File: polymorphism.html

package info (click to toggle)
ocaml-doc 4.11-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 20,580 kB
  • sloc: sh: 37; makefile: 11
file content (1090 lines) | stat: -rw-r--r-- 43,148 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
<!DOCTYPE html>
<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="generator" content="hevea 2.32">

  <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
<link rel="stylesheet" type="text/css" href="manual.css">
<title>Chapter 5  Polymorphism and its limitations</title>
</head>
<body>
<a href="lablexamples.html"><img src="previous_motif.svg" alt="Previous"></a>
<a href="index.html"><img src="contents_motif.svg" alt="Up"></a>
<a href="advexamples.html"><img src="next_motif.svg" alt="Next"></a>
<hr>
<h1 class="chapter" id="sec53">Chapter 5  Polymorphism and its limitations</h1>
<ul>
<li><a href="polymorphism.html#s%3Aweak-polymorphism">5.1  Weak polymorphism and mutation</a>
</li><li><a href="polymorphism.html#s%3Apolymorphic-recursion">5.2  Polymorphic recursion</a>
</li><li><a href="polymorphism.html#s%3Ahigher-rank-poly">5.3  Higher-rank polymorphic functions</a>
</li></ul>
<p><a id="c:polymorphism"></a>
</p><p><br>
<br>
</p><p>This chapter covers more advanced questions related to the
limitations of polymorphic functions and types. There are some situations
in OCaml where the type inferred by the type checker may be less generic
than expected. Such non-genericity can stem either from interactions
between side-effect and typing or the difficulties of implicit polymorphic
recursion and higher-rank polymorphism.</p><p>This chapter details each of these situations and, if it is possible,
how to recover genericity.</p>
<h2 class="section" id="s:weak-polymorphism"><a class="section-anchor" href="#s:weak-polymorphism" aria-hidden="true"></a>5.1  Weak polymorphism and mutation</h2>
<h3 class="subsection" id="ss:weak-types"><a class="section-anchor" href="#ss:weak-types" aria-hidden="true"></a>5.1.1  Weakly polymorphic types</h3>
<p>
Maybe the most frequent examples of non-genericity derive from the
interactions between polymorphic types and mutation. A simple example
appears when typing the following expression


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> store = <span class="ocamlkeyword">ref</span> None ;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> store : '_weak1 option <span class="ocamlkeyword">ref</span> = {contents = None}</div></div>

</div><p>


Since the type of <span class="c003">None</span> is <span class="c003">'a option</span> and the function <span class="c003">ref</span> has type
<span class="c003">'b -&gt; 'b ref</span>, a natural deduction for the type of <span class="c003">store</span> would be
<span class="c003">'a option ref</span>. However, the inferred type, <span class="c003">'_weak1 option ref</span>, is
different. Type variables whose name starts with a <span class="c003">_weak</span> prefix like
<span class="c003">'_weak1</span> are weakly polymorphic type variables, sometimes shortened as
weak type variables.
A weak type variable is a placeholder for a single type that is currently
unknown. Once the specific type <span class="c003">t</span> behind the placeholder type <span class="c003">'_weak1</span>
is known, all occurrences of <span class="c003">'_weak1</span> will be replaced by <span class="c003">t</span>. For instance,
we can define another option reference and store an <span class="c003">int</span> inside:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> another_store = <span class="ocamlkeyword">ref</span> None ;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> another_store : '_weak2 option <span class="ocamlkeyword">ref</span> = {contents = None}</div></div>
<div class="ocaml">



<div class="pre caml-input"> another_store := Some 0;
 another_store ;;</div>



<div class="pre caml-output ok">- : int option <span class="ocamlkeyword">ref</span> = {contents = Some 0}</div></div>

