File: fiber.ml

package info (click to toggle)
ocaml-dune 2.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 14,064 kB
  • sloc: ml: 70,777; lisp: 466; ansic: 241; sh: 209; makefile: 119; python: 38; cpp: 17; javascript: 6
file content (599 lines) | stat: -rw-r--r-- 14,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
open! Stdune

type 'a t = ('a -> unit) -> unit

(* This module tries to enforce the following invariants:

   - the execution context passed to a continuation is the same as the current
   one

   - the execution of a fiber always ends with [deref]

   - when an exception is raised by the user code, the exception must be
   forwarded to the execution context that was active at the time the exception
   was raised

   - when an exception is raised by the user code, then we assume that the
   current fiber didn't reach the [deref] point. As a result we have to call
   [deref] at this point on the current execution context

   Remarks:

   - most of the code assumes that errors will be caught by the caller, so when
   we do a context switch, we simply change the current execution context and
   chain to the continuation without catching errors. The current [try..with]
   will catch any raised error and forward to the current execution context. The
   only place we add a [try..with] is at the toplevel or when forking. *)

let of_thunk f k = f () k

module Execution_context : sig
  module K : sig
    (* Represent a suspended fiber *)
    type 'a t

    (* Create a continuation that captures the current execution context *)
    val create : ('a -> unit) -> 'a t

    (* Restart a suspended fiber. [run] doesn't preserve the current execution
       context and should always be called last. *)
    val run : 'a t -> 'a -> unit
  end

  (* Execute the current continuation, making sure to forward errors to the
     current execution context. This function doesn't preserve the current
     execution context. It should be used to execute the current continuation
     before calling [K.run] *)
  val safe_run_k : ('a -> unit) -> 'a -> unit

  (* Execute a function returning a fiber, passing any raised exception to the
     current execution context. This function preserve the current execution
     context. It should be called when creating forks.*)
  val apply : ('a -> 'b t) -> 'a -> 'b t

  (* Add [n] references to the current execution context *)
  val add_refs : int -> unit

  (* Decrese the reference count of the current execution context *)
  val deref : unit -> unit

  (* [wait_errors f] executes [f ()] inside a new execution contexts. Returns a
     fiber that terminates when all the fiber in the sub-context have
     terminated. *)
  val wait_errors : (unit -> 'a t) -> ('a, unit) result t

  (* Set the current error handler. [on_error] is called in the current
     execution context. *)
  val set_error_handler :
    on_error:(Exn_with_backtrace.t -> unit) -> ('a -> 'b t) -> 'a -> 'b t

  val vars : unit -> Univ_map.t

  val set_vars : Univ_map.t -> ('a -> 'b t) -> 'a -> 'b t

  val set_vars_sync : Univ_map.t -> ('a -> 'b) -> 'a -> 'b

  (* Execute a callback with a fresh execution context. For the toplevel
     [Fiber.run] function. *)
  val new_run : (unit -> 'a) -> 'a
end = struct
  type t =
    { on_error : Exn_with_backtrace.t k option
          (* This handler must never raise *)
    ; vars : Univ_map.t
    ; on_release : on_release
    }

  and 'a on_release_exec =
    { k : ('a, unit) result k
    ; mutable result : ('a, unit) result
    ; mutable ref_count : int
    }

  and on_release =
    | Do_nothing : on_release
    | Exec : _ on_release_exec -> on_release

  and 'a k =
    { run : 'a -> unit
    ; ctx : t
    }

  let current =
    ref { on_error = None; vars = Univ_map.empty; on_release = Do_nothing }

  let add_refs n =
    let t = !current in
    match t.on_release with
    | Do_nothing -> ()
    | Exec r -> r.ref_count <- r.ref_count + n

  let rec deref t =
    match t.on_release with
    | Do_nothing -> ()
    | Exec r ->
      let n = r.ref_count - 1 in
      assert (n >= 0);
      r.ref_count <- n;
      if n = 0 then (
        current := r.k.ctx;
        (* We need to call [safe_run_k] as we might be the in handler of the
           [try...with] block inside [apply] and so we are no more in a
           [try...with] blocks *)
        safe_run_k r.k.run r.result
      )

