1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
|
type error = [
| `Invalid_format
| `Invalid_length
| `Invalid_range
| `Not_on_curve
| `At_infinity
| `Low_order
]
let error_to_string = function
| `Invalid_format -> "invalid format"
| `Not_on_curve -> "point is not on curve"
| `At_infinity -> "point is at infinity"
| `Invalid_length -> "invalid length"
| `Invalid_range -> "invalid range"
| `Low_order -> "low order"
let pp_error fmt e =
Format.fprintf fmt "Cannot parse point: %s" (error_to_string e)
let rev_string buf =
let len = String.length buf in
let res = Bytes.create len in
for i = 0 to len - 1 do
Bytes.set res (len - 1 - i) (String.get buf i)
done ;
Bytes.unsafe_to_string res
exception Message_too_long
let bit_at buf i =
let byte_num = i / 8 in
let bit_num = i mod 8 in
let byte = String.get_uint8 buf byte_num in
byte land (1 lsl bit_num) <> 0
module type Dh = sig
type secret
val secret_of_octets : ?compress:bool -> string ->
(secret * string, error) result
val secret_to_octets : secret -> string
val gen_key : ?compress:bool -> ?g:Mirage_crypto_rng.g -> unit ->
secret * string
val key_exchange : secret -> string -> (string, error) result
end
module type Dsa = sig
type priv
type pub
val byte_length : int
val bit_length : int
val priv_of_octets : string -> (priv, error) result
val priv_to_octets : priv -> string
val pub_of_octets : string -> (pub, error) result
val pub_to_octets : ?compress:bool -> pub -> string
val pub_of_priv : priv -> pub
val generate : ?g:Mirage_crypto_rng.g -> unit -> priv * pub
val sign : key:priv -> ?k:string -> string -> string * string
val verify : key:pub -> string * string -> string -> bool
module K_gen (H : Digestif.S) : sig
val generate : key:priv -> string -> string
end
module Precompute : sig
val generator_tables : unit -> string array array array
end
end
module type Dh_dsa = sig
module Dh : Dh
module Dsa : Dsa
end
type field_element = string
type out_field_element = bytes
module type Parameters = sig
val a : field_element
val b : field_element
val g_x : field_element
val g_y : field_element
val p : field_element
val n : field_element
val pident: string
val byte_length : int
val bit_length : int
val fe_length : int
val first_byte_bits : int option
end
type point = { f_x : field_element; f_y : field_element; f_z : field_element }
type out_point = { m_f_x : out_field_element; m_f_y : out_field_element; m_f_z : out_field_element }
type scalar = Scalar of string
module type Foreign = sig
val mul : out_field_element -> field_element -> field_element -> unit
val sub : out_field_element -> field_element -> field_element -> unit
val add : out_field_element -> field_element -> field_element -> unit
val to_montgomery : out_field_element -> field_element -> unit
val from_octets : out_field_element -> string -> unit
val set_one : out_field_element -> unit
val nz : field_element -> bool
val sqr : out_field_element -> field_element -> unit
val from_montgomery : out_field_element -> field_element -> unit
val to_octets : bytes -> field_element -> unit
val inv : out_field_element -> field_element -> unit
val select_c : out_field_element -> bool -> field_element -> field_element -> unit
val double_c : out_point -> point -> unit
val add_c : out_point -> point -> point -> unit
val scalar_mult_base_c : out_point -> string -> unit
end
module type Field_element = sig
val mul : field_element -> field_element -> field_element
val sub : field_element -> field_element -> field_element
val add : field_element -> field_element -> field_element
val from_montgomery : field_element -> field_element
val zero : field_element
val one : field_element
val nz : field_element -> bool
val sqr : field_element -> field_element
val inv : field_element -> field_element
val select : bool -> then_:field_element -> else_:field_element -> field_element
val from_be_octets : string -> field_element
val to_octets : field_element -> string
val double_point : point -> point
val add_point : point -> point -> point
val scalar_mult_base_point : scalar -> point
end
module Make_field_element (P : Parameters) (F : Foreign) : Field_element = struct
let b_uts b = Bytes.unsafe_to_string b
let create () = Bytes.create P.fe_length
let mul a b =
let tmp = create () in
F.mul tmp a b;
b_uts tmp
let sub a b =
let tmp = create () in
F.sub tmp a b;
b_uts tmp
let add a b =
let tmp = create () in
F.add tmp a b;
b_uts tmp
let from_montgomery a =
let tmp = create () in