</div><p>


After storing an <span class="c003">int</span> inside <span class="c003">another_store</span>, the type of <span class="c003">another_store</span> has
been updated from <span class="c003">'_weak2 option ref</span> to <span class="c003">int option ref</span>.
This distinction between weakly and generic polymorphic type variable protects
OCaml programs from unsoundness and runtime errors. To understand from where
unsoundness might come, consider this simple function which swaps a value <span class="c003">x</span>
with the value stored inside a <span class="c003">store</span> reference, if there is such value:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> swap store x = <span class="ocamlkeyword">match</span> !store <span class="ocamlkeyword">with</span>
   | None -&gt; store := Some x; x
   | Some y -&gt; store := Some x; y;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> swap : 'a option <span class="ocamlkeyword">ref</span> -&gt; 'a -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


We can apply this function to our store


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> one = swap store 1
 <span class="ocamlkeyword">let</span> one_again = swap store 2
 <span class="ocamlkeyword">let</span> two = swap store 3;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> one : int = 1
<span class="ocamlkeyword">val</span> one_again : int = 1
<span class="ocamlkeyword">val</span> two : int = 2</div></div>

</div><p>


After these three swaps the stored value is <span class="c003">3</span>. Everything is fine up to
now. We can then try to swap <span class="c003">3</span> with a more interesting value, for
instance a function:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> error = swap store <span class="ocamlhighlight">(fun x -&gt; x)</span>;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression should not be a function, the expected type is int</div></div>

</div><p>


At this point, the type checker rightfully complains that it is not
possible to swap an integer and a function, and that an <span class="c003">int</span> should always
be traded for another <span class="c003">int</span>. Furthermore, the type checker prevents us to
change manually the type of the value stored by <span class="c003">store</span>:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> store := Some <span class="ocamlhighlight">(fun x -&gt; x)</span>;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression should not be a function, the expected type is int</div></div>

</div><p>


Indeed, looking at the type of store, we see that the weak type <span class="c003">'_weak1</span> has
been replaced by the type <span class="c003">int</span>


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> store;;</div>



<div class="pre caml-output ok">- : int option <span class="ocamlkeyword">ref</span> = {contents = Some 3}</div></div>

</div><p>


Therefore, after placing an <span class="c003">int</span> in <span class="c003">store</span>, we cannot use it to store any
value other than an <span class="c003">int</span>. More generally, weak types protect the program from
undue mutation of values with a polymorphic type.</p><p>Moreover, weak types cannot appear in the signature of toplevel modules:
types must be known at compilation time. Otherwise, different compilation
units could replace the weak type with different and incompatible types.
For this reason, compiling the following small piece of code
</p><pre>let option_ref = ref None
</pre><p>yields a compilation error
</p><pre>Error: The type of this expression, '_weak1 option ref,
       contains type variables that cannot be generalized
</pre><p>To solve this error, it is enough to add an explicit type annotation to
specify the type at declaration time:
</p><pre>let option_ref: int option ref = ref None
</pre><p>This is in any case a good practice for such global mutable variables.
Otherwise, they will pick out the type of first use. If there is a mistake
at this point, this can result in confusing type errors when later, correct
uses are flagged as errors.</p>
<h3 class="subsection" id="ss:valuerestriction"><a class="section-anchor" href="#ss:valuerestriction" aria-hidden="true"></a>5.1.2  The value restriction</h3>
<p>Identifying the exact context in which polymorphic types should be
replaced by weak types in a modular way is a difficult question. Indeed
the type system must handle the possibility that functions may hide persistent
mutable states. For instance, the following function uses an internal reference
to implement a delayed identity function


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> make_fake_id () =
   <span class="ocamlkeyword">let</span> store = <span class="ocamlkeyword">ref</span> None <span class="ocamlkeyword">in</span>
   <span class="ocamlkeyword">fun</span> x -&gt; swap store x ;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> make_fake_id : unit -&gt; 'a -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> fake_id = make_fake_id();;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> fake_id : '_weak3 -&gt; '_weak3 = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