  and safe_run_k : type a. (a -> unit) -> a -> unit =
   fun k x -> try k x with exn -> forward_error exn

  and forward_error =
    let rec loop t exn =
      match t.on_error with
      | None -> Exn_with_backtrace.reraise exn
      | Some { ctx; run } -> (
        current := ctx;
        try run exn
        with exn ->
          let exn = Exn_with_backtrace.capture exn in
          loop ctx exn )
    in
    fun exn ->
      let exn = Exn_with_backtrace.capture exn in
      let t = !current in
      loop t exn;
      deref t

  let deref () = deref !current

  let wait_errors f k =
    let t = !current in
    let on_release =
      { k = { ctx = t; run = k }; ref_count = 1; result = Error () }
    in
    let child = { t with on_release = Exec on_release } in
    current := child;
    f () (fun x ->
        on_release.result <- Ok x;
        deref ())

  let set_error_handler ~on_error f x k =
    let t = !current in
    let on_error = Some { run = on_error; ctx = t } in
    current := { t with on_error };
    f x (fun x ->
        current := t;
        k x)

  let vars () = !current.vars

  let set_vars vars f x k =
    let t = !current in
    current := { t with vars };
    f x (fun x ->
        current := t;
        k x)

  let set_vars_sync (type b) vars f x : b =
    let t = !current in
    current := { t with vars };
    Exn.protect ~finally:(fun () -> current := t) ~f:(fun () -> f x)

  module K = struct
    type 'a t = 'a k

    let create run = { run; ctx = !current }

    let run { run; ctx } x =
      current := ctx;
      safe_run_k run x
  end

  let apply f x k =
    let backup = !current in
    (try f x k with exn -> forward_error exn);
    current := backup

  let new_run f =
    let backup = !current in
    Exn.protect
      ~finally:(fun () -> current := backup)
      ~f:(fun () ->
        current :=
          { on_error = None; vars = Univ_map.empty; on_release = Do_nothing };
        f ())
end

module EC = Execution_context
module K = EC.K

let return x k = k x

let never _ = ()

module O = struct
  let ( >>> ) a b k = a (fun () -> b k)

  let ( >>= ) t f k = t (fun x -> f x k)

  let ( >>| ) t f k = t (fun x -> k (f x))

  let ( let+ ) = ( >>| )

  let ( let* ) = ( >>= )
end

open O

let map t ~f = t >>| f

let bind t ~f = t >>= f

let both a b =
  let* x = a in
  let* y = b in
  return (x, y)

let sequential_map l ~f =
  let rec loop l acc =
    match l with
    | [] -> return (List.rev acc)
    | x :: l ->
      let* x = f x in
      loop l (x :: acc)
  in
  loop l []

let sequential_iter l ~f =
  let rec loop l =
    match l with
    | [] -> return ()
    | x :: l ->
      let* () = f x in
      loop l
  in
  loop l

type ('a, 'b) fork_and_join_state =
  | Nothing_yet
  | Got_a of 'a
  | Got_b of 'b

let fork_and_join fa fb k =
  let state = ref Nothing_yet in
  EC.add_refs 1;
  EC.apply fa () (fun a ->
      match !state with
      | Nothing_yet ->
        state := Got_a a;
        EC.deref ()
      | Got_a _ -> assert false
      | Got_b b -> k (a, b));
  fb () (fun b ->
      match !state with
      | Nothing_yet ->
        state := Got_b b;
        EC.deref ()
      | Got_a a -> k (a, b)
      | Got_b _ -> assert false)