F.from_montgomery tmp a;
b_uts tmp
let zero =
let b = Bytes.make P.fe_length '\000' in
b_uts b
let one =
let fe = create () in
F.set_one fe;
b_uts fe
let nz a = F.nz a
let sqr a =
let tmp = create () in
F.sqr tmp a;
b_uts tmp
let inv a =
let tmp = create () in
F.inv tmp a;
b_uts tmp
let select bit ~then_ ~else_ =
let tmp = create () in
F.select_c tmp bit then_ else_;
b_uts tmp
let from_be_octets buf =
let buf_rev = rev_string buf in
let tmp = create () in
F.from_octets tmp buf_rev;
F.to_montgomery tmp (b_uts tmp);
b_uts tmp
let create_octets () =
Bytes.create P.byte_length
let to_octets fe =
let tmp = create_octets () in
F.to_octets tmp fe;
b_uts tmp
let out_point () = {
m_f_x = create ();
m_f_y = create ();
m_f_z = create ();
}
let out_p_to_p p = {
f_x = b_uts p.m_f_x ;
f_y = b_uts p.m_f_y ;
f_z = b_uts p.m_f_z ;
}
let double_point p =
let tmp = out_point () in
F.double_c tmp p;
out_p_to_p tmp
let add_point a b =
let tmp = out_point () in
F.add_c tmp a b;
out_p_to_p tmp
let scalar_mult_base_point (Scalar d) =
let tmp = out_point () in
F.scalar_mult_base_c tmp d;
out_p_to_p tmp
end
module type Point = sig
val at_infinity : unit -> point
val is_infinity : point -> bool
val add : point -> point -> point
val double : point -> point
val of_octets : string -> (point, error) result
val to_octets : compress:bool -> point -> string
val to_affine_raw : point -> (field_element * field_element) option
val x_of_finite_point : point -> string
val params_g : point
val select : bool -> then_:point -> else_:point -> point
val scalar_mult_base : scalar -> point
end
module Make_point (P : Parameters) (F : Foreign) : Point = struct
module Fe = Make_field_element(P)(F)
let at_infinity () =
let f_x = Fe.one in
let f_y = Fe.one in
let f_z = Fe.zero in
{ f_x; f_y; f_z }
let is_infinity (p : point) = not (Fe.nz p.f_z)
let is_solution_to_curve_equation =
let a = Fe.from_be_octets P.a in
let b = Fe.from_be_octets P.b in
fun ~x ~y ->
let x3 = Fe.mul x x in
let x3 = Fe.mul x3 x in
let ax = Fe.mul a x in
let y2 = Fe.mul y y in
let sum = Fe.add x3 ax in
let sum = Fe.add sum b in
let sum = Fe.sub sum y2 in
not (Fe.nz sum)
let check_coordinate buf =
(* ensure buf < p: *)
match Eqaf.compare_be_with_len ~len:P.byte_length buf P.p >= 0 with
| true -> None
| exception Invalid_argument _ -> None
| false -> Some (Fe.from_be_octets buf)
(** Convert coordinates to a finite point ensuring:
- x < p
- y < p
- y^2 = ax^3 + ax + b
*)
let validate_finite_point ~x ~y =
match (check_coordinate x, check_coordinate y) with
| Some f_x, Some f_y ->
if is_solution_to_curve_equation ~x:f_x ~y:f_y then
let f_z = Fe.one in
Ok { f_x; f_y; f_z }
else Error `Not_on_curve
| _ -> Error `Invalid_range
let to_affine_raw p =
if is_infinity p then
None
else
let z1 = Fe.from_montgomery p.f_z in
let z2 = Fe.inv z1 in
let z1 = Fe.sqr z2 in
let z1 = Fe.from_montgomery z1 in
let x = Fe.mul p.f_x z1 in
let z1 = Fe.mul z1 z2 in
let y = Fe.mul p.f_y z1 in
Some (x, y)
let to_affine p =
Option.map (fun (x, y) -> Fe.to_octets x, Fe.to_octets y)
(to_affine_raw p)
let to_octets ~compress p =
let buf =
match to_affine p with
| None -> String.make 1 '\000'
| Some (x, y) ->
let len_x = String.length x and len_y = String.length y in
let res = Bytes.create (1 + len_x + len_y) in
Bytes.set res 0 '\004' ;
let rev_x = rev_string x and rev_y = rev_string y in
Bytes.unsafe_blit_string rev_x 0 res 1 len_x ;
Bytes.unsafe_blit_string rev_y 0 res (1 + len_x) len_y ;
Bytes.unsafe_to_string res
in
if compress then
let out = Bytes.create (P.byte_length + 1) in
let ident =
2 + (String.get_uint8 buf (P.byte_length * 2)) land 1
in
Bytes.unsafe_blit_string buf 1 out 1 P.byte_length;
Bytes.set_uint8 out 0 ident;
Bytes.unsafe_to_string out
else
buf
let double p = Fe.double_point p
let add p q = Fe.add_point p q
let x_of_finite_point p =
match to_affine p with None -> assert false | Some (x, _) -> rev_string x
let params_g =
match validate_finite_point ~x:P.g_x ~y:P.g_y with
| Ok p -> p
| Error _ -> assert false
let select bit ~then_ ~else_ =
{
f_x = Fe.select bit ~then_:then_.f_x ~else_:else_.f_x;
f_y = Fe.select bit ~then_:then_.f_y ~else_:else_.f_y;
f_z = Fe.select bit ~then_:then_.f_z ~else_:else_.f_z;
}
let pow x exp =
let r0 = ref Fe.one in
let r1 = ref x in
for i = P.byte_length * 8 - 1 downto 0 do
let bit = bit_at exp i in
let multiplied = Fe.mul !r0 !r1 in
let r0_sqr = Fe.sqr !r0 in
let r1_sqr = Fe.sqr !r1 in