It would be unsound to apply this <span class="c003">fake_id</span> function to values with different
types. The function <span class="c003">fake_id</span> is therefore rightfully assigned the type
<span class="c003">'_weak3 -&gt; '_weak3</span> rather than <span class="c003">'a -&gt; 'a</span>. At the same time, it ought to
be possible to use a local mutable state without impacting the type of a
function.
</p><p>To circumvent these dual difficulties, the type checker considers that any value
returned by a function might rely on persistent mutable states behind the scene
and should be given a weak type. This restriction on the type of mutable
values and the results of function application is called the value restriction.
Note that this value restriction is conservative: there are situations where the
value restriction is too cautious and gives a weak type to a value that could be
safely generalized to a polymorphic type:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> not_id = (<span class="ocamlkeyword">fun</span> x -&gt; x) (<span class="ocamlkeyword">fun</span> x -&gt; x);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> not_id : '_weak4 -&gt; '_weak4 = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


Quite often, this happens when defining function using higher order function.
To avoid this problem, a solution is to add an explicit argument to the
function:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> id_again = <span class="ocamlkeyword">fun</span> x -&gt; (<span class="ocamlkeyword">fun</span> x -&gt; x) (<span class="ocamlkeyword">fun</span> x -&gt; x) x;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> id_again : 'a -&gt; 'a = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


With this argument, <span class="c003">id_again</span> is seen as a function definition by the type
checker and can therefore be generalized. This kind of manipulation is called
eta-expansion in lambda calculus and is sometimes referred under this name.</p>
<h3 class="subsection" id="ss:relaxed-value-restriction"><a class="section-anchor" href="#ss:relaxed-value-restriction" aria-hidden="true"></a>5.1.3  The relaxed value restriction</h3>
<p>There is another partial solution to the problem of unnecessary weak type,
which is implemented directly within the type checker. Briefly, it is possible
to prove that weak types that only appear as type parameters in covariant
positions –also called positive positions– can be safely generalized to
polymorphic types. For instance, the type <span class="c003">'a list</span> is covariant in <span class="c003">'a</span>:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> f () = [];;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> f : unit -&gt; 'a list = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> empty = f ();;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> empty : 'a list = []</div></div>

</div><p>


Remark that the type inferred for <span class="c003">empty</span> is <span class="c003">'a list</span> and not <span class="c003">'_weak5 list</span>
that should have occurred with the value restriction since <span class="c003">f ()</span> is a
function application.</p><p>The value restriction combined with this generalization for covariant type
parameters is called the relaxed value restriction.</p>
<h3 class="subsection" id="ss:variance-and-value-restriction"><a class="section-anchor" href="#ss:variance-and-value-restriction" aria-hidden="true"></a>5.1.4  Variance and value restriction</h3>
<p>
Variance describes how type constructors behave with respect to subtyping.
Consider for instance a pair of type <span class="c003">x</span> and <span class="c003">xy</span> with <span class="c003">x</span> a subtype of <span class="c003">xy</span>,
denoted <span class="c003">x :&gt; xy</span>:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">type</span> x = [ `X ];;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> x = [ `X ]</div></div>
<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">type</span> xy = [ `X | `Y ];;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> xy = [ `X | `Y ]</div></div>

</div><p>


As <span class="c003">x</span> is a subtype of <span class="c003">xy</span>, we can convert a value of type <span class="c003">x</span>
to a value of type <span class="c003">xy</span>:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> x:x = `X;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> x : x = `X</div></div>
<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> x' = ( x :&gt; xy);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> x' : xy = `X</div></div>

</div><p>


Similarly, if we have a value of type <span class="c003">x list</span>, we can convert it to a value
of type <span class="c003">xy list</span>, since we could convert each element one by one:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> l:x list = [`X; `X];;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> l : x list = [`X; `X]</div></div>
<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> l' = ( l :&gt; xy list);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> l' : xy list = [`X; `X]</div></div>

</div><p>


In other words, <span class="c003">x :&gt; xy</span> implies that <span class="c003">x list :&gt; xy list</span>, therefore
the type constructor <span class="c003">'a list</span> is covariant (it preserves subtyping)
in its parameter <span class="c003">'a</span>.</p><p>Contrarily, if we have a function that can handle values of type <span class="c003">xy</span>


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> f: xy -&gt; unit = <span class="ocamlkeyword">function</span>
   | `X -&gt; ()
   | `Y -&gt; ();;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> f : xy -&gt; unit = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


it can also handle values of type <span class="c003">x</span>:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> f' = (f :&gt; x -&gt; unit);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> f' : x -&gt; unit = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


