File: mirage_crypto_ec.ml

package info (click to toggle)
ocaml-mirage-crypto 2.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,524 kB
  • sloc: ansic: 91,925; ml: 9,700; makefile: 5
file content (1090 lines) | stat: -rw-r--r-- 40,197 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
type error = [
  | `Invalid_format
  | `Invalid_length
  | `Invalid_range
  | `Not_on_curve
  | `At_infinity
  | `Low_order
]

let error_to_string = function
  | `Invalid_format -> "invalid format"
  | `Not_on_curve -> "point is not on curve"
  | `At_infinity -> "point is at infinity"
  | `Invalid_length -> "invalid length"
  | `Invalid_range -> "invalid range"
  | `Low_order -> "low order"

let pp_error fmt e =
  Format.fprintf fmt "Cannot parse point: %s" (error_to_string e)

let rev_string buf =
  let len = String.length buf in
  let res = Bytes.create len in
  for i = 0 to len - 1 do
    Bytes.set res (len - 1 - i) (String.get buf i)
  done ;
  Bytes.unsafe_to_string res

exception Message_too_long

let bit_at buf i =
  let byte_num = i / 8 in
  let bit_num = i mod 8 in
  let byte = String.get_uint8 buf byte_num in
  byte land (1 lsl bit_num) <> 0

module type Dh = sig
  type secret
  val secret_of_octets : ?compress:bool -> string ->
    (secret * string, error) result
  val secret_to_octets : secret -> string
  val gen_key : ?compress:bool -> ?g:Mirage_crypto_rng.g -> unit ->
    secret * string
  val key_exchange : secret -> string -> (string, error) result
end

module type Dsa = sig
  type priv
  type pub
  val byte_length : int
  val bit_length : int
  val priv_of_octets : string -> (priv, error) result
  val priv_to_octets : priv -> string
  val pub_of_octets : string -> (pub, error) result
  val pub_to_octets : ?compress:bool -> pub -> string
  val pub_of_priv : priv -> pub
  val generate : ?g:Mirage_crypto_rng.g -> unit -> priv * pub
  val sign : key:priv -> ?k:string -> string -> string * string
  val verify : key:pub -> string * string -> string -> bool
  module K_gen (H : Digestif.S) : sig
    val generate : key:priv -> string -> string
  end
  module Precompute : sig
    val generator_tables : unit -> string array array array
  end
end

module type Dh_dsa = sig
  module Dh : Dh
  module Dsa : Dsa
end

type field_element = string

type out_field_element = bytes

module type Parameters = sig
  val a : field_element
  val b : field_element
  val g_x : field_element
  val g_y : field_element
  val p : field_element
  val n : field_element
  val pident: string
  val byte_length : int
  val bit_length : int
  val fe_length : int
  val first_byte_bits : int option
end

type point = { f_x : field_element; f_y : field_element; f_z : field_element }

type out_point = { m_f_x : out_field_element; m_f_y : out_field_element; m_f_z : out_field_element }

type scalar = Scalar of string

module type Foreign = sig
  val mul : out_field_element -> field_element -> field_element -> unit
  val sub : out_field_element -> field_element -> field_element -> unit
  val add : out_field_element -> field_element -> field_element -> unit
  val to_montgomery : out_field_element -> field_element -> unit
  val from_octets : out_field_element -> string -> unit
  val set_one : out_field_element -> unit
  val nz : field_element -> bool
  val sqr : out_field_element -> field_element -> unit
  val from_montgomery : out_field_element -> field_element -> unit
  val to_octets : bytes -> field_element -> unit
  val inv : out_field_element -> field_element -> unit
  val select_c : out_field_element -> bool -> field_element -> field_element -> unit

  val double_c : out_point -> point -> unit
  val add_c : out_point -> point -> point -> unit
  val scalar_mult_base_c : out_point -> string -> unit
end

module type Field_element = sig
  val mul : field_element -> field_element -> field_element
  val sub : field_element -> field_element -> field_element
  val add : field_element -> field_element -> field_element
  val from_montgomery : field_element -> field_element
  val zero : field_element
  val one : field_element
  val nz : field_element -> bool
  val sqr : field_element -> field_element
  val inv : field_element -> field_element
  val select : bool -> then_:field_element -> else_:field_element -> field_element
  val from_be_octets : string -> field_element
  val to_octets : field_element -> string
  val double_point : point -> point
  val add_point : point -> point -> point
  val scalar_mult_base_point : scalar -> point
end

module Make_field_element (P : Parameters) (F : Foreign) : Field_element = struct
  let b_uts b = Bytes.unsafe_to_string b

  let create () = Bytes.create P.fe_length

  let mul a b =
    let tmp = create () in
    F.mul tmp a b;
    b_uts tmp

  let sub a b =
    let tmp = create () in
    F.sub tmp a b;
    b_uts tmp

  let add a b =
    let tmp = create () in
    F.add tmp a b;
    b_uts tmp

  let from_montgomery a =
    let tmp = create () in
    F.from_montgomery tmp a;
    b_uts tmp

  let zero =
    let b = Bytes.make P.fe_length '\000' in
    b_uts b

  let one =
    let fe = create () in
    F.set_one fe;
    b_uts fe

  let nz a = F.nz a

  let sqr a =
    let tmp = create () in
    F.sqr tmp a;
    b_uts tmp

  let inv a =
    let tmp = create () in
    F.inv tmp a;
    b_uts tmp

  let select bit ~then_ ~else_ =
    let tmp = create () in
    F.select_c tmp bit then_ else_;
    b_uts tmp

  let from_be_octets buf =
    let buf_rev = rev_string buf in
    let tmp = create () in
    F.from_octets tmp buf_rev;
    F.to_montgomery tmp (b_uts tmp);
    b_uts tmp

