1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
#define MAKE_FN_NAME1(x,y) x ## y
#define MAKE_FN_NAME(x,y) MAKE_FN_NAME1(x,y)
#define fe_one MAKE_FN_NAME(CURVE_DESCRIPTION,_set_one)
#define fe_add MAKE_FN_NAME(CURVE_DESCRIPTION,_add)
#define fe_sub MAKE_FN_NAME(CURVE_DESCRIPTION,_sub)
#define fe_mul MAKE_FN_NAME(CURVE_DESCRIPTION,_mul)
#define fe_sqr MAKE_FN_NAME(CURVE_DESCRIPTION,_square)
#define fe_nonzero MAKE_FN_NAME(CURVE_DESCRIPTION,_nonzero)
#define fe_selectznz MAKE_FN_NAME(CURVE_DESCRIPTION,_selectznz)
#define fe_from_bytes MAKE_FN_NAME(CURVE_DESCRIPTION,_from_bytes)
#define fe_to_mont MAKE_FN_NAME(CURVE_DESCRIPTION,_to_montgomery)
typedef WORD fe[LIMBS];
static WORD fe_nz(const WORD in1[LIMBS]) {
WORD ret;
fe_nonzero(&ret, in1);
return ret;
}
static void fe_copy(WORD out[LIMBS], const WORD in1[LIMBS]) {
for (int i = 0; i < LIMBS; i++) {
out[i] = in1[i];
}
}
static void fe_cmovznz(WORD out[LIMBS], WORD t, const WORD z[LIMBS],
const WORD nz[LIMBS]) {
fe_selectznz(out, !!t, z, nz);
}
// Group operations
// ----------------
//
// Building on top of the field operations we have the operations on the
// elliptic curve group itself. Points on the curve are represented in Jacobian
// coordinates.
//
// Both operations were transcribed to Coq and proven to correspond to naive
// implementations using Affine coordinates, for all suitable fields. In the
// Coq proofs, issues of constant-time execution and memory layout (aliasing)
// conventions were not considered. Specification of affine coordinates:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Spec/WeierstrassCurve.v#L28>
// As a sanity check, a proof that these points form a commutative group:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/AffineProofs.v#L33>
// point_double calculates 2*(x_in, y_in, z_in)
//
// The method is taken from:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
//
// Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
// while x_out == y_in is not (maybe this works, but it's not tested).
static void point_double(fe x_out, fe y_out, fe z_out,
const fe x_in, const fe y_in, const fe z_in) {
fe delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
// delta = z^2
fe_sqr(delta, z_in);
// gamma = y^2
fe_sqr(gamma, y_in);
// beta = x*gamma
fe_mul(beta, x_in, gamma);
// alpha = 3*(x-delta)*(x+delta)
fe_sub(ftmp, x_in, delta);
fe_add(ftmp2, x_in, delta);
fe_add(tmptmp, ftmp2, ftmp2);
fe_add(ftmp2, ftmp2, tmptmp);
fe_mul(alpha, ftmp, ftmp2);
// x' = alpha^2 - 8*beta
fe_sqr(x_out, alpha);
fe_add(fourbeta, beta, beta);
fe_add(fourbeta, fourbeta, fourbeta);
fe_add(tmptmp, fourbeta, fourbeta);
fe_sub(x_out, x_out, tmptmp);
// z' = (y + z)^2 - gamma - delta
fe_add(delta, gamma, delta);
fe_add(ftmp, y_in, z_in);
fe_sqr(z_out, ftmp);
fe_sub(z_out, z_out, delta);
// y' = alpha*(4*beta - x') - 8*gamma^2
fe_sub(y_out, fourbeta, x_out);
fe_add(gamma, gamma, gamma);
fe_sqr(gamma, gamma);
fe_mul(y_out, alpha, y_out);
fe_add(gamma, gamma, gamma);
fe_sub(y_out, y_out, gamma);
}
// point_add calculates (x1, y1, z1) + (x2, y2, z2)
//
// The method is taken from:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
// adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L135>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L205>
//
// This function includes a branch for checking whether the two input points
// are equal, (while not equal to the point at infinity). This case never
// happens during single point multiplication, so there is no timing leak for
// ECDH or ECDSA signing.
static void point_add(fe x3, fe y3, fe z3, const fe x1,
const fe y1, const fe z1, const int mixed,
const fe x2, const fe y2, const fe z2) {
fe x_out, y_out, z_out;
WORD z1nz = fe_nz(z1);
WORD z2nz = fe_nz(z2);
// z1z1 = z1z1 = z1**2
fe z1z1; fe_sqr(z1z1, z1);
fe u1, s1, two_z1z2;
if (!mixed) {
// z2z2 = z2**2
fe z2z2; fe_sqr(z2z2, z2);
// u1 = x1*z2z2
fe_mul(u1, x1, z2z2);
// two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
fe_add(two_z1z2, z1, z2);
fe_sqr(two_z1z2, two_z1z2);
fe_sub(two_z1z2, two_z1z2, z1z1);
fe_sub(two_z1z2, two_z1z2, z2z2);
// s1 = y1 * z2**3
fe_mul(s1, z2, z2z2);
fe_mul(s1, s1, y1);
} else {
// We'll assume z2 = 1 (special case z2 = 0 is handled later).