Note that we can rewrite the type of <span class="c003">f</span> and <span class="c003">f'</span> as


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">type</span> 'a proc = 'a -&gt; unit
   <span class="ocamlkeyword">let</span> f' = (f: xy proc :&gt; x proc);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> 'a proc = 'a -&gt; unit
<span class="ocamlkeyword">val</span> f' : x proc = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


In this case, we have <span class="c003">x :&gt; xy</span> implies <span class="c003">xy proc :&gt; x proc</span>. Notice
that the second subtyping relation reverse the order of <span class="c003">x</span> and <span class="c003">xy</span>:
the type constructor <span class="c003">'a proc</span> is contravariant in its parameter <span class="c003">'a</span>.
More generally, the function type constructor <span class="c003">'a -&gt; 'b</span> is covariant in
its return type <span class="c003">'b</span> and contravariant in its argument type <span class="c003">'a</span>.</p><p>A type constructor can also be invariant in some of its type parameters,
neither covariant nor contravariant. A typical example is a reference:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> x: x <span class="ocamlkeyword">ref</span> = <span class="ocamlkeyword">ref</span> `X;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> x : x <span class="ocamlkeyword">ref</span> = {contents = `X}</div></div>

</div><p>


If we were able to coerce <span class="c003">x</span> to the type <span class="c003">xy ref</span> as a variable <span class="c003">xy</span>,
we could use <span class="c003">xy</span> to store the value <span class="c003">`Y</span> inside the reference and then use
the <span class="c003">x</span> value to read this content as a value of type <span class="c003">x</span>,
which would break the type system.</p><p>More generally, as soon as a type variable appears in a position describing
mutable state it becomes invariant. As a corollary, covariant variables will
never denote mutable locations and can be safely generalized.
For a better description, interested readers can consult the original
article by Jacques Garrigue on
<a href="http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf"><span class="c003">http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf</span></a></p><p>Together, the relaxed value restriction and type parameter covariance
help to avoid eta-expansion in many situations.</p>
<h3 class="subsection" id="ss:variance:abstract-data-types"><a class="section-anchor" href="#ss:variance:abstract-data-types" aria-hidden="true"></a>5.1.5  Abstract data types</h3>
<p>
Moreover, when the type definitions are exposed, the type checker
is able to infer variance information on its own and one can benefit from
the relaxed value restriction even unknowingly. However, this is not the case
anymore when defining new abstract types. As an illustration, we can define a
module type collection as:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">module</span> <span class="ocamlkeyword">type</span> COLLECTION = <span class="ocamlkeyword">sig</span>
   <span class="ocamlkeyword">type</span> 'a t
   <span class="ocamlkeyword">val</span> empty: unit -&gt; 'a t
 <span class="ocamlkeyword">end</span>

 <span class="ocamlkeyword">module</span> Implementation = <span class="ocamlkeyword">struct</span>
   <span class="ocamlkeyword">type</span> 'a t = 'a list
   <span class="ocamlkeyword">let</span> empty ()= []
 <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">module</span> <span class="ocamlkeyword">type</span> COLLECTION = <span class="ocamlkeyword">sig</span> <span class="ocamlkeyword">type</span> 'a t <span class="ocamlkeyword">val</span> empty : unit -&gt; 'a t <span class="ocamlkeyword">end</span>
<span class="ocamlkeyword">module</span> Implementation :
  <span class="ocamlkeyword">sig</span> <span class="ocamlkeyword">type</span> 'a t = 'a list <span class="ocamlkeyword">val</span> empty : unit -&gt; 'a list <span class="ocamlkeyword">end</span></div></div>
<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">module</span> List2: COLLECTION = Implementation;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">module</span> List2 : COLLECTION</div></div>

</div><p>In this situation, when coercing the module <span class="c003">List2</span> to the module type
<span class="c003">COLLECTION</span>, the type checker forgets that <span class="c003">'a List2.t</span> was covariant
in <span class="c003">'a</span>. Consequently, the relaxed value restriction does not apply anymore:</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   List2.empty ();;</div>