  let create_octets () =
    Bytes.create P.byte_length

  let to_octets fe =
    let tmp = create_octets () in
    F.to_octets tmp fe;
    b_uts tmp

  let out_point () = {
    m_f_x = create ();
    m_f_y = create ();
    m_f_z = create ();
  }

  let out_p_to_p p = {
    f_x = b_uts p.m_f_x ;
    f_y = b_uts p.m_f_y ;
    f_z = b_uts p.m_f_z ;
  }

  let double_point p =
    let tmp = out_point () in
    F.double_c tmp p;
    out_p_to_p tmp

  let add_point a b =
    let tmp = out_point () in
    F.add_c tmp a b;
    out_p_to_p tmp

  let scalar_mult_base_point (Scalar d) =
    let tmp = out_point () in
    F.scalar_mult_base_c tmp d;
    out_p_to_p tmp
end

module type Point = sig
  val at_infinity : unit -> point
  val is_infinity : point -> bool
  val add : point -> point -> point
  val double : point -> point
  val of_octets : string -> (point, error) result
  val to_octets : compress:bool -> point -> string
  val to_affine_raw : point -> (field_element * field_element) option
  val x_of_finite_point : point -> string
  val params_g : point
  val select : bool -> then_:point -> else_:point -> point
  val scalar_mult_base : scalar -> point
end

module Make_point (P : Parameters) (F : Foreign) : Point = struct
  module Fe = Make_field_element(P)(F)

  let at_infinity () =
    let f_x = Fe.one in
    let f_y = Fe.one in
    let f_z = Fe.zero in
    { f_x; f_y; f_z }

  let is_infinity (p : point) = not (Fe.nz p.f_z)

  let is_solution_to_curve_equation =
    let a = Fe.from_be_octets P.a in
    let b = Fe.from_be_octets P.b in
    fun ~x ~y ->
      let x3 = Fe.mul x x in
      let x3 = Fe.mul x3 x in
      let ax = Fe.mul a x in
      let y2 = Fe.mul y y in
      let sum = Fe.add x3 ax in
      let sum = Fe.add sum b in
      let sum = Fe.sub sum y2 in
      not (Fe.nz sum)

  let check_coordinate buf =
    (* ensure buf < p: *)
    match Eqaf.compare_be_with_len ~len:P.byte_length buf P.p >= 0 with
    | true -> None
    | exception Invalid_argument _ -> None
    | false -> Some (Fe.from_be_octets buf)

  (** Convert coordinates to a finite point ensuring:
      - x < p
      - y < p
      - y^2 = ax^3 + ax + b
  *)
  let validate_finite_point ~x ~y =
    match (check_coordinate x, check_coordinate y) with
    | Some f_x, Some f_y ->
      if is_solution_to_curve_equation ~x:f_x ~y:f_y then
        let f_z = Fe.one in
        Ok { f_x; f_y; f_z }
      else Error `Not_on_curve
    | _ -> Error `Invalid_range

  let to_affine_raw p =
    if is_infinity p then
      None
    else
      let z1 = Fe.from_montgomery p.f_z in
      let z2 = Fe.inv z1 in
      let z1 = Fe.sqr z2 in
      let z1 = Fe.from_montgomery z1 in
      let x = Fe.mul p.f_x z1 in
      let z1 = Fe.mul z1 z2 in
      let y = Fe.mul p.f_y z1 in
      Some (x, y)

  let to_affine p =
    Option.map (fun (x, y) -> Fe.to_octets x, Fe.to_octets y)
      (to_affine_raw p)

  let to_octets ~compress p =
    let buf =
      match to_affine p with
      | None -> String.make 1 '\000'
      | Some (x, y) ->
        let len_x = String.length x and len_y = String.length y in
        let res = Bytes.create (1 + len_x + len_y) in
        Bytes.set res 0 '\004' ;
        let rev_x = rev_string x and rev_y = rev_string y in
        Bytes.unsafe_blit_string rev_x 0 res 1 len_x ;
        Bytes.unsafe_blit_string rev_y 0 res (1 + len_x) len_y ;
        Bytes.unsafe_to_string res
    in
    if compress then
      let out = Bytes.create (P.byte_length + 1) in
      let ident =
        2 + (String.get_uint8 buf (P.byte_length * 2)) land 1
      in
      Bytes.unsafe_blit_string buf 1 out 1 P.byte_length;
      Bytes.set_uint8 out 0 ident;
      Bytes.unsafe_to_string out
    else
      buf

  let double p = Fe.double_point p

  let add p q = Fe.add_point p q

  let x_of_finite_point p =
    match to_affine p with None -> assert false | Some (x, _) -> rev_string x

  let params_g =
    match validate_finite_point ~x:P.g_x ~y:P.g_y with
    | Ok p -> p
    | Error _ -> assert false

  let select bit ~then_ ~else_ =
    {
      f_x = Fe.select bit ~then_:then_.f_x ~else_:else_.f_x;
      f_y = Fe.select bit ~then_:then_.f_y ~else_:else_.f_y;
      f_z = Fe.select bit ~then_:then_.f_z ~else_:else_.f_z;
    }

  let pow x exp =
    let r0 = ref Fe.one in
    let r1 =  ref x in
    for i = P.byte_length * 8 - 1 downto 0 do
      let bit = bit_at exp i in
      let multiplied = Fe.mul !r0 !r1 in
      let r0_sqr = Fe.sqr !r0 in
      let r1_sqr = Fe.sqr !r1 in
      r0 := Fe.select bit ~then_:multiplied ~else_:r0_sqr;
      r1 := Fe.select bit ~then_:r1_sqr ~else_:multiplied;
    done;
    !r0

  let decompress =
  (* When p = 4*k+3, as is the case of NIST-P256, there is an efficient square
     root algorithm to recover the y, as follows:

    Given the compact representation of Q as x,
     y2 = x^3 + a*x + b
     y' = y2^((p+1)/4)
     y = min(y',p-y')
     Q=(x,y) is the canonical representation of the point
  *)
    let pident = P.pident (* (Params.p + 1) / 4*) in
    let a = Fe.from_be_octets P.a in
    let b = Fe.from_be_octets P.b in
    let p = Fe.from_be_octets P.p in
    fun pk ->
      let x = Fe.from_be_octets (String.sub pk 1 P.byte_length) in
      let x3 = Fe.mul x x in
      let x3 = Fe.mul x3 x in (* x3 *)
      let ax = Fe.mul a x in  (* ax *)
      let sum = Fe.add x3 ax in
      let sum = Fe.add sum b in (* y^2 *)
      let y = pow sum pident in (* https://tools.ietf.org/id/draft-jivsov-ecc-compact-00.xml#sqrt point 4.3*)
      let y' = Fe.sub p y in
      let y = Fe.from_montgomery y in
      let y_struct = Fe.to_octets y in (* number must not be in montgomery domain*)
      let y_struct = rev_string y_struct in
      let y' = Fe.from_montgomery y' in
      let y_struct2 = Fe.to_octets y' in (* number must not be in montgomery domain*)
      let y_struct2 = rev_string y_struct2 in
      let ident = String.get_uint8 pk 0 in
      let signY =
        2 + (String.get_uint8 y_struct (P.byte_length - 1)) land 1
      in
      let res = if Int.equal signY ident then y_struct else y_struct2 in
      let out = Bytes.create ((P.byte_length * 2) + 1) in
      Bytes.set out 0 '\004';
      Bytes.unsafe_blit_string pk 1 out 1 P.byte_length;
      Bytes.unsafe_blit_string res 0 out (P.byte_length + 1) P.byte_length;
      Bytes.unsafe_to_string out

  let of_octets buf =
    let len = P.byte_length in
    if String.length buf = 0 then
      Error `Invalid_format
    else
      let of_octets buf =
        let x = String.sub buf 1 len in
        let y = String.sub buf (1 + len) len in
        validate_finite_point ~x ~y
      in
      match String.get_uint8 buf 0 with
      | 0x00 when String.length buf = 1 ->
        Ok (at_infinity ())
      | 0x02 | 0x03 when String.length P.pident > 0 ->
        let decompressed = decompress buf in
        of_octets decompressed
      | 0x04 when String.length buf = 1 + len + len ->
        of_octets buf
      | 0x00 | 0x04 -> Error `Invalid_length
      | _ -> Error `Invalid_format

  let scalar_mult_base = Fe.scalar_mult_base_point
end

module type Scalar = sig
  val not_zero : string -> bool
  val is_in_range : string -> bool
  val of_octets : string -> (scalar, error) result
  val to_octets : scalar -> string
  val scalar_mult : scalar -> point -> point
  val scalar_mult_base : scalar -> point
  val generator_tables : unit -> field_element array array array
end

module Make_scalar (Param : Parameters) (P : Point) : Scalar = struct
  let not_zero =
    let zero = String.make Param.byte_length '\000' in
    fun buf -> not (Eqaf.equal buf zero)

  let is_in_range buf =
    not_zero buf
    && Eqaf.compare_be_with_len ~len:Param.byte_length Param.n buf > 0

  let of_octets buf =
    match is_in_range buf with
    | exception Invalid_argument _ -> Error `Invalid_length
    | true -> Ok (Scalar (rev_string buf))
    | false -> Error `Invalid_range

  let to_octets (Scalar buf) = rev_string buf

  (* Branchless Montgomery ladder method *)
  let scalar_mult (Scalar s) p =
    let r0 = ref (P.at_infinity ()) in
    let r1 = ref p in
    for i = Param.byte_length * 8 - 1 downto 0 do
      let bit = bit_at s i in
      let sum = P.add !r0 !r1 in
      let r0_double = P.double !r0 in
      let r1_double = P.double !r1 in
      r0 := P.select bit ~then_:sum ~else_:r0_double;
      r1 := P.select bit ~then_:r1_double ~else_:sum
    done;
    !r0

  (* Specialization of [scalar_mult d p] when [p] is the generator *)
  let scalar_mult_base = P.scalar_mult_base

  (* Pre-compute multiples of the generator point
     returns the tables along with the number of significant bytes *)
  let generator_tables () =
    let len = Param.fe_length * 2 in
    let one_table _ = Array.init 15 (fun _ -> P.at_infinity ()) in
    let table = Array.init len one_table in
    let base = ref P.params_g in
    for i = 0 to len - 1 do
      table.(i).(0) <- !base;
      for j = 1 to 14 do
        table.(i).(j) <- P.add !base table.(i).(j - 1)
      done;
      base := P.double !base;
      base := P.double !base;
      base := P.double !base;
      base := P.double !base
    done;
    let convert {f_x; f_y; f_z} = [|f_x; f_y; f_z|] in
    Array.map (Array.map convert) table
end

module Make_dh (Param : Parameters) (P : Point) (S : Scalar) : Dh = struct
  let point_of_octets c =
    match P.of_octets c with
    | Ok p when not (P.is_infinity p) -> Ok p
    | Ok _ -> Error `At_infinity
    | Error _ as e -> e

  let point_to_octets = P.to_octets

  type secret = scalar

  let share ?(compress = false) private_key =
    let public_key = S.scalar_mult_base private_key in
    point_to_octets ~compress public_key

