File: point_operations.h

package info (click to toggle)
ocaml-mirage-crypto 2.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,524 kB
  • sloc: ansic: 91,925; ml: 9,700; makefile: 5
file content (263 lines) | stat: -rw-r--r-- 8,175 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#define MAKE_FN_NAME1(x,y) x ## y
#define MAKE_FN_NAME(x,y) MAKE_FN_NAME1(x,y)

#define fe_one MAKE_FN_NAME(CURVE_DESCRIPTION,_set_one)

#define fe_add MAKE_FN_NAME(CURVE_DESCRIPTION,_add)
#define fe_sub MAKE_FN_NAME(CURVE_DESCRIPTION,_sub)

#define fe_mul MAKE_FN_NAME(CURVE_DESCRIPTION,_mul)
#define fe_sqr MAKE_FN_NAME(CURVE_DESCRIPTION,_square)

#define fe_nonzero MAKE_FN_NAME(CURVE_DESCRIPTION,_nonzero)
#define fe_selectznz MAKE_FN_NAME(CURVE_DESCRIPTION,_selectznz)

#define fe_from_bytes MAKE_FN_NAME(CURVE_DESCRIPTION,_from_bytes)
#define fe_to_mont MAKE_FN_NAME(CURVE_DESCRIPTION,_to_montgomery)

typedef WORD fe[LIMBS];

static WORD fe_nz(const WORD in1[LIMBS]) {
  WORD ret;
  fe_nonzero(&ret, in1);
  return ret;
}

static void fe_copy(WORD out[LIMBS], const WORD in1[LIMBS]) {
  for (int i = 0; i < LIMBS; i++) {
    out[i] = in1[i];
  }
}

static void fe_cmovznz(WORD out[LIMBS], WORD t, const WORD z[LIMBS],
                       const WORD nz[LIMBS]) {
  fe_selectznz(out, !!t, z, nz);
}

// Group operations
// ----------------
//
// Building on top of the field operations we have the operations on the
// elliptic curve group itself. Points on the curve are represented in Jacobian
// coordinates.
//
// Both operations were transcribed to Coq and proven to correspond to naive
// implementations using Affine coordinates, for all suitable fields.  In the
// Coq proofs, issues of constant-time execution and memory layout (aliasing)
// conventions were not considered. Specification of affine coordinates:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Spec/WeierstrassCurve.v#L28>
// As a sanity check, a proof that these points form a commutative group:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/AffineProofs.v#L33>

// point_double calculates 2*(x_in, y_in, z_in)
//
// The method is taken from:
//   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
//
// Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
// while x_out == y_in is not (maybe this works, but it's not tested).
static void point_double(fe x_out, fe y_out, fe z_out,
                         const fe x_in, const fe y_in, const fe z_in) {
  fe delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
  // delta = z^2
  fe_sqr(delta, z_in);
  // gamma = y^2
  fe_sqr(gamma, y_in);
  // beta = x*gamma
  fe_mul(beta, x_in, gamma);

  // alpha = 3*(x-delta)*(x+delta)
  fe_sub(ftmp, x_in, delta);
  fe_add(ftmp2, x_in, delta);

  fe_add(tmptmp, ftmp2, ftmp2);
  fe_add(ftmp2, ftmp2, tmptmp);
  fe_mul(alpha, ftmp, ftmp2);

  // x' = alpha^2 - 8*beta
  fe_sqr(x_out, alpha);
  fe_add(fourbeta, beta, beta);
  fe_add(fourbeta, fourbeta, fourbeta);
  fe_add(tmptmp, fourbeta, fourbeta);
  fe_sub(x_out, x_out, tmptmp);

  // z' = (y + z)^2 - gamma - delta
  fe_add(delta, gamma, delta);
  fe_add(ftmp, y_in, z_in);
  fe_sqr(z_out, ftmp);
  fe_sub(z_out, z_out, delta);

  // y' = alpha*(4*beta - x') - 8*gamma^2
  fe_sub(y_out, fourbeta, x_out);
  fe_add(gamma, gamma, gamma);
  fe_sqr(gamma, gamma);
  fe_mul(y_out, alpha, y_out);
  fe_add(gamma, gamma, gamma);
  fe_sub(y_out, y_out, gamma);
}

// point_add calculates (x1, y1, z1) + (x2, y2, z2)
//
// The method is taken from:
//   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
// adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L135>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L205>
//
// This function includes a branch for checking whether the two input points
// are equal, (while not equal to the point at infinity). This case never
// happens during single point multiplication, so there is no timing leak for
// ECDH or ECDSA signing.
static void point_add(fe x3, fe y3, fe z3, const fe x1,
                      const fe y1, const fe z1, const int mixed,
                      const fe x2, const fe y2, const fe z2) {
  fe x_out, y_out, z_out;
  WORD z1nz = fe_nz(z1);
  WORD z2nz = fe_nz(z2);

  // z1z1 = z1z1 = z1**2
  fe z1z1; fe_sqr(z1z1, z1);

  fe u1, s1, two_z1z2;
  if (!mixed) {
    // z2z2 = z2**2
    fe z2z2; fe_sqr(z2z2, z2);

    // u1 = x1*z2z2
    fe_mul(u1, x1, z2z2);

    // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
    fe_add(two_z1z2, z1, z2);
    fe_sqr(two_z1z2, two_z1z2);
    fe_sub(two_z1z2, two_z1z2, z1z1);
    fe_sub(two_z1z2, two_z1z2, z2z2);

    // s1 = y1 * z2**3
    fe_mul(s1, z2, z2z2);
    fe_mul(s1, s1, y1);
  } else {
    // We'll assume z2 = 1 (special case z2 = 0 is handled later).

