="ocamlkeyword">else</span> y;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> min : (#comparable <span class="ocamlkeyword">as</span> 'a) -&gt; 'a -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


This function can be applied to objects of type <span class="c003">money</span>
or <span class="c003">money2</span>.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> (min (<span class="ocamlkeyword">new</span> money  1.3) (<span class="ocamlkeyword">new</span> money 3.1))#value;;</div>



<div class="pre caml-output ok">- : float = 1.3</div></div>
<div class="ocaml">



<div class="pre caml-input"> (min (<span class="ocamlkeyword">new</span> money2 5.0) (<span class="ocamlkeyword">new</span> money2 3.14))#value;;</div>



<div class="pre caml-output ok">- : float = 3.14</div></div>

</div><p>More examples of binary methods can be found in
sections <a href="advexamples.html#ss%3Astring-as-class">6.2.1</a> and <a href="advexamples.html#ss%3Aset-as-class">6.2.3</a>.</p><p>Note the use of override for method <span class="c003">times</span>.
Writing <span class="c003">new money2 (k *. repr)</span> instead of <span class="c003">{&lt; repr = k *. repr &gt;}</span>
would not behave well with inheritance: in a subclass <span class="c003">money3</span> of <span class="c003">money2</span>
the <span class="c003">times</span> method would return an object of class <span class="c003">money2</span> but not of class
<span class="c003">money3</span> as would be expected.</p><p>The class <span class="c003">money</span> could naturally carry another binary method. Here is a
direct definition:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> money x =
   <span class="ocamlkeyword">object</span> (self : 'a)
     <span class="ocamlkeyword">val</span> repr = x
     <span class="ocamlkeyword">method</span> value = repr
     <span class="ocamlkeyword">method</span> print = print_float repr
     <span class="ocamlkeyword">method</span> times k = {&lt; repr = k *. x &gt;}
     <span class="ocamlkeyword">method</span> leq (p : 'a) = repr &lt;= p#value
     <span class="ocamlkeyword">method</span> plus (p : 'a) = {&lt; repr = x +. p#value &gt;}
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> money :
  float -&gt;
  <span class="ocamlkeyword">object</span> ('a)
    <span class="ocamlkeyword">val</span> repr : float
    <span class="ocamlkeyword">method</span> leq : 'a -&gt; bool
    <span class="ocamlkeyword">method</span> plus : 'a -&gt; 'a
    <span class="ocamlkeyword">method</span> print : unit
    <span class="ocamlkeyword">method</span> times : float -&gt; 'a
    <span class="ocamlkeyword">method</span> value : float
  <span class="ocamlkeyword">end</span></div></div>

</div>
<h2 class="section" id="s:friends"><a class="section-anchor" href="#s:friends" aria-hidden="true"></a>3.17  Friends</h2>
<p>The above class <span class="c003">money</span> reveals a problem that often occurs with binary
methods. In order to interact with other objects of the same class, the
representation of <span class="c003">money</span> objects must be revealed, using a method such as
<span class="c003">value</span>. If we remove all binary methods (here <span class="c003">plus</span> and <span class="c003">leq</span>),
the representation can easily be hidden inside objects by removing the method
<span class="c003">value</span> as well. However, this is not possible as soon as some binary
method requires access to the representation of objects of the same
class (other than self).


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">class</span> safe_money x =
   <span class="ocamlkeyword">object</span> (self : 'a)
     <span class="ocamlkeyword">val</span> repr = x
     <span class="ocamlkeyword">method</span> print = print_float repr
     <span class="ocamlkeyword">method</span> times k = {&lt; repr = k *. x &gt;}
   <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">class</span> safe_money :
  float -&gt;
  <span class="ocamlkeyword">object</span> ('a)
    <span class="ocamlkeyword">val</span> repr : float
    <span class="ocamlkeyword">method</span> print : unit
    <span class="ocamlkeyword">method</span> times : float -&gt; 'a
  <span class="ocamlkeyword">end</span></div></div>

</div><p>


Here, the representation of the object is known only to a particular object.
To make it available to other objects of the same class, we are forced to
make it available to the whole world. However we can easily restrict the
visibility of the representation using the module system.


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">module</span> <span class="ocamlkeyword">type</span> MONEY =
   <span class="ocamlkeyword">sig</span>
     <span class="ocamlkeyword">type</span> t
     <span class="ocamlkeyword">class</span> c : float -&gt;
       <span class="ocamlkeyword">object</span> ('a)
         <span class="ocamlkeyword">val</span> repr : t
         <span class="ocamlkeyword">method</span> value : t
         <span class="ocamlkeyword">method</span> print : unit
         <span class="ocamlkeyword">method</span> times : float -&gt; 'a
         <span class="ocamlkeyword">method</span> leq : 'a -&gt; bool
         <span class="ocamlkeyword">method</span> plus : 'a -&gt; 'a
       <span class="ocamlkeyword">end</span>
   <span class="ocamlkeyword">end</span>;;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">module</span> Euro : MONEY =
   <span class="ocamlkeyword">struct</span>
     <span class="ocamlkeyword">type</span> t = float
     <span class="ocamlkeyword">class</span> c x =
       <span class="ocamlkeyword">object</span> (self : 'a)
         <span class="ocamlkeyword">val</span> repr = x
         <span class="ocamlkeyword">method</span> value = repr
         <span class="ocamlkeyword">method</span> print = print_float repr
         <span class="ocamlkeyword">method</span> times k = {&lt; repr = k *. x &gt;}
         <span class="ocamlkeyword">method</span> leq (p : 'a) = repr &lt;= p#value
         <span class="ocamlkeyword">method</span> plus (p : 'a) = {&lt; repr = x +. p#value &gt;}
       <span class="ocamlkeyword">end</span>
   <span class="ocamlkeyword">end</span>;;</div></div>

</div><p>


Another example of friend functions may be found in section <a href="advexamples.html#ss%3Aset-as-class">6.2.3</a>.
These examples occur when a group of objects (here
objects of the same class) and functions should see each others internal
representation, while their representation should be hidden from the
outside. The solution is always to define all friends in the same module,
give access to the representation and use a signature constraint to make the
representation abstract outside the module.</p>
<hr>
<a href="moduleexamples.html"><img src="previous_motif.svg" alt="Previous"></a>
<a href="index.html"><img src="contents_motif.svg" alt="Up"></a>
<a href="lablexamples.html"><img src="next_motif.svg" alt="Next"></a>
</body>
</html>