  let secret_of_octets ?compress s =
    match S.of_octets s with
    | Ok p -> Ok (p, share ?compress p)
    | Error _ as e -> e

  let secret_to_octets s =
    S.to_octets s

  let rec generate_private_key ?g () =
    let candidate = Mirage_crypto_rng.generate ?g Param.byte_length in
    match S.of_octets candidate with
    | Ok secret -> secret
    | Error _ -> generate_private_key ?g ()

  let gen_key ?compress ?g () =
    let private_key = generate_private_key ?g () in
    private_key, share ?compress private_key

  let key_exchange secret received =
    match point_of_octets received with
    | Error _ as err -> err
    | Ok shared -> Ok (P.x_of_finite_point (S.scalar_mult secret shared))
end

module type Foreign_n = sig
  val mul : out_field_element -> field_element -> field_element -> unit
  val add : out_field_element -> field_element -> field_element -> unit
  val inv : out_field_element -> field_element -> unit
  val one : out_field_element -> unit
  val from_bytes : out_field_element -> string -> unit
  val to_bytes : bytes -> field_element -> unit
  val from_montgomery : out_field_element -> field_element -> unit
  val to_montgomery : out_field_element -> field_element -> unit
end

module type Fn = sig
  val from_be_octets : string -> field_element
  val to_be_octets : field_element -> string
  val mul : field_element -> field_element -> field_element
  val add : field_element -> field_element -> field_element
  val inv : field_element -> field_element
  val one : field_element
  val from_montgomery : field_element -> field_element
  val to_montgomery : field_element -> field_element
end

module Make_Fn (P : Parameters) (F : Foreign_n) : Fn = struct
  let b_uts = Bytes.unsafe_to_string

  let create () = Bytes.create P.fe_length

  let create_octets () = Bytes.create P.byte_length

  let from_be_octets v =
    let v' = create () in
    F.from_bytes v' (rev_string v);
    F.to_montgomery v' (b_uts v');
    b_uts v'

  let to_be_octets v =
    let buf = create_octets () in
    F.to_bytes buf v;
    rev_string (b_uts buf)

  let mul a b =
    let tmp = create () in
    F.mul tmp a b;
    b_uts tmp

  let add a b =
    let tmp = create () in
    F.add tmp a b;
    b_uts tmp

  let inv a =
    let tmp = create () in
    F.inv tmp a;
    F.to_montgomery tmp (b_uts tmp);
    b_uts tmp

  let one =
    let tmp = create () in
    F.one tmp;
    b_uts tmp

  let from_montgomery a =
    let tmp = create () in
    F.from_montgomery tmp a;
    b_uts tmp

  let to_montgomery a =
    let tmp = create () in
    F.to_montgomery tmp a;
    b_uts tmp
end

module Make_dsa (Param : Parameters) (F : Fn) (P : Point) (S : Scalar) (H : Digestif.S) = struct
  type priv = scalar

  let byte_length = Param.byte_length

  let bit_length = Param.bit_length

  let priv_of_octets= S.of_octets

  let priv_to_octets = S.to_octets

  let padded msg =
    let l = String.length msg in
    let bl = Param.byte_length in
    let first_byte_ok () =
      match Param.first_byte_bits with
      | None -> true
      | Some m -> (String.get_uint8 msg 0) land (0xFF land (lnot m)) = 0
    in
    if l > bl || (l = bl && not (first_byte_ok ())) then
      raise Message_too_long
    else if l = bl then
      msg
    else
      ( let res = Bytes.make bl '\000' in
        Bytes.unsafe_blit_string msg 0 res (bl - l) l ;
        Bytes.unsafe_to_string res )

  (* RFC 6979: compute a deterministic k *)
  module K_gen (H : Digestif.S) = struct
    let drbg : 'a Mirage_crypto_rng.generator =
      let module M = Mirage_crypto_rng.Hmac_drbg (H) in (module M)

    let g ~key msg =
      let g = Mirage_crypto_rng.create ~strict:true drbg in
      Mirage_crypto_rng.reseed ~g (S.to_octets key ^ msg);
      g

    (* Defined in RFC 6979 sec 2.3.2 with
       - blen = 8 * Param.byte_length
       - qlen = Param.bit_length *)
    let bits2int r =
      (* keep qlen *leftmost* bits *)
      let shift = (8 * Param.byte_length) - Param.bit_length in
      if shift = 0 then
        Bytes.unsafe_to_string r
      else
        (* Assuming shift is < 8 *)
        let r' = Bytes.create Param.byte_length in
        let p = ref 0x00 in
        for i = 0 to Param.byte_length - 1 do
          let x = Bytes.get_uint8 r i in
          let v = (x lsr shift) lor (!p lsl (8 - shift)) in
          p := x;
          Bytes.set_uint8 r' i v
        done;
        Bytes.unsafe_to_string r'

    (* take qbit length, and ensure it is suitable for ECDSA (> 0 & < n) *)
    let gen g =
      let rec go () =
        let b = Bytes.create Param.byte_length in
        Mirage_crypto_rng.generate_into ~g b Param.byte_length;
        (* truncate to the desired number of bits *)
        let r = bits2int b in
        if S.is_in_range r then r else go ()
      in
      go ()

    let generate ~key buf = gen (g ~key (padded buf))
  end

  module K_gen_default = K_gen(H)

  type pub = point

  let pub_of_octets = P.of_octets

  let pub_to_octets ?(compress = false) pk = P.to_octets ~compress pk

  let generate ?g () =
    (* FIPS 186-4 B 4.2 *)
    let d =
      let rec one () =
        match S.of_octets (Mirage_crypto_rng.generate ?g Param.byte_length) with
        | Ok x -> x
        | Error _ -> one ()
      in
      one ()
    in
    let q = S.scalar_mult_base d in
    (d, q)