<div class="pre caml-output ok">- : '_weak5 List2.t = &lt;abstr&gt;</div></div>

</div><p>To keep the relaxed value restriction, we need to declare the abstract type
<span class="c003">'a COLLECTION.t</span> as covariant in <span class="c003">'a</span>:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">module</span> <span class="ocamlkeyword">type</span> COLLECTION = <span class="ocamlkeyword">sig</span>
   <span class="ocamlkeyword">type</span> +'a t
   <span class="ocamlkeyword">val</span> empty: unit -&gt; 'a t
 <span class="ocamlkeyword">end</span>

 <span class="ocamlkeyword">module</span> List2: COLLECTION = Implementation;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">module</span> <span class="ocamlkeyword">type</span> COLLECTION = <span class="ocamlkeyword">sig</span> <span class="ocamlkeyword">type</span> +'a t <span class="ocamlkeyword">val</span> empty : unit -&gt; 'a t <span class="ocamlkeyword">end</span>
<span class="ocamlkeyword">module</span> List2 : COLLECTION</div></div>

</div><p>We then recover polymorphism:</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   List2.empty ();;</div>



<div class="pre caml-output ok">- : 'a List2.t = &lt;abstr&gt;</div></div>

</div>
<h2 class="section" id="s:polymorphic-recursion"><a class="section-anchor" href="#s:polymorphic-recursion" aria-hidden="true"></a>5.2  Polymorphic recursion</h2>
<p>The second major class of non-genericity is directly related to the problem
of type inference for polymorphic functions. In some circumstances, the type
inferred by OCaml might be not general enough to allow the definition of
some recursive functions, in particular for recursive function acting on
non-regular algebraic data type.</p><p>With a regular polymorphic algebraic data type, the type parameters of
the type constructor are constant within the definition of the type. For
instance, we can look at arbitrarily nested list defined as:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">type</span> 'a regular_nested = List <span class="ocamlkeyword">of</span> 'a list | Nested <span class="ocamlkeyword">of</span> 'a regular_nested list
   <span class="ocamlkeyword">let</span> l = Nested[ List [1]; Nested [List[2;3]]; Nested[Nested[]] ];;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> 'a regular_nested = List <span class="ocamlkeyword">of</span> 'a list | Nested <span class="ocamlkeyword">of</span> 'a regular_nested list
<span class="ocamlkeyword">val</span> l : int regular_nested =
  Nested [List [1]; Nested [List [2; 3]]; Nested [Nested []]]</div></div>

</div><p>


Note that the type constructor <span class="c003">regular_nested</span> always appears as
<span class="c003">'a regular_nested</span> in the definition above, with the same parameter
<span class="c003">'a</span>. Equipped with this type, one can compute a maximal depth with
a classic recursive function


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> maximal_depth = <span class="ocamlkeyword">function</span>
   | List _ -&gt; 1
   | Nested [] -&gt; 0
   | Nested (a::q) -&gt; 1 + max (maximal_depth a) (maximal_depth (Nested q));;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> maximal_depth : 'a regular_nested -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>Non-regular recursive algebraic data types correspond to polymorphic algebraic
data types whose parameter types vary between the left and right side of
the type definition. For instance, it might be interesting to define a datatype
that ensures that all lists are nested at the same depth:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">type</span> 'a nested = List <span class="ocamlkeyword">of</span> 'a list | Nested <span class="ocamlkeyword">of</span> 'a list nested;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> 'a nested = List <span class="ocamlkeyword">of</span> 'a list | Nested <span class="ocamlkeyword">of</span> 'a list nested</div></div>

</div><p>


Intuitively, a value of type <span class="c003">'a nested</span> is a list of list …of list of
elements <span class="c003">a</span> with <span class="c003">k</span> nested list. We can then adapt the <span class="c003">maximal_depth</span>
function defined on <span class="c003">regular_depth</span> into a <span class="c003">depth</span> function that computes this
<span class="c003">k</span>. As a first try, we may define