// u1 = x1*z2z2
fe_copy(u1, x1);
// two_z1z2 = 2z1z2
fe_add(two_z1z2, z1, z1);
// s1 = y1 * z2**3
fe_copy(s1, y1);
}
// u2 = x2*z1z1
fe u2; fe_mul(u2, x2, z1z1);
// h = u2 - u1
fe h; fe_sub(h, u2, u1);
WORD xneq = fe_nz(h);
// z_out = two_z1z2 * h
fe_mul(z_out, h, two_z1z2);
// z1z1z1 = z1 * z1z1
fe z1z1z1; fe_mul(z1z1z1, z1, z1z1);
// s2 = y2 * z1**3
fe s2; fe_mul(s2, y2, z1z1z1);
// r = (s2 - s1)*2
fe r;
fe_sub(r, s2, s1);
fe_add(r, r, r);
WORD yneq = fe_nz(r);
if (!xneq && !yneq && z1nz && z2nz) {
point_double(x3, y3, z3, x1, y1, z1);
return;
}
// I = (2h)**2
fe i;
fe_add(i, h, h);
fe_sqr(i, i);
// J = h * I
fe j; fe_mul(j, h, i);
// V = U1 * I
fe v; fe_mul(v, u1, i);
// x_out = r**2 - J - 2V
fe_sqr(x_out, r);
fe_sub(x_out, x_out, j);
fe_sub(x_out, x_out, v);
fe_sub(x_out, x_out, v);
// y_out = r(V-x_out) - 2 * s1 * J
fe_sub(y_out, v, x_out);
fe_mul(y_out, y_out, r);
fe s1j;
fe_mul(s1j, s1, j);
fe_sub(y_out, y_out, s1j);
fe_sub(y_out, y_out, s1j);
fe_cmovznz(x_out, z1nz, x2, x_out);
fe_cmovznz(x3, z2nz, x1, x_out);
fe_cmovznz(y_out, z1nz, y2, y_out);
fe_cmovznz(y3, z2nz, y1, y_out);
fe_cmovznz(z_out, z1nz, z2, z_out);
fe_cmovznz(z3, z2nz, z1, z_out);
}
/* Use a sliding window optimization method for scalar multiplication
Hard-coded window size = 4
Implementation inspired from Go's crypto library
https://github.com/golang/go/blob/a5cd894318677359f6d07ee74f9004d28b4d164c/src/crypto/internal/nistec/p256.go#L317
*/
/* Select the n-th element of the table
without leaking information about [n] */
static void table_select(fe out_x, fe out_y, fe out_z, size_t index, uint8_t n) {
fe x, y, z = {0};
fe_one(x); fe_one(y);
for(uint8_t i = 1 ; i < 16 ; ++i) {
WORD cond = i ^ n;
fe_cmovznz(x, cond, generator_table[index][n - 1][0], x);
fe_cmovznz(y, cond, generator_table[index][n - 1][1], y);
fe_cmovznz(z, cond, generator_table[index][n - 1][2], z);
}
fe_copy(out_x, x);
fe_copy(out_y, y);
fe_copy(out_z, z);
}
/* Returns [kG] by decomposing [k] in binary form, and adding
[2^0G * k_0 + 2^1G * k_1 + ...] in constant time using
pre-computed values of 2^iG */
static void scalar_mult_base(fe x2, fe y2, fe z2,
const uint8_t* scalar, size_t len) {
// P = 0
fe p_x, p_y, p_z = {0};
fe_one(p_x);
fe_one(p_y);
size_t index = 0;
for(size_t i = 0 ; i < len ; ++i) {
fe s_x, s_y, s_z;
uint8_t window = scalar[i] & 0xf;
table_select(s_x, s_y, s_z, index, window);
point_add(p_x, p_y, p_z, p_x, p_y, p_z, 0, s_x, s_y, s_z);
index++;
window = scalar[i] >> 4;
table_select(s_x, s_y, s_z, index, window);
point_add(p_x, p_y, p_z, p_x, p_y, p_z, 0, s_x, s_y, s_z);
index++;
}
fe_copy(x2, p_x);
fe_copy(y2, p_y);
fe_copy(z2, p_z);
}
|