  let x_of_finite_point_mod_n p =
    match P.to_affine_raw p with
    | None -> None
    | Some (x, _) ->
      let x = F.to_montgomery x in
      let x = F.mul x F.one in
      let x = F.from_montgomery x in
      Some (F.to_be_octets x)

  let sign ~key ?k msg =
    let msg = padded msg in
    let e = F.from_be_octets msg in
    let g = K_gen_default.g ~key msg in
    let rec do_sign g =
      let again () =
        match k with
        | None -> do_sign g
        | Some _ -> invalid_arg "k not suitable"
      in
      let k' = match k with None -> K_gen_default.gen g | Some k -> k in
      let ksc = match S.of_octets k' with
        | Ok ksc -> ksc
        | Error _ -> invalid_arg "k not in range" (* if no k is provided, this cannot happen since K_gen_*.gen already preserves the Scalar invariants *)
      in
      let point = S.scalar_mult_base ksc in
      match x_of_finite_point_mod_n point with
      | None -> again ()
      | Some r ->
        let r_mon = F.from_be_octets r in
        let kmon = F.from_be_octets k' in
        let kinv = F.inv kmon in
        let dmon = F.from_be_octets (S.to_octets key) in
        let rd = F.mul r_mon dmon in
        let cmon = F.add e rd in
        let smon = F.mul kinv cmon in
        let s = F.from_montgomery smon in
        let s = F.to_be_octets s in
        if S.not_zero s && S.not_zero r then
          r, s
        else
          again ()
    in
    do_sign g

  let pub_of_priv priv = S.scalar_mult_base priv

  let verify ~key (r, s) msg =
    try
      let r = padded r and s = padded s in
      if not (S.is_in_range r && S.is_in_range s) then
        false
      else
        let msg = padded msg in
        let z = F.from_be_octets msg in
        let s_mon = F.from_be_octets s in
        let s_inv = F.inv s_mon in
        let u1 = F.mul z s_inv in
        let r_mon = F.from_be_octets r in
        let u2 = F.mul r_mon s_inv in
        let u1 = F.from_montgomery u1 in
        let u2 = F.from_montgomery u2 in
        match
          S.of_octets (F.to_be_octets u1),
          S.of_octets (F.to_be_octets u2)
        with
        | Ok u1, Ok u2 ->
          let point =
            P.add
              (S.scalar_mult_base u1)
              (S.scalar_mult u2 key)
          in
          begin match x_of_finite_point_mod_n point with
            | None -> false (* point is infinity *)
            | Some r' -> String.equal r r'
          end
        | Error _, _ | _, Error _ -> false
    with
    | Message_too_long -> false

  module Precompute = struct
    let generator_tables = S.generator_tables
  end
end

module P256 : Dh_dsa  = struct
  module Params = struct
    let a = "\xFF\xFF\xFF\xFF\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFC"
    let b = "\x5A\xC6\x35\xD8\xAA\x3A\x93\xE7\xB3\xEB\xBD\x55\x76\x98\x86\xBC\x65\x1D\x06\xB0\xCC\x53\xB0\xF6\x3B\xCE\x3C\x3E\x27\xD2\x60\x4B"
    let g_x = "\x6B\x17\xD1\xF2\xE1\x2C\x42\x47\xF8\xBC\xE6\xE5\x63\xA4\x40\xF2\x77\x03\x7D\x81\x2D\xEB\x33\xA0\xF4\xA1\x39\x45\xD8\x98\xC2\x96"
    let g_y = "\x4F\xE3\x42\xE2\xFE\x1A\x7F\x9B\x8E\xE7\xEB\x4A\x7C\x0F\x9E\x16\x2B\xCE\x33\x57\x6B\x31\x5E\xCE\xCB\xB6\x40\x68\x37\xBF\x51\xF5"
    let p = "\xFF\xFF\xFF\xFF\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF"
    let n = "\xFF\xFF\xFF\xFF\x00\x00\x00\x00\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xBC\xE6\xFA\xAD\xA7\x17\x9E\x84\xF3\xB9\xCA\xC2\xFC\x63\x25\x51"
    let pident = "\x3F\xFF\xFF\xFF\xC0\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" |> rev_string (* (Params.p + 1) / 4*)
    let byte_length = 32
    let bit_length = 256
    let fe_length = 32
    let first_byte_bits = None
  end

  module Foreign = struct
    external mul : out_field_element -> field_element -> field_element -> unit = "mc_p256_mul" [@@noalloc]
    external sub : out_field_element -> field_element -> field_element -> unit = "mc_p256_sub" [@@noalloc]
    external add : out_field_element -> field_element -> field_element -> unit = "mc_p256_add" [@@noalloc]
    external to_montgomery : out_field_element -> field_element -> unit = "mc_p256_to_montgomery" [@@noalloc]
    external from_octets : out_field_element -> string -> unit = "mc_p256_from_bytes" [@@noalloc]
    external set_one : out_field_element -> unit = "mc_p256_set_one" [@@noalloc]
    external nz : field_element -> bool = "mc_p256_nz" [@@noalloc]
    external sqr : out_field_element -> field_element -> unit = "mc_p256_sqr" [@@noalloc]
    external from_montgomery : out_field_element -> field_element -> unit = "mc_p256_from_montgomery" [@@noalloc]
    external to_octets : bytes -> field_element -> unit = "mc_p256_to_bytes" [@@noalloc]
    external inv : out_field_element -> field_element -> unit = "mc_p256_inv" [@@noalloc]
    external select_c : out_field_element -> bool -> field_element -> field_element -> unit = "mc_p256_select" [@@noalloc]
    external double_c : out_point -> point -> unit = "mc_p256_point_double" [@@noalloc]
    external add_c : out_point -> point -> point -> unit = "mc_p256_point_add" [@@noalloc]
    external scalar_mult_base_c : out_point -> string -> unit = "mc_p256_scalar_mult_base" [@@noalloc]
  end