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> depth = <span class="ocamlkeyword">function</span>
   | List _ -&gt; 1
   | Nested n -&gt; 1 + depth <span class="ocamlhighlight">n</span>;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type 'a list nested
       but an expression was expected of type 'a nested
       The type variable 'a occurs inside 'a list</div></div>

</div><p>


The type error here comes from the fact that during the definition of <span class="c003">depth</span>,
the type checker first assigns to <span class="c003">depth</span> the type <span class="c003">'a -&gt; 'b </span>.
When typing the pattern matching, <span class="c003">'a -&gt; 'b</span> becomes <span class="c003">'a nested -&gt; 'b</span>, then
<span class="c003">'a nested -&gt; int</span> once the <span class="c003">List</span> branch is typed.
However, when typing the application <span class="c003">depth n</span> in the <span class="c003">Nested</span> branch,
the type checker encounters a problem: <span class="c003">depth n</span> is applied to
<span class="c003">'a list nested</span>, it must therefore have the type
<span class="c003">'a list nested -&gt; 'b</span>. Unifying this constraint with the previous one
leads to the impossible constraint <span class="c003">'a list nested = 'a nested</span>.
In other words, within its definition, the recursive function <span class="c003">depth</span> is
applied to values of type <span class="c003">'a t</span> with different types <span class="c003">'a</span> due to the
non-regularity of the type constructor <span class="c003">nested</span>. This creates a problem because
the type checker had introduced a new type variable <span class="c003">'a</span> only at the
<em>definition</em> of the function <span class="c003">depth</span> whereas, here, we need a
different type variable for every <em>application</em> of the function <span class="c003">depth</span>.</p>
<h3 class="subsection" id="ss:explicit-polymorphism"><a class="section-anchor" href="#ss:explicit-polymorphism" aria-hidden="true"></a>5.2.1  Explicitly polymorphic annotations</h3>
<p>
The solution of this conundrum is to use an explicitly polymorphic type
annotation for the type <span class="c003">'a</span>:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> depth: 'a. 'a nested -&gt; int = <span class="ocamlkeyword">function</span>
   | List _ -&gt; 1
   | Nested n -&gt; 1 + depth n;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> depth : 'a nested -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> depth ( Nested(List [ [7]; [8] ]) );;</div>



<div class="pre caml-output ok">- : int = 2</div></div>

</div><p>


In the type of <span class="c003">depth</span>, <span class="c003">'a.'a nested -&gt; int</span>, the type variable <span class="c003">'a</span>
is universally quantified. In other words, <span class="c003">'a.'a nested -&gt; int</span> reads as
“for all type <span class="c003">'a</span>, <span class="c003">depth</span> maps <span class="c003">'a nested</span> values to integers”.
Whereas the standard type <span class="c003">'a nested -&gt; int</span> can be interpreted
as “let be a type variable <span class="c003">'a</span>, then <span class="c003">depth</span> maps <span class="c003">'a nested</span> values
to integers”. There are two major differences with these two type
expressions. First, the explicit polymorphic annotation indicates to the
type checker that it needs to introduce a new type variable every times
the function <span class="c003">depth</span> is applied. This solves our problem with the definition
of the function <span class="c003">depth</span>.</p><p>Second, it also notifies the type checker that the type of the function should
be polymorphic. Indeed, without explicit polymorphic type annotation, the
following type annotation is perfectly valid


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> sum: 'a -&gt; 'b -&gt; 'c = <span class="ocamlkeyword">fun</span> x y -&gt; x + y;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> sum : int -&gt; int -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


since <span class="c003">'a</span>,<span class="c003">'b</span> and <span class="c003">'c</span> denote type variables that may or may not be
polymorphic. Whereas, it is an error to unify an explicitly polymorphic type
with a non-polymorphic type:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> sum: 'a 'b 'c. 'a -&gt; 'b -&gt; 'c = <span class="ocamlhighlight">fun x y -&gt; x + y</span>;;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This definition has type int -&gt; int -&gt; int which is less general than
         'a 'b 'c. 'a -&gt; 'b -&gt; 'c</div></div>