r0 := Fe.select bit ~then_:multiplied ~else_:r0_sqr;
r1 := Fe.select bit ~then_:r1_sqr ~else_:multiplied;
done;
!r0
let decompress =
(* When p = 4*k+3, as is the case of NIST-P256, there is an efficient square
root algorithm to recover the y, as follows:
Given the compact representation of Q as x,
y2 = x^3 + a*x + b
y' = y2^((p+1)/4)
y = min(y',p-y')
Q=(x,y) is the canonical representation of the point
*)
let pident = P.pident (* (Params.p + 1) / 4*) in
let a = Fe.from_be_octets P.a in
let b = Fe.from_be_octets P.b in
let p = Fe.from_be_octets P.p in
fun pk ->
let x = Fe.from_be_octets (String.sub pk 1 P.byte_length) in
let x3 = Fe.mul x x in
let x3 = Fe.mul x3 x in (* x3 *)
let ax = Fe.mul a x in (* ax *)
let sum = Fe.add x3 ax in
let sum = Fe.add sum b in (* y^2 *)
let y = pow sum pident in (* https://tools.ietf.org/id/draft-jivsov-ecc-compact-00.xml#sqrt point 4.3*)
let y' = Fe.sub p y in
let y = Fe.from_montgomery y in
let y_struct = Fe.to_octets y in (* number must not be in montgomery domain*)
let y_struct = rev_string y_struct in
let y' = Fe.from_montgomery y' in
let y_struct2 = Fe.to_octets y' in (* number must not be in montgomery domain*)
let y_struct2 = rev_string y_struct2 in
let ident = String.get_uint8 pk 0 in
let signY =
2 + (String.get_uint8 y_struct (P.byte_length - 1)) land 1
in
let res = if Int.equal signY ident then y_struct else y_struct2 in
let out = Bytes.create ((P.byte_length * 2) + 1) in
Bytes.set out 0 '\004';
Bytes.unsafe_blit_string pk 1 out 1 P.byte_length;
Bytes.unsafe_blit_string res 0 out (P.byte_length + 1) P.byte_length;
Bytes.unsafe_to_string out
let of_octets buf =
let len = P.byte_length in
if String.length buf = 0 then
Error `Invalid_format
else
let of_octets buf =
let x = String.sub buf 1 len in
let y = String.sub buf (1 + len) len in
validate_finite_point ~x ~y
in
match String.get_uint8 buf 0 with
| 0x00 when String.length buf = 1 ->
Ok (at_infinity ())
| 0x02 | 0x03 when String.length P.pident > 0 ->
let decompressed = decompress buf in
of_octets decompressed
| 0x04 when String.length buf = 1 + len + len ->
of_octets buf
| 0x00 | 0x04 -> Error `Invalid_length
| _ -> Error `Invalid_format
let scalar_mult_base = Fe.scalar_mult_base_point
end
module type Scalar = sig
val not_zero : string -> bool
val is_in_range : string -> bool
val of_octets : string -> (scalar, error) result
val to_octets : scalar -> string
val scalar_mult : scalar -> point -> point
val scalar_mult_base : scalar -> point
val generator_tables : unit -> field_element array array array
end
module Make_scalar (Param : Parameters) (P : Point) : Scalar = struct
let not_zero =
let zero = String.make Param.byte_length '\000' in
fun buf -> not (Eqaf.equal buf zero)
let is_in_range buf =
not_zero buf
&& Eqaf.compare_be_with_len ~len:Param.byte_length Param.n buf > 0
let of_octets buf =
match is_in_range buf with
| exception Invalid_argument _ -> Error `Invalid_length
| true -> Ok (Scalar (rev_string buf))
| false -> Error `Invalid_range
let to_octets (Scalar buf) = rev_string buf
(* Branchless Montgomery ladder method *)
let scalar_mult (Scalar s) p =
let r0 = ref (P.at_infinity ()) in
let r1 = ref p in
for i = Param.byte_length * 8 - 1 downto 0 do
let bit = bit_at s i in
let sum = P.add !r0 !r1 in
let r0_double = P.double !r0 in
let r1_double = P.double !r1 in
r0 := P.select bit ~then_:sum ~else_:r0_double;
r1 := P.select bit ~then_:r1_double ~else_:sum
done;
!r0
(* Specialization of [scalar_mult d p] when [p] is the generator *)
let scalar_mult_base = P.scalar_mult_base
(* Pre-compute multiples of the generator point
returns the tables along with the number of significant bytes *)
let generator_tables () =
let len = Param.fe_length * 2 in
let one_table _ = Array.init 15 (fun _ -> P.at_infinity ()) in
let table = Array.init len one_table in
let base = ref P.params_g in
for i = 0 to len - 1 do
table.(i).(0) <- !base;
for j = 1 to 14 do
table.(i).(j) <- P.add !base table.(i).(j - 1)
done;
base := P.double !base;
base := P.double !base;
base := P.double !base;
base := P.double !base
done;
let convert {f_x; f_y; f_z} = [|f_x; f_y; f_z|] in
Array.map (Array.map convert) table
end
module Make_dh (Param : Parameters) (P : Point) (S : Scalar) : Dh = struct
let point_of_octets c =
match P.of_octets c with
| Ok p when not (P.is_infinity p) -> Ok p
| Ok _ -> Error `At_infinity
| Error _ as e -> e
let point_to_octets = P.to_octets
type secret = scalar