  module Foreign_n = struct
    external mul : out_field_element -> field_element -> field_element -> unit = "mc_np256_mul" [@@noalloc]
    external add : out_field_element -> field_element -> field_element -> unit = "mc_np256_add" [@@noalloc]
    external inv : out_field_element -> field_element -> unit = "mc_np256_inv" [@@noalloc]
    external one : out_field_element -> unit = "mc_np256_one" [@@noalloc]
    external from_bytes : out_field_element -> string -> unit = "mc_np256_from_bytes" [@@noalloc]
    external to_bytes : bytes -> field_element -> unit = "mc_np256_to_bytes" [@@noalloc]
    external from_montgomery : out_field_element -> field_element -> unit = "mc_np256_from_montgomery" [@@noalloc]
    external to_montgomery : out_field_element -> field_element -> unit = "mc_np256_to_montgomery" [@@noalloc]
  end

  module P = Make_point(Params)(Foreign)
  module S = Make_scalar(Params)(P)
  module Dh = Make_dh(Params)(P)(S)
  module Fn = Make_Fn(Params)(Foreign_n)
  module Dsa = Make_dsa(Params)(Fn)(P)(S)(Digestif.SHA256)
end

module P384 : Dh_dsa = struct
  module Params = struct
    let a = "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFE\xFF\xFF\xFF\xFF\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFF\xFF\xFC"
    let b = "\xB3\x31\x2F\xA7\xE2\x3E\xE7\xE4\x98\x8E\x05\x6B\xE3\xF8\x2D\x19\x18\x1D\x9C\x6E\xFE\x81\x41\x12\x03\x14\x08\x8F\x50\x13\x87\x5A\xC6\x56\x39\x8D\x8A\x2E\xD1\x9D\x2A\x85\xC8\xED\xD3\xEC\x2A\xEF"
    let g_x = "\xAA\x87\xCA\x22\xBE\x8B\x05\x37\x8E\xB1\xC7\x1E\xF3\x20\xAD\x74\x6E\x1D\x3B\x62\x8B\xA7\x9B\x98\x59\xF7\x41\xE0\x82\x54\x2A\x38\x55\x02\xF2\x5D\xBF\x55\x29\x6C\x3A\x54\x5E\x38\x72\x76\x0A\xB7"
    let g_y =
"\x36\x17\xde\x4a\x96\x26\x2c\x6f\x5d\x9e\x98\xbf\x92\x92\xdc\x29\xf8\xf4\x1d\xbd\x28\x9a\x14\x7c\xe9\xda\x31\x13\xb5\xf0\xb8\xc0\x0a\x60\xb1\xce\x1d\x7e\x81\x9d\x7a\x43\x1d\x7c\x90\xea\x0e\x5f"
    let p = "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFE\xFF\xFF\xFF\xFF\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFF\xFF\xFF"
    let n = "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xC7\x63\x4D\x81\xF4\x37\x2D\xDF\x58\x1A\x0D\xB2\x48\xB0\xA7\x7A\xEC\xEC\x19\x6A\xCC\xC5\x29\x73"
    let pident = "\x3F\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xBF\xFF\xFF\xFF\xC0\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00" |> rev_string (* (Params.p + 1) / 4*)
    let byte_length = 48
    let bit_length = 384
    let fe_length = 48
    let first_byte_bits = None
  end

  module Foreign = struct
    external mul : out_field_element -> field_element -> field_element -> unit = "mc_p384_mul" [@@noalloc]
    external sub : out_field_element -> field_element -> field_element -> unit = "mc_p384_sub" [@@noalloc]
    external add : out_field_element -> field_element -> field_element -> unit = "mc_p384_add" [@@noalloc]
    external to_montgomery : out_field_element -> field_element -> unit = "mc_p384_to_montgomery" [@@noalloc]
    external from_octets : out_field_element -> string -> unit = "mc_p384_from_bytes" [@@noalloc]
    external set_one : out_field_element -> unit = "mc_p384_set_one" [@@noalloc]
    external nz : field_element -> bool = "mc_p384_nz" [@@noalloc]
    external sqr : out_field_element -> field_element -> unit = "mc_p384_sqr" [@@noalloc]
    external from_montgomery : out_field_element -> field_element -> unit = "mc_p384_from_montgomery" [@@noalloc]
    external to_octets : bytes -> field_element -> unit = "mc_p384_to_bytes" [@@noalloc]
    external inv : out_field_element -> field_element -> unit = "mc_p384_inv" [@@noalloc]
    external select_c : out_field_element -> bool -> field_element -> field_element -> unit = "mc_p384_select" [@@noalloc]
    external double_c : out_point -> point -> unit = "mc_p384_point_double" [@@noalloc]
    external add_c : out_point -> point -> point -> unit = "mc_p384_point_add" [@@noalloc]
    external scalar_mult_base_c : out_point -> string -> unit = "mc_p384_scalar_mult_base" [@@noalloc]
  end

  module Foreign_n = struct
    external mul : out_field_element -> field_element -> field_element -> unit = "mc_np384_mul" [@@noalloc]
    external add : out_field_element -> field_element -> field_element -> unit = "mc_np384_add" [@@noalloc]
    external inv : out_field_element -> field_element -> unit = "mc_np384_inv" [@@noalloc]
    external one : out_field_element -> unit = "mc_np384_one" [@@noalloc]
    external from_bytes : out_field_element -> string -> unit = "mc_np384_from_bytes" [@@noalloc]
    external to_bytes : bytes -> field_element -> unit = "mc_np384_to_bytes" [@@noalloc]
    external from_montgomery : out_field_element -> field_element -> unit = "mc_np384_from_montgomery" [@@noalloc]
    external to_montgomery : out_field_element -> field_element -> unit = "mc_np384_to_montgomery" [@@noalloc]
  end