    // u1 = x1*z2z2
    fe_copy(u1, x1);
    // two_z1z2 = 2z1z2
    fe_add(two_z1z2, z1, z1);
    // s1 = y1 * z2**3
    fe_copy(s1, y1);
  }

  // u2 = x2*z1z1
  fe u2; fe_mul(u2, x2, z1z1);

  // h = u2 - u1
  fe h; fe_sub(h, u2, u1);

  WORD xneq = fe_nz(h);

  // z_out = two_z1z2 * h
  fe_mul(z_out, h, two_z1z2);

  // z1z1z1 = z1 * z1z1
  fe z1z1z1; fe_mul(z1z1z1, z1, z1z1);

  // s2 = y2 * z1**3
  fe s2; fe_mul(s2, y2, z1z1z1);

  // r = (s2 - s1)*2
  fe r;
  fe_sub(r, s2, s1);
  fe_add(r, r, r);

  WORD yneq = fe_nz(r);

  if (!xneq && !yneq && z1nz && z2nz) {
    point_double(x3, y3, z3, x1, y1, z1);
    return;
  }

  // I = (2h)**2
  fe i;
  fe_add(i, h, h);
  fe_sqr(i, i);

  // J = h * I
  fe j; fe_mul(j, h, i);

  // V = U1 * I
  fe v; fe_mul(v, u1, i);

  // x_out = r**2 - J - 2V
  fe_sqr(x_out, r);
  fe_sub(x_out, x_out, j);
  fe_sub(x_out, x_out, v);
  fe_sub(x_out, x_out, v);

  // y_out = r(V-x_out) - 2 * s1 * J
  fe_sub(y_out, v, x_out);
  fe_mul(y_out, y_out, r);
  fe s1j;
  fe_mul(s1j, s1, j);
  fe_sub(y_out, y_out, s1j);
  fe_sub(y_out, y_out, s1j);

  fe_cmovznz(x_out, z1nz, x2, x_out);
  fe_cmovznz(x3, z2nz, x1, x_out);
  fe_cmovznz(y_out, z1nz, y2, y_out);
  fe_cmovznz(y3, z2nz, y1, y_out);
  fe_cmovznz(z_out, z1nz, z2, z_out);
  fe_cmovznz(z3, z2nz, z1, z_out);
}

/* Use a sliding window optimization method for scalar multiplication
     Hard-coded window size = 4
     Implementation inspired from Go's crypto library
     https://github.com/golang/go/blob/a5cd894318677359f6d07ee74f9004d28b4d164c/src/crypto/internal/nistec/p256.go#L317
  */

/* Select the n-th element of the table
   without leaking information about [n] */
static void table_select(fe out_x, fe out_y, fe out_z, size_t index, uint8_t n) {
    fe x, y, z = {0};
    fe_one(x); fe_one(y);
    for(uint8_t i = 1 ; i < 16 ; ++i) {
        WORD cond = i ^ n;
        fe_cmovznz(x, cond, generator_table[index][n - 1][0], x);
        fe_cmovznz(y, cond, generator_table[index][n - 1][1], y);
        fe_cmovznz(z, cond, generator_table[index][n - 1][2], z);
    }
    fe_copy(out_x, x);
    fe_copy(out_y, y);
    fe_copy(out_z, z);
}

/* Returns [kG] by decomposing [k] in binary form, and adding
   [2^0G * k_0 + 2^1G * k_1 + ...] in constant time using
   pre-computed values of 2^iG */
static void scalar_mult_base(fe x2, fe y2, fe z2,
                             const uint8_t* scalar, size_t len) {
    // P = 0
    fe p_x, p_y, p_z = {0};
    fe_one(p_x);
    fe_one(p_y);
    size_t index = 0;
    for(size_t i = 0 ; i < len ; ++i) {
        fe s_x, s_y, s_z;
        uint8_t window = scalar[i] & 0xf;
        table_select(s_x, s_y, s_z, index, window);
        point_add(p_x, p_y, p_z, p_x, p_y, p_z, 0, s_x, s_y, s_z);
        index++;
        window = scalar[i] >> 4;
        table_select(s_x, s_y, s_z, index, window);
        point_add(p_x, p_y, p_z, p_x, p_y, p_z, 0, s_x, s_y, s_z);
        index++;
    }
    fe_copy(x2, p_x);
    fe_copy(y2, p_y);
    fe_copy(z2, p_z);
}