let share ?(compress = false) private_key =
let public_key = S.scalar_mult_base private_key in
point_to_octets ~compress public_key
let secret_of_octets ?compress s =
match S.of_octets s with
| Ok p -> Ok (p, share ?compress p)
| Error _ as e -> e
let secret_to_octets s =
S.to_octets s
let rec generate_private_key ?g () =
let candidate = Mirage_crypto_rng.generate ?g Param.byte_length in
match S.of_octets candidate with
| Ok secret -> secret
| Error _ -> generate_private_key ?g ()
let gen_key ?compress ?g () =
let private_key = generate_private_key ?g () in
private_key, share ?compress private_key
let key_exchange secret received =
match point_of_octets received with
| Error _ as err -> err
| Ok shared -> Ok (P.x_of_finite_point (S.scalar_mult secret shared))
end
module type Foreign_n = sig
val mul : out_field_element -> field_element -> field_element -> unit
val add : out_field_element -> field_element -> field_element -> unit
val inv : out_field_element -> field_element -> unit
val one : out_field_element -> unit
val from_bytes : out_field_element -> string -> unit
val to_bytes : bytes -> field_element -> unit
val from_montgomery : out_field_element -> field_element -> unit
val to_montgomery : out_field_element -> field_element -> unit
end
module type Fn = sig
val from_be_octets : string -> field_element
val to_be_octets : field_element -> string
val mul : field_element -> field_element -> field_element
val add : field_element -> field_element -> field_element
val inv : field_element -> field_element
val one : field_element
val from_montgomery : field_element -> field_element
val to_montgomery : field_element -> field_element
end
module Make_Fn (P : Parameters) (F : Foreign_n) : Fn = struct
let b_uts = Bytes.unsafe_to_string
let create () = Bytes.create P.fe_length
let create_octets () = Bytes.create P.byte_length
let from_be_octets v =
let v' = create () in
F.from_bytes v' (rev_string v);
F.to_montgomery v' (b_uts v');
b_uts v'
let to_be_octets v =
let buf = create_octets () in
F.to_bytes buf v;
rev_string (b_uts buf)
let mul a b =
let tmp = create () in
F.mul tmp a b;
b_uts tmp
let add a b =
let tmp = create () in
F.add tmp a b;
b_uts tmp
let inv a =
let tmp = create () in
F.inv tmp a;
F.to_montgomery tmp (b_uts tmp);
b_uts tmp
let one =
let tmp = create () in
F.one tmp;
b_uts tmp
let from_montgomery a =
let tmp = create () in
F.from_montgomery tmp a;
b_uts tmp
let to_montgomery a =
let tmp = create () in
F.to_montgomery tmp a;
b_uts tmp
end
module Make_dsa (Param : Parameters) (F : Fn) (P : Point) (S : Scalar) (H : Digestif.S) = struct
type priv = scalar
let byte_length = Param.byte_length
let bit_length = Param.bit_length
let priv_of_octets= S.of_octets
let priv_to_octets = S.to_octets
let padded msg =
let l = String.length msg in
let bl = Param.byte_length in
let first_byte_ok () =
match Param.first_byte_bits with
| None -> true
| Some m -> (String.get_uint8 msg 0) land (0xFF land (lnot m)) = 0
in
if l > bl || (l = bl && not (first_byte_ok ())) then
raise Message_too_long
else if l = bl then
msg
else
( let res = Bytes.make bl '\000' in
Bytes.unsafe_blit_string msg 0 res (bl - l) l ;
Bytes.unsafe_to_string res )
(* RFC 6979: compute a deterministic k *)
module K_gen (H : Digestif.S) = struct
let drbg : 'a Mirage_crypto_rng.generator =
let module M = Mirage_crypto_rng.Hmac_drbg (H) in (module M)
let g ~key msg =
let g = Mirage_crypto_rng.create ~strict:true drbg in
Mirage_crypto_rng.reseed ~g (S.to_octets key ^ msg);
g
(* Defined in RFC 6979 sec 2.3.2 with
- blen = 8 * Param.byte_length
- qlen = Param.bit_length *)
let bits2int r =
(* keep qlen *leftmost* bits *)
let shift = (8 * Param.byte_length) - Param.bit_length in
if shift = 0 then
Bytes.unsafe_to_string r
else
(* Assuming shift is < 8 *)
let r' = Bytes.create Param.byte_length in
let p = ref 0x00 in
for i = 0 to Param.byte_length - 1 do
let x = Bytes.get_uint8 r i in
let v = (x lsr shift) lor (!p lsl (8 - shift)) in
p := x;
Bytes.set_uint8 r' i v
done;
Bytes.unsafe_to_string r'
(* take qbit length, and ensure it is suitable for ECDSA (> 0 & < n) *)
let gen g =
let rec go () =
let b = Bytes.create Param.byte_length in
Mirage_crypto_rng.generate_into ~g b Param.byte_length;
(* truncate to the desired number of bits *)
let r = bits2int b in
if S.is_in_range r then r else go ()
in
go ()
let generate ~key buf = gen (g ~key (padded buf))
end
module K_gen_default = K_gen(H)
type pub = point