</div><p>An important remark here is that it is not needed to explicit fully
the type of <span class="c003">depth</span>: it is sufficient to add annotations only for the
universally quantified type variables:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> depth: 'a. 'a nested -&gt; _ = <span class="ocamlkeyword">function</span>
   | List _ -&gt; 1
   | Nested n -&gt; 1 + depth n;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> depth : 'a nested -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> depth ( Nested(List [ [7]; [8] ]) );;</div>



<div class="pre caml-output ok">- : int = 2</div></div>

</div>
<h3 class="subsection" id="ss:recursive-poly-examples"><a class="section-anchor" href="#ss:recursive-poly-examples" aria-hidden="true"></a>5.2.2  More examples</h3>
<p>
With explicit polymorphic annotations, it becomes possible to implement
any recursive function that depends only on the structure of the nested
lists and not on the type of the elements. For instance, a more complex
example would be to compute the total number of elements of the nested
lists:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> len nested =
     <span class="ocamlkeyword">let</span> map_and_sum f = List.fold_left (<span class="ocamlkeyword">fun</span> acc x -&gt; acc + f x) 0 <span class="ocamlkeyword">in</span>
     <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> len: 'a. ('a list -&gt; int ) -&gt; 'a nested -&gt; int =
     <span class="ocamlkeyword">fun</span> nested_len n -&gt;
       <span class="ocamlkeyword">match</span> n <span class="ocamlkeyword">with</span>
       | List l -&gt; nested_len l
       | Nested n -&gt; len (map_and_sum nested_len) n
     <span class="ocamlkeyword">in</span>
   len List.length nested;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> len : 'a nested -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> len (Nested(Nested(List [ [ [1;2]; [3] ]; [ []; [4]; [5;6;7]]; [[]] ])));;</div>



<div class="pre caml-output ok">- : int = 7</div></div>

</div><p>Similarly, it may be necessary to use more than one explicitly
polymorphic type variables, like for computing the nested list of
list lengths of the nested list:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input"> <span class="ocamlkeyword">let</span> shape n =
   <span class="ocamlkeyword">let</span> <span class="ocamlkeyword">rec</span> shape: 'a 'b. ('a nested -&gt; int nested) -&gt;
     ('b list list -&gt; 'a list) -&gt; 'b nested -&gt; int nested
     = <span class="ocamlkeyword">fun</span> nest nested_shape -&gt;
       <span class="ocamlkeyword">function</span>
       | List l -&gt; raise
        (Invalid_argument <span class="ocamlstring">"shape requires nested_list of depth greater than 1"</span>)
       | Nested (List l) -&gt; nest @@ List (nested_shape l)
       | Nested n -&gt;
         <span class="ocamlkeyword">let</span> nested_shape = List.map nested_shape <span class="ocamlkeyword">in</span>
         <span class="ocamlkeyword">let</span> nest x = nest (Nested x) <span class="ocamlkeyword">in</span>
         shape nest nested_shape n <span class="ocamlkeyword">in</span>
   shape (<span class="ocamlkeyword">fun</span> n -&gt; n ) (<span class="ocamlkeyword">fun</span> l -&gt; List.map List.length l ) n;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> shape : 'a nested -&gt; int nested = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input"> shape (Nested(Nested(List [ [ [1;2]; [3] ]; [ []; [4]; [5;6;7]]; [[]] ])));;</div>



<div class="pre caml-output ok">- : int nested = Nested (List [[2; 1]; [0; 1; 3]; [0]])</div></div>

</div>
<h2 class="section" id="s:higher-rank-poly"><a class="section-anchor" href="#s:higher-rank-poly" aria-hidden="true"></a>5.3  Higher-rank polymorphic functions</h2>
<p>Explicit polymorphic annotations are however not sufficient to cover all
the cases where the inferred type of a function is less general than
expected. A similar problem arises when using polymorphic functions as arguments
of higher-order functions. For instance, we may want to compute the average
depth or length of two nested lists:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> average_depth x y = (depth x + depth y) / 2;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> average_depth : 'a nested -&gt; 'b nested -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> average_len x y = (len x + len y) / 2;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> average_len : 'a nested -&gt; 'b nested -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>
<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> one = average_len (List [2]) (List [[]]);;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> one : int = 1</div></div>