  module P = Make_point(Params)(Foreign)
  module S = Make_scalar(Params)(P)
  module Dh = Make_dh(Params)(P)(S)
  module Fn = Make_Fn(Params)(Foreign_n)
  module Dsa = Make_dsa(Params)(Fn)(P)(S)(Digestif.SHA384)
end

module P521 : Dh_dsa = struct
  module Params = struct
    let a = "\x01\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFC"
    let b = "\x00\x51\x95\x3E\xB9\x61\x8E\x1C\x9A\x1F\x92\x9A\x21\xA0\xB6\x85\x40\xEE\xA2\xDA\x72\x5B\x99\xB3\x15\xF3\xB8\xB4\x89\x91\x8E\xF1\x09\xE1\x56\x19\x39\x51\xEC\x7E\x93\x7B\x16\x52\xC0\xBD\x3B\xB1\xBF\x07\x35\x73\xDF\x88\x3D\x2C\x34\xF1\xEF\x45\x1F\xD4\x6B\x50\x3F\x00"
    let g_x =
"\x00\xC6\x85\x8E\x06\xB7\x04\x04\xE9\xCD\x9E\x3E\xCB\x66\x23\x95\xB4\x42\x9C\x64\x81\x39\x05\x3F\xB5\x21\xF8\x28\xAF\x60\x6B\x4D\x3D\xBA\xA1\x4B\x5E\x77\xEF\xE7\x59\x28\xFE\x1D\xC1\x27\xA2\xFF\xA8\xDE\x33\x48\xB3\xC1\x85\x6A\x42\x9B\xF9\x7E\x7E\x31\xC2\xE5\xBD\x66"
    let g_y =
"\x01\x18\x39\x29\x6a\x78\x9a\x3b\xc0\x04\x5c\x8a\x5f\xb4\x2c\x7d\x1b\xd9\x98\xf5\x44\x49\x57\x9b\x44\x68\x17\xaf\xbd\x17\x27\x3e\x66\x2c\x97\xee\x72\x99\x5e\xf4\x26\x40\xc5\x50\xb9\x01\x3f\xad\x07\x61\x35\x3c\x70\x86\xa2\x72\xc2\x40\x88\xbe\x94\x76\x9f\xd1\x66\x50"
    let p = "\x01\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF"
    let n = "\x01\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFA\x51\x86\x87\x83\xBF\x2F\x96\x6B\x7F\xCC\x01\x48\xF7\x09\xA5\xD0\x3B\xB5\xC9\xB8\x89\x9C\x47\xAE\xBB\x6F\xB7\x1E\x91\x38\x64\x09"
    let pident = "\x01\x7f\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" |> rev_string
    let byte_length = 66
    let bit_length = 521
    let fe_length = if Sys.word_size == 64 then 72 else 68  (* TODO: is this congruent with C code? *)
    let first_byte_bits = Some 0x01
  end

  module Foreign = struct
    external mul : out_field_element -> field_element -> field_element -> unit = "mc_p521_mul" [@@noalloc]
    external sub : out_field_element -> field_element -> field_element -> unit = "mc_p521_sub" [@@noalloc]
    external add : out_field_element -> field_element -> field_element -> unit = "mc_p521_add" [@@noalloc]
    external to_montgomery : out_field_element -> field_element -> unit = "mc_p521_to_montgomery" [@@noalloc]
    external from_octets : out_field_element -> string -> unit = "mc_p521_from_bytes" [@@noalloc]
    external set_one : out_field_element -> unit = "mc_p521_set_one" [@@noalloc]
    external nz : field_element -> bool = "mc_p521_nz" [@@noalloc]
    external sqr : out_field_element -> field_element -> unit = "mc_p521_sqr" [@@noalloc]
    external from_montgomery : out_field_element -> field_element -> unit = "mc_p521_from_montgomery" [@@noalloc]
    external to_octets : bytes -> field_element -> unit = "mc_p521_to_bytes" [@@noalloc]
    external inv : out_field_element -> field_element -> unit = "mc_p521_inv" [@@noalloc]
    external select_c : out_field_element -> bool -> field_element -> field_element -> unit = "mc_p521_select" [@@noalloc]
    external double_c : out_point -> point -> unit = "mc_p521_point_double" [@@noalloc]
    external add_c : out_point -> point -> point -> unit = "mc_p521_point_add" [@@noalloc]
    external scalar_mult_base_c : out_point -> string -> unit = "mc_p521_scalar_mult_base" [@@noalloc]
  end

  module Foreign_n = struct
    external mul : out_field_element -> field_element -> field_element -> unit = "mc_np521_mul" [@@noalloc]
    external add : out_field_element -> field_element -> field_element -> unit = "mc_np521_add" [@@noalloc]
    external inv : out_field_element -> field_element -> unit = "mc_np521_inv" [@@noalloc]
    external one : out_field_element -> unit = "mc_np521_one" [@@noalloc]
    external from_bytes : out_field_element -> string -> unit = "mc_np521_from_bytes" [@@noalloc]
    external to_bytes : bytes -> field_element -> unit = "mc_np521_to_bytes" [@@noalloc]
    external from_montgomery : out_field_element -> field_element -> unit = "mc_np521_from_montgomery" [@@noalloc]
    external to_montgomery : out_field_element -> field_element -> unit = "mc_np521_to_montgomery" [@@noalloc]
  end