let fork_and_join_unit fa fb k =
  let state = ref Nothing_yet in
  EC.add_refs 1;
  EC.apply fa () (fun () ->
      match !state with
      | Nothing_yet ->
        state := Got_a ();
        EC.deref ()
      | Got_a _ -> assert false
      | Got_b b -> k b);
  fb () (fun b ->
      match !state with
      | Nothing_yet ->
        state := Got_b b;
        EC.deref ()
      | Got_a () -> k b
      | Got_b _ -> assert false)

module Sequence = struct
  type 'a fiber = 'a t

  type 'a t = 'a node fiber

  and 'a node =
    | Nil
    | Cons of 'a * 'a t

  let rec sequential_iter t ~f =
    t >>= function
    | Nil -> return ()
    | Cons (x, t) ->
      let* () = f x in
      sequential_iter t ~f

  let parallel_iter t ~f k =
    let n = ref 1 in
    let k () =
      decr n;
      if !n = 0 then
        k ()
      else
        EC.deref ()
    in
    let rec loop t =
      t (function
        | Nil -> k ()
        | Cons (x, t) ->
          EC.add_refs 1;
          incr n;
          EC.apply f x k;
          loop t)
    in
    loop t
end

let list_of_option_array =
  let rec loop arr i acc =
    if i = 0 then
      acc
    else
      let i = i - 1 in
      match arr.(i) with
      | None -> assert false
      | Some x -> loop arr i (x :: acc)
  in
  fun a -> loop a (Array.length a) []

let parallel_map l ~f k =
  match l with
  | [] -> k []
  | [ x ] -> f x (fun x -> k [ x ])
  | _ ->
    let n = List.length l in
    EC.add_refs (n - 1);
    let left_over = ref n in
    let results = Array.make n None in
    List.iteri l ~f:(fun i x ->
        EC.apply f x (fun y ->
            results.(i) <- Some y;
            decr left_over;
            if !left_over = 0 then
              k (list_of_option_array results)
            else
              EC.deref ()))

let parallel_iter l ~f k =
  match l with
  | [] -> k ()
  | [ x ] -> f x k
  | _ ->
    let n = List.length l in
    EC.add_refs (n - 1);
    let left_over = ref n in
    let k () =
      decr left_over;
      if !left_over = 0 then
        k ()
      else
        EC.deref ()
    in
    List.iter l ~f:(fun x -> EC.apply f x k)

module Var = struct
  include Univ_map.Key

  let get var = Univ_map.find (EC.vars ()) var

  let get_exn var = Univ_map.find_exn (EC.vars ()) var

  let set_sync var x f = EC.set_vars_sync (Univ_map.set (EC.vars ()) var x) f ()

  let set var x f k = EC.set_vars (Univ_map.set (EC.vars ()) var x) f () k

  let unset_sync var f =
    EC.set_vars_sync (Univ_map.remove (EC.vars ()) var) f ()

  let unset var f k = EC.set_vars (Univ_map.remove (EC.vars ()) var) f () k

  let create () = create ~name:"var" (fun _ -> Dyn.Encoder.string "var")
end

let with_error_handler f ~on_error k = EC.set_error_handler ~on_error f () k

let wait_errors f k = EC.wait_errors f k

let fold_errors f ~init ~on_error =
  let acc = ref init in
  let on_error exn = acc := on_error exn !acc in
  wait_errors (fun () -> with_error_handler ~on_error f) >>| function
  | Ok _ as ok -> ok
  | Error () -> Error !acc

let collect_errors f =
  let+ res = fold_errors f ~init:[] ~on_error:(fun e l -> e :: l) in
  match res with
  | Ok x -> Ok x
  | Error l -> Error (List.rev l)

let finalize f ~finally =
  let* res1 = collect_errors f in
  let* res2 = collect_errors finally in
  let res =
    match (res1, res2) with
    | Ok x, Ok () -> Ok x
    | Error l, Ok _
    | Ok _, Error l ->
      Error l
    | Error l1, Error l2 -> Error (l1 @ l2)
  in
  match res with
  | Ok x -> return x
  | Error l ->
    let* () = parallel_iter l ~f:(fun exn -> Exn_with_backtrace.reraise exn) in
    (* We might reach this point if all raised errors were handled by the user *)
    never