let pub_of_octets = P.of_octets
let pub_to_octets ?(compress = false) pk = P.to_octets ~compress pk
let generate ?g () =
(* FIPS 186-4 B 4.2 *)
let d =
let rec one () =
match S.of_octets (Mirage_crypto_rng.generate ?g Param.byte_length) with
| Ok x -> x
| Error _ -> one ()
in
one ()
in
let q = S.scalar_mult_base d in
(d, q)
let x_of_finite_point_mod_n p =
match P.to_affine_raw p with
| None -> None
| Some (x, _) ->
let x = F.to_montgomery x in
let x = F.mul x F.one in
let x = F.from_montgomery x in
Some (F.to_be_octets x)
let sign ~key ?k msg =
let msg = padded msg in
let e = F.from_be_octets msg in
let g = K_gen_default.g ~key msg in
let rec do_sign g =
let again () =
match k with
| None -> do_sign g
| Some _ -> invalid_arg "k not suitable"
in
let k' = match k with None -> K_gen_default.gen g | Some k -> k in
let ksc = match S.of_octets k' with
| Ok ksc -> ksc
| Error _ -> invalid_arg "k not in range" (* if no k is provided, this cannot happen since K_gen_*.gen already preserves the Scalar invariants *)
in
let point = S.scalar_mult_base ksc in
match x_of_finite_point_mod_n point with
| None -> again ()
| Some r ->
let r_mon = F.from_be_octets r in
let kmon = F.from_be_octets k' in
let kinv = F.inv kmon in
let dmon = F.from_be_octets (S.to_octets key) in
let rd = F.mul r_mon dmon in
let cmon = F.add e rd in
let smon = F.mul kinv cmon in
let s = F.from_montgomery smon in
let s = F.to_be_octets s in
if S.not_zero s && S.not_zero r then
r, s
else
again ()
in
do_sign g
let pub_of_priv priv = S.scalar_mult_base priv
let verify ~key (r, s) msg =
try
let r = padded r and s = padded s in
if not (S.is_in_range r && S.is_in_range s) then
false
else
let msg = padded msg in
let z = F.from_be_octets msg in
let s_mon = F.from_be_octets s in
let s_inv = F.inv s_mon in
let u1 = F.mul z s_inv in
let r_mon = F.from_be_octets r in
let u2 = F.mul r_mon s_inv in
let u1 = F.from_montgomery u1 in
let u2 = F.from_montgomery u2 in
match
S.of_octets (F.to_be_octets u1),
S.of_octets (F.to_be_octets u2)
with
| Ok u1, Ok u2 ->
let point =
P.add
(S.scalar_mult_base u1)
(S.scalar_mult u2 key)
in
begin match x_of_finite_point_mod_n point with
| None -> false (* point is infinity *)
| Some r' -> String.equal r r'
end
| Error _, _ | _, Error _ -> false
with
| Message_too_long -> false
module Precompute = struct
let generator_tables = S.generator_tables
end
end
module P256 : Dh_dsa = struct
module Params = struct
let a = "\xFF\xFF\xFF\xFF\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFC"
let b = "\x5A\xC6\x35\xD8\xAA\x3A\x93\xE7\xB3\xEB\xBD\x55\x76\x98\x86\xBC\x65\x1D\x06\xB0\xCC\x53\xB0\xF6\x3B\xCE\x3C\x3E\x27\xD2\x60\x4B"
let g_x = "\x6B\x17\xD1\xF2\xE1\x2C\x42\x47\xF8\xBC\xE6\xE5\x63\xA4\x40\xF2\x77\x03\x7D\x81\x2D\xEB\x33\xA0\xF4\xA1\x39\x45\xD8\x98\xC2\x96"
let g_y = "\x4F\xE3\x42\xE2\xFE\x1A\x7F\x9B\x8E\xE7\xEB\x4A\x7C\x0F\x9E\x16\x2B\xCE\x33\x57\x6B\x31\x5E\xCE\xCB\xB6\x40\x68\x37\xBF\x51\xF5"
let p = "\xFF\xFF\xFF\xFF\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF"
let n = "\xFF\xFF\xFF\xFF\x00\x00\x00\x00\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xBC\xE6\xFA\xAD\xA7\x17\x9E\x84\xF3\xB9\xCA\xC2\xFC\x63\x25\x51"
let pident = "\x3F\xFF\xFF\xFF\xC0\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" |> rev_string (* (Params.p + 1) / 4*)
let byte_length = 32
let bit_length = 256
let fe_length = 32
let first_byte_bits = None
end
module Foreign = struct
external mul : out_field_element -> field_element -> field_element -> unit = "mc_p256_mul" [@@noalloc]
external sub : out_field_element -> field_element -> field_element -> unit = "mc_p256_sub" [@@noalloc]
external add : out_field_element -> field_element -> field_element -> unit = "mc_p256_add" [@@noalloc]
external to_montgomery : out_field_element -> field_element -> unit = "mc_p256_to_montgomery" [@@noalloc]
external from_octets : out_field_element -> string -> unit = "mc_p256_from_bytes" [@@noalloc]
external set_one : out_field_element -> unit = "mc_p256_set_one" [@@noalloc]
external nz : field_element -> bool = "mc_p256_nz" [@@noalloc]
external sqr : out_field_element -> field_element -> unit = "mc_p256_sqr" [@@noalloc]
external from_montgomery : out_field_element -> field_element -> unit = "mc_p256_from_montgomery" [@@noalloc]
external to_octets : bytes -> field_element -> unit = "mc_p256_to_bytes" [@@noalloc]
external inv : out_field_element -> field_element -> unit = "mc_p256_inv" [@@noalloc]