</div><p>


It would be natural to factorize these two definitions as:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">     <span class="ocamlkeyword">let</span> average f x y = (f x + f y) / 2;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> average : ('a -&gt; int) -&gt; 'a -&gt; 'a -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


However, the type of <span class="c003">average len</span> is less generic than the type of
<span class="c003">average_len</span>, since it requires the type of the first and second argument to
be the same:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   average_len (List [2]) (List [[]]);;</div>



<div class="pre caml-output ok">- : int = 1</div></div>
<div class="ocaml">



<div class="pre caml-input">   average len (List [2]) (List [<span class="ocamlhighlight">[]</span>]);;</div>



<div class="pre caml-output error"><span class="ocamlerror">Error</span>: This expression has type 'a list
       but an expression was expected of type int</div></div>

</div><p>As previously with polymorphic recursion, the problem stems from the fact that
type variables are introduced only at the start of the <span class="c003">let</span> definitions. When
we compute both <span class="c003">f x</span> and <span class="c003">f y</span>, the type of <span class="c003">x</span> and <span class="c003">y</span> are unified together.
To avoid this unification, we need to indicate to the type checker
that f is polymorphic in its first argument. In some sense, we would want
<span class="c003">average</span> to have type
</p><pre>val average: ('a. 'a nested -&gt; int) -&gt; 'a nested -&gt; 'b nested -&gt; int
</pre><p>Note that this syntax is not valid within OCaml: <span class="c003">average</span> has an universally
quantified type <span class="c003">'a</span> inside the type of one of its argument whereas for
polymorphic recursion the universally quantified type was introduced before
the rest of the type. This position of the universally quantified type means
that <span class="c003">average</span> is a second-rank polymorphic function. This kind of higher-rank
functions is not directly supported by OCaml: type inference for second-rank
polymorphic function and beyond is undecidable; therefore using this kind of
higher-rank functions requires to handle manually these universally quantified
types.</p><p>In OCaml, there are two ways to introduce this kind of explicit universally
quantified types: universally quantified record fields,


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">type</span> 'a nested_reduction = { f:'elt. 'elt nested -&gt; 'a };;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">type</span> 'a nested_reduction = { f : 'elt. 'elt nested -&gt; 'a; }</div></div>
<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> boxed_len = { f = len };;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> boxed_len : int nested_reduction = {f = &lt;<span class="ocamlkeyword">fun</span>&gt;}</div></div>

</div><p>


and universally quantified object methods:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> obj_len = <span class="ocamlkeyword">object</span> <span class="ocamlkeyword">method</span> f:'a. 'a nested -&gt; 'b = len <span class="ocamlkeyword">end</span>;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> obj_len : &lt; f : 'a. 'a nested -&gt; int &gt; = &lt;obj&gt;</div></div>

</div><p>


To solve our problem, we can therefore use either the record solution:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> average nsm x y = (nsm.f x + nsm.f y) / 2 ;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> average : int nested_reduction -&gt; 'a nested -&gt; 'b nested -&gt; int = &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div><p>


or the object one:


</p><div class="caml-example toplevel">

<div class="ocaml">



<div class="pre caml-input">   <span class="ocamlkeyword">let</span> average (obj:&lt;f:'a. 'a nested -&gt; _ &gt; ) x y = (obj#f x + obj#f y) / 2 ;;</div>



<div class="pre caml-output ok"><span class="ocamlkeyword">val</span> average : &lt; f : 'a. 'a nested -&gt; int &gt; -&gt; 'b nested -&gt; 'c nested -&gt; int =
  &lt;<span class="ocamlkeyword">fun</span>&gt;</div></div>

</div>
<hr>
<a href="lablexamples.html"><img src="previous_motif.svg" alt="Previous"></a>
<a href="index.html"><img src="contents_motif.svg" alt="Up"></a>
<a href="advexamples.html"><img src="next_motif.svg" alt="Next"></a>
</body>
</html>