module Ivar = struct
  type 'a state =
    | Full of 'a
    | Empty of 'a K.t Queue.t

  type 'a t = { mutable state : 'a state }

  let create () = { state = Empty (Queue.create ()) }

  let fill t x k =
    match t.state with
    | Full _ -> failwith "Fiber.Ivar.fill"
    | Empty q ->
      t.state <- Full x;
      EC.safe_run_k k ();
      Queue.iter q ~f:(fun k -> K.run k x)

  let read t k =
    match t.state with
    | Full x -> k x
    | Empty q -> Queue.push q (K.create k)

  let peek t k =
    k
      ( match t.state with
      | Full x -> Some x
      | Empty _ -> None )
end

module Mvar = struct
  type 'a t =
    { writers : ('a * unit K.t) Queue.t
    ; readers : 'a K.t Queue.t
    ; mutable value : 'a option
    }

  (* Invariant enforced on mvars. We don't actually call this function, but we
     keep it here for documentation and to help understand the implementation: *)
  let _invariant t =
    match t.value with
    | None -> Queue.is_empty t.writers
    | Some _ -> Queue.is_empty t.readers

  let create () =
    { value = None; writers = Queue.create (); readers = Queue.create () }

  let create_full x =
    { value = Some x; writers = Queue.create (); readers = Queue.create () }

  let read t k =
    match t.value with
    | None -> Queue.push t.readers (K.create k)
    | Some v -> (
      match Queue.pop t.writers with
      | None ->
        t.value <- None;
        k v
      | Some (v', w) ->
        t.value <- Some v';
        EC.safe_run_k k v;
        K.run w () )

  let write t x k =
    match t.value with
    | Some _ -> Queue.push t.writers (x, K.create k)
    | None -> (
      match Queue.pop t.readers with
      | None ->
        t.value <- Some x;
        k ()
      | Some r ->
        EC.safe_run_k k ();
        K.run r x )
end

module Mutex = struct
  type t =
    { mutable locked : bool
    ; mutable waiters : unit K.t Queue.t
    }

  let lock t k =
    if t.locked then
      Queue.push t.waiters (K.create k)
    else (
      t.locked <- true;
      k ()
    )

  let unlock t k =
    assert t.locked;
    match Queue.pop t.waiters with
    | None ->
      t.locked <- false;
      k ()
    | Some next ->
      EC.safe_run_k k ();
      K.run next ()

  let with_lock t f =
    let* () = lock t in
    finalize f ~finally:(fun () -> unlock t)

  let create () = { locked = false; waiters = Queue.create () }
end

module Throttle = struct
  type t =
    { mutable size : int
    ; mutable running : int
    ; waiting : unit Ivar.t Queue.t
    }

  let create size = { size; running = 0; waiting = Queue.create () }

  let size t = t.size

  let running t = t.running

  let rec restart t =
    if t.running >= t.size then
      return ()
    else
      match Queue.pop t.waiting with
      | None -> return ()
      | Some ivar ->
        t.running <- t.running + 1;
        let* () = Ivar.fill ivar () in
        restart t

  let resize t n =
    t.size <- n;
    restart t

  let run t ~f =
    finalize
      ~finally:(fun () ->
        t.running <- t.running - 1;
        restart t)
      (fun () ->
        if t.running < t.size then (
          t.running <- t.running + 1;
          f ()
        ) else
          let waiting = Ivar.create () in
          Queue.push t.waiting waiting;
          let* () = Ivar.read waiting in
          f ())
end

type fill = Fill : 'a Ivar.t * 'a -> fill

let run t ~iter =
  EC.new_run (fun () ->
      let result = ref None in
      EC.apply (fun () -> t) () (fun x -> result := Some x);
      let rec loop () =
        match !result with
        | Some res -> res
        | None ->
          let (Fill (ivar, v)) = iter () in
          Ivar.fill ivar v ignore;
          loop ()
      in
      loop ())