external select_c : out_field_element -> bool -> field_element -> field_element -> unit = "mc_p256_select" [@@noalloc]
external double_c : out_point -> point -> unit = "mc_p256_point_double" [@@noalloc]
external add_c : out_point -> point -> point -> unit = "mc_p256_point_add" [@@noalloc]
external scalar_mult_base_c : out_point -> string -> unit = "mc_p256_scalar_mult_base" [@@noalloc]
end
module Foreign_n = struct
external mul : out_field_element -> field_element -> field_element -> unit = "mc_np256_mul" [@@noalloc]
external add : out_field_element -> field_element -> field_element -> unit = "mc_np256_add" [@@noalloc]
external inv : out_field_element -> field_element -> unit = "mc_np256_inv" [@@noalloc]
external one : out_field_element -> unit = "mc_np256_one" [@@noalloc]
external from_bytes : out_field_element -> string -> unit = "mc_np256_from_bytes" [@@noalloc]
external to_bytes : bytes -> field_element -> unit = "mc_np256_to_bytes" [@@noalloc]
external from_montgomery : out_field_element -> field_element -> unit = "mc_np256_from_montgomery" [@@noalloc]
external to_montgomery : out_field_element -> field_element -> unit = "mc_np256_to_montgomery" [@@noalloc]
end
module P = Make_point(Params)(Foreign)
module S = Make_scalar(Params)(P)
module Dh = Make_dh(Params)(P)(S)
module Fn = Make_Fn(Params)(Foreign_n)
module Dsa = Make_dsa(Params)(Fn)(P)(S)(Digestif.SHA256)
end
module P384 : Dh_dsa = struct
module Params = struct
let a = "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFE\xFF\xFF\xFF\xFF\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFF\xFF\xFC"
let b = "\xB3\x31\x2F\xA7\xE2\x3E\xE7\xE4\x98\x8E\x05\x6B\xE3\xF8\x2D\x19\x18\x1D\x9C\x6E\xFE\x81\x41\x12\x03\x14\x08\x8F\x50\x13\x87\x5A\xC6\x56\x39\x8D\x8A\x2E\xD1\x9D\x2A\x85\xC8\xED\xD3\xEC\x2A\xEF"
let g_x = "\xAA\x87\xCA\x22\xBE\x8B\x05\x37\x8E\xB1\xC7\x1E\xF3\x20\xAD\x74\x6E\x1D\x3B\x62\x8B\xA7\x9B\x98\x59\xF7\x41\xE0\x82\x54\x2A\x38\x55\x02\xF2\x5D\xBF\x55\x29\x6C\x3A\x54\x5E\x38\x72\x76\x0A\xB7"
let g_y =
"\x36\x17\xde\x4a\x96\x26\x2c\x6f\x5d\x9e\x98\xbf\x92\x92\xdc\x29\xf8\xf4\x1d\xbd\x28\x9a\x14\x7c\xe9\xda\x31\x13\xb5\xf0\xb8\xc0\x0a\x60\xb1\xce\x1d\x7e\x81\x9d\x7a\x43\x1d\x7c\x90\xea\x0e\x5f"
let p = "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFE\xFF\xFF\xFF\xFF\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFF\xFF\xFF"
let n = "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xC7\x63\x4D\x81\xF4\x37\x2D\xDF\x58\x1A\x0D\xB2\x48\xB0\xA7\x7A\xEC\xEC\x19\x6A\xCC\xC5\x29\x73"
let pident = "\x3F\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xBF\xFF\xFF\xFF\xC0\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00" |> rev_string (* (Params.p + 1) / 4*)
let byte_length = 48
let bit_length = 384
let fe_length = 48
let first_byte_bits = None
end
module Foreign = struct
external mul : out_field_element -> field_element -> field_element -> unit = "mc_p384_mul" [@@noalloc]
external sub : out_field_element -> field_element -> field_element -> unit = "mc_p384_sub" [@@noalloc]
external add : out_field_element -> field_element -> field_element -> unit = "mc_p384_add" [@@noalloc]
external to_montgomery : out_field_element -> field_element -> unit = "mc_p384_to_montgomery" [@@noalloc]
external from_octets : out_field_element -> string -> unit = "mc_p384_from_bytes" [@@noalloc]
external set_one : out_field_element -> unit = "mc_p384_set_one" [@@noalloc]
external nz : field_element -> bool = "mc_p384_nz" [@@noalloc]
external sqr : out_field_element -> field_element -> unit = "mc_p384_sqr" [@@noalloc]
external from_montgomery : out_field_element -> field_element -> unit = "mc_p384_from_montgomery" [@@noalloc]
external to_octets : bytes -> field_element -> unit = "mc_p384_to_bytes" [@@noalloc]
external inv : out_field_element -> field_element -> unit = "mc_p384_inv" [@@noalloc]
external select_c : out_field_element -> bool -> field_element -> field_element -> unit = "mc_p384_select" [@@noalloc]
external double_c : out_point -> point -> unit = "mc_p384_point_double" [@@noalloc]
external add_c : out_point -> point -> point -> unit = "mc_p384_point_add" [@@noalloc]
external scalar_mult_base_c : out_point -> string -> unit = "mc_p384_scalar_mult_base" [@@noalloc]
end
module Foreign_n = struct
external mul : out_field_element -> field_element -> field_element -> unit = "mc_np384_mul" [@@noalloc]
external add : out_field_element -> field_element -> field_element -> unit = "mc_np384_add" [@@noalloc]