  module P = Make_point(Params)(Foreign)
  module S = Make_scalar(Params)(P)
  module Dh = Make_dh(Params)(P)(S)
  module Fn = Make_Fn(Params)(Foreign_n)
  module Dsa = Make_dsa(Params)(Fn)(P)(S)(Digestif.SHA512)
end

module X25519 = struct
  (* RFC 7748 *)
  external x25519_scalar_mult_generic : bytes -> string -> string -> unit = "mc_x25519_scalar_mult_generic" [@@noalloc]

  let key_len = 32

  let scalar_mult in_ base =
    let out = Bytes.create key_len in
    x25519_scalar_mult_generic out in_ base;
    Bytes.unsafe_to_string out

  type secret = string

  let basepoint = String.init key_len (function 0 -> '\009' | _ -> '\000')

  let public priv = scalar_mult priv basepoint

  let gen_key ?compress:_ ?g () =
    let secret = Mirage_crypto_rng.generate ?g key_len in
    secret, public secret

  let secret_of_octets ?compress:_ s =
    if String.length s = key_len then
      Ok (s, public s)
    else
      Error `Invalid_length

  let secret_to_octets s = s

  let is_zero =
    let zero = String.make key_len '\000' in
    fun buf -> String.equal zero buf

  let key_exchange secret public =
    if String.length public = key_len then
      let res = scalar_mult secret public in
      if is_zero res then Error `Low_order else Ok res
    else
      Error `Invalid_length
end

module Ed25519 = struct
  external scalar_mult_base_to_bytes : bytes -> string -> unit = "mc_25519_scalar_mult_base" [@@noalloc]
  external reduce_l : bytes -> unit = "mc_25519_reduce_l" [@@noalloc]
  external muladd : bytes -> string -> string -> string -> unit = "mc_25519_muladd" [@@noalloc]
  external double_scalar_mult : bytes -> string -> string -> string -> bool = "mc_25519_double_scalar_mult" [@@noalloc]
  external pub_ok : string -> bool = "mc_25519_pub_ok" [@@noalloc]

  let key_len = 32

  let scalar_mult_base_to_bytes p =
    let tmp = Bytes.create key_len in
    scalar_mult_base_to_bytes tmp p;
    Bytes.unsafe_to_string tmp

  let muladd a b c =
    let tmp = Bytes.create key_len in
    muladd tmp a b c;
    Bytes.unsafe_to_string tmp

  let double_scalar_mult a b c =
    let tmp = Bytes.create key_len in
    let s = double_scalar_mult tmp a b c in
    s, Bytes.unsafe_to_string tmp

  type pub = string

  type priv = string

  let sha512 datas =
    let open Digestif.SHA512 in
    let buf = Bytes.create digest_size in
    let ctx = List.fold_left (feed_string ?off:None ?len:None) empty datas in
    get_into_bytes ctx buf;
    buf

  (* RFC 8032 *)
  let public secret =
    (* section 5.1.5 *)
    (* step 1 *)
    let h = sha512 [ secret ] in
    (* step 2 *)
    let s, rest =
      Bytes.sub h 0 key_len,
      Bytes.unsafe_to_string (Bytes.sub h key_len (Bytes.length h - key_len))
    in
    Bytes.set_uint8 s 0 ((Bytes.get_uint8 s 0) land 248);
    Bytes.set_uint8 s 31 (((Bytes.get_uint8 s 31) land 127) lor 64);
    let s = Bytes.unsafe_to_string s in
    (* step 3 and 4 *)
    let public = scalar_mult_base_to_bytes s in
    public, (s, rest)

  let pub_of_priv secret = fst (public secret)

  let priv_of_octets buf =
    if String.length buf = key_len then Ok buf else Error `Invalid_length

  let priv_to_octets (priv : priv) = priv

  let pub_of_octets buf =
    if String.length buf = key_len then
      if pub_ok buf then
        Ok buf
      else
        Error `Not_on_curve
    else
      Error `Invalid_length

  let pub_to_octets pub = pub

  let generate ?g () =
    let secret = Mirage_crypto_rng.generate ?g key_len in
    secret, pub_of_priv secret

  let sign ~key msg =
    (* section 5.1.6 *)
    let pub, (s, prefix) = public key in
    let r = sha512 [ prefix; msg ] in
    reduce_l r;
    let r = Bytes.unsafe_to_string r in
    let r_big = scalar_mult_base_to_bytes r in
    let k = sha512 [ r_big; pub; msg] in
    reduce_l k;
    let k = Bytes.unsafe_to_string k in
    let s_out = muladd k s r in
    let res = Bytes.create (key_len + key_len) in
    Bytes.unsafe_blit_string r_big 0 res 0 key_len ;
    Bytes.unsafe_blit_string s_out 0 res key_len key_len ;
    Bytes.unsafe_to_string res

  let verify ~key signature ~msg =
    (* section 5.1.7 *)
    if String.length signature = 2 * key_len then
      let r, s =
        String.sub signature 0 key_len,
        String.sub signature key_len key_len
      in
      let s_smaller_l =
        (* check s within 0 <= s < L *)
        let s' = Bytes.make (key_len * 2) '\000' in
        Bytes.unsafe_blit_string s 0 s' 0 key_len;
        reduce_l s';
        let s' = Bytes.unsafe_to_string s' in
        let s'' = s ^ String.make key_len '\000' in
        String.equal s'' s'
      in
      if s_smaller_l then begin
        let k = sha512 [ r ; key ; msg ] in
        reduce_l k;
        let k = Bytes.unsafe_to_string k in
        let success, r' = double_scalar_mult k key s in
        success && String.equal r r'
      end else
        false
    else
      false
end