external inv : out_field_element -> field_element -> unit = "mc_np384_inv" [@@noalloc]
external one : out_field_element -> unit = "mc_np384_one" [@@noalloc]
external from_bytes : out_field_element -> string -> unit = "mc_np384_from_bytes" [@@noalloc]
external to_bytes : bytes -> field_element -> unit = "mc_np384_to_bytes" [@@noalloc]
external from_montgomery : out_field_element -> field_element -> unit = "mc_np384_from_montgomery" [@@noalloc]
external to_montgomery : out_field_element -> field_element -> unit = "mc_np384_to_montgomery" [@@noalloc]
end
module P = Make_point(Params)(Foreign)
module S = Make_scalar(Params)(P)
module Dh = Make_dh(Params)(P)(S)
module Fn = Make_Fn(Params)(Foreign_n)
module Dsa = Make_dsa(Params)(Fn)(P)(S)(Digestif.SHA384)
end
module P521 : Dh_dsa = struct
module Params = struct
let a = "\x01\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFC"
let b = "\x00\x51\x95\x3E\xB9\x61\x8E\x1C\x9A\x1F\x92\x9A\x21\xA0\xB6\x85\x40\xEE\xA2\xDA\x72\x5B\x99\xB3\x15\xF3\xB8\xB4\x89\x91\x8E\xF1\x09\xE1\x56\x19\x39\x51\xEC\x7E\x93\x7B\x16\x52\xC0\xBD\x3B\xB1\xBF\x07\x35\x73\xDF\x88\x3D\x2C\x34\xF1\xEF\x45\x1F\xD4\x6B\x50\x3F\x00"
let g_x =
"\x00\xC6\x85\x8E\x06\xB7\x04\x04\xE9\xCD\x9E\x3E\xCB\x66\x23\x95\xB4\x42\x9C\x64\x81\x39\x05\x3F\xB5\x21\xF8\x28\xAF\x60\x6B\x4D\x3D\xBA\xA1\x4B\x5E\x77\xEF\xE7\x59\x28\xFE\x1D\xC1\x27\xA2\xFF\xA8\xDE\x33\x48\xB3\xC1\x85\x6A\x42\x9B\xF9\x7E\x7E\x31\xC2\xE5\xBD\x66"
let g_y =
"\x01\x18\x39\x29\x6a\x78\x9a\x3b\xc0\x04\x5c\x8a\x5f\xb4\x2c\x7d\x1b\xd9\x98\xf5\x44\x49\x57\x9b\x44\x68\x17\xaf\xbd\x17\x27\x3e\x66\x2c\x97\xee\x72\x99\x5e\xf4\x26\x40\xc5\x50\xb9\x01\x3f\xad\x07\x61\x35\x3c\x70\x86\xa2\x72\xc2\x40\x88\xbe\x94\x76\x9f\xd1\x66\x50"
let p = "\x01\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF"
let n = "\x01\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFA\x51\x86\x87\x83\xBF\x2F\x96\x6B\x7F\xCC\x01\x48\xF7\x09\xA5\xD0\x3B\xB5\xC9\xB8\x89\x9C\x47\xAE\xBB\x6F\xB7\x1E\x91\x38\x64\x09"
let pident = "\x01\x7f\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" |> rev_string
let byte_length = 66
let bit_length = 521
let fe_length = if Sys.word_size == 64 then 72 else 68 (* TODO: is this congruent with C code? *)
let first_byte_bits = Some 0x01
end
module Foreign = struct
external mul : out_field_element -> field_element -> field_element -> unit = "mc_p521_mul" [@@noalloc]
external sub : out_field_element -> field_element -> field_element -> unit = "mc_p521_sub" [@@noalloc]
external add : out_field_element -> field_element -> field_element -> unit = "mc_p521_add" [@@noalloc]
external to_montgomery : out_field_element -> field_element -> unit = "mc_p521_to_montgomery" [@@noalloc]
external from_octets : out_field_element -> string -> unit = "mc_p521_from_bytes" [@@noalloc]
external set_one : out_field_element -> unit = "mc_p521_set_one" [@@noalloc]
external nz : field_element -> bool = "mc_p521_nz" [@@noalloc]
external sqr : out_field_element -> field_element -> unit = "mc_p521_sqr" [@@noalloc]
external from_montgomery : out_field_element -> field_element -> unit = "mc_p521_from_montgomery" [@@noalloc]
external to_octets : bytes -> field_element -> unit = "mc_p521_to_bytes" [@@noalloc]
external inv : out_field_element -> field_element -> unit = "mc_p521_inv" [@@noalloc]
external select_c : out_field_element -> bool -> field_element -> field_element -> unit = "mc_p521_select" [@@noalloc]
external double_c : out_point -> point -> unit = "mc_p521_point_double" [@@noalloc]
external add_c : out_point -> point -> point -> unit = "mc_p521_point_add" [@@noalloc]
external scalar_mult_base_c : out_point -> string -> unit = "mc_p521_scalar_mult_base" [@@noalloc]
end
module Foreign_n = struct
external mul : out_field_element -> field_element -> field_element -> unit = "mc_np521_mul" [@@noalloc]
external add : out_field_element -> field_element -> field_element -> unit = "mc_np521_add" [@@noalloc]
external inv : out_field_element -> field_element -> unit = "mc_np521_inv" [@@noalloc]
external one : out_field_element -> unit = "mc_np521_one" [@@noalloc]
external from_bytes : out_field_element -> string -> unit = "mc_np521_from_bytes" [@@noalloc]
external to_bytes : bytes -> field_element -> unit = "mc_np521_to_bytes" [@@noalloc]
external from_montgomery : out_field_element -> field_element -> unit = "mc_np521_from_montgomery" [@@noalloc]
external to_montgomery : out_field_element -> field_element -> unit = "mc_np521_to_montgomery" [@@noalloc]
end
module P = Make_point(Params)(Foreign)
module S = Make_scalar(Params)(P)
module Dh = Make_dh(Params)(P)(S)
module Fn = Make_Fn(Params)(Foreign_n)
module Dsa = Make_dsa(Params)(Fn)(P)(S)(Digestif.SHA512)
end
module X25519 = struct
(* RFC 7748 *)
external x25519_scalar_mult_generic : bytes -> string -> string -> unit = "mc_x25519_scalar_mult_generic" [@@noalloc]
let key_len = 32
let scalar_mult in_ base =
let out = Bytes.create key_len in
x25519_scalar_mult_generic out in_ base;
Bytes.unsafe_to_string out
type secret = string
let basepoint = String.init key_len (function 0 -> '\009' | _ -> '\000')
let public priv = scalar_mult priv basepoint
let gen_key ?compress:_ ?g () =
let secret = Mirage_crypto_rng.generate ?g key_len in
secret, public secret
let secret_of_octets ?compress:_ s =
if String.length s = key_len then
Ok (s, public s)
else
Error `Invalid_length
let secret_to_octets s = s
let is_zero =
let zero = String.make key_len '\000' in
fun buf -> String.equal zero buf
let key_exchange secret public =
if String.length public = key_len then
let res = scalar_mult secret public in
if is_zero res then Error `Low_order else Ok res
else
Error `Invalid_length
end
module Ed25519 = struct
external scalar_mult_base_to_bytes : bytes -> string -> unit = "mc_25519_scalar_mult_base" [@@noalloc]
external reduce_l : bytes -> unit = "mc_25519_reduce_l" [@@noalloc]
external muladd : bytes -> string -> string -> string -> unit = "mc_25519_muladd" [@@noalloc]
external double_scalar_mult : bytes -> string -> string -> string -> bool = "mc_25519_double_scalar_mult" [@@noalloc]
external pub_ok : string -> bool = "mc_25519_pub_ok" [@@noalloc]
let key_len = 32
let scalar_mult_base_to_bytes p =
let tmp = Bytes.create key_len in
scalar_mult_base_to_bytes tmp p;
Bytes.unsafe_to_string tmp
let muladd a b c =
let tmp = Bytes.create key_len in
muladd tmp a b c;
Bytes.unsafe_to_string tmp
let double_scalar_mult a b c =
let tmp = Bytes.create key_len in
let s = double_scalar_mult tmp a b c in
s, Bytes.unsafe_to_string tmp
type pub = string
type priv = string
let sha512 datas =
let open Digestif.SHA512 in
let buf = Bytes.create digest_size in
let ctx = List.fold_left (feed_string ?off:None ?len:None) empty datas in
get_into_bytes ctx buf;
buf
(* RFC 8032 *)
let public secret =
(* section 5.1.5 *)
(* step 1 *)
let h = sha512 [ secret ] in
(* step 2 *)
let s, rest =
Bytes.sub h 0 key_len,
Bytes.unsafe_to_string (Bytes.sub h key_len (Bytes.length h - key_len))
in
Bytes.set_uint8 s 0 ((Bytes.get_uint8 s 0) land 248);
Bytes.set_uint8 s 31 (((Bytes.get_uint8 s 31) land 127) lor 64);
let s = Bytes.unsafe_to_string s in
(* step 3 and 4 *)
let public = scalar_mult_base_to_bytes s in
public, (s, rest)
let pub_of_priv secret = fst (public secret)
let priv_of_octets buf =
if String.length buf = key_len then Ok buf else Error `Invalid_length
let priv_to_octets (priv : priv) = priv
let pub_of_octets buf =
if String.length buf = key_len then
if pub_ok buf then
Ok buf
else
Error `Not_on_curve
else
Error `Invalid_length
let pub_to_octets pub = pub
let generate ?g () =
let secret = Mirage_crypto_rng.generate ?g key_len in
secret, pub_of_priv secret
let sign ~key msg =
(* section 5.1.6 *)
let pub, (s, prefix) = public key in
let r = sha512 [ prefix; msg ] in
reduce_l r;
let r = Bytes.unsafe_to_string r in
let r_big = scalar_mult_base_to_bytes r in
let k = sha512 [ r_big; pub; msg] in
reduce_l k;
let k = Bytes.unsafe_to_string k in
let s_out = muladd k s r in
let res = Bytes.create (key_len + key_len) in
Bytes.unsafe_blit_string r_big 0 res 0 key_len ;
Bytes.unsafe_blit_string s_out 0 res key_len key_len ;
Bytes.unsafe_to_string res
let verify ~key signature ~msg =
(* section 5.1.7 *)
if String.length signature = 2 * key_len then
let r, s =
String.sub signature 0 key_len,
String.sub signature key_len key_len
in
let s_smaller_l =
(* check s within 0 <= s < L *)
let s' = Bytes.make (key_len * 2) '\000' in
Bytes.unsafe_blit_string s 0 s' 0 key_len;
reduce_l s';
let s' = Bytes.unsafe_to_string s' in
let s'' = s ^ String.make key_len '\000' in
String.equal s'' s'
in
if s_smaller_l then begin
let k = sha512 [ r ; key ; msg ] in
reduce_l k;
let k = Bytes.unsafe_to_string k in
let success, r' = double_scalar_mult k key s in
success && String.equal r r'
end else
false
else
false
end
|