1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
```ocaml
let resolve_module_name sg name =
let rec check = function
| Component.Signature.Module (id, _r, _m) :: _rest
when Ident.Name.module_ id = name ->
id
| _ :: rest -> check rest
| [] -> failwith "Unknown"
in
check sg.Component.Signature.items
let module_substitution ~idents ~targets m test_data =
let _, sg, _ = Common.model_of_string test_data in
let c = Component.Of_Lang.(signature (empty ()) sg) in
let subst_idents_mod = resolve_module_name c idents in
let subst_targets_mod = resolve_module_name c targets in
let subst =
let target = `Local (subst_targets_mod :> Ident.path_module) in
Subst.add_module
(subst_idents_mod :> Ident.path_module)
(`Resolved target) target Subst.identity
in
let m =
match Find.module_in_sig c "S" with
| Some (`FModule (name, m)) -> m
| None -> failwith "Error finding module!"
in
let m' = Subst.module_ subst m in
let open Format in
fprintf std_formatter "BEFORE\n======\n%!";
fprintf std_formatter "S%a\n\n%!" Component.Fmt.module_ m;
fprintf std_formatter "AFTER \n======\n%!";
fprintf std_formatter "S%a\n\n%!" Component.Fmt.module_ m'
```
Module substitution test
This test substitutes one module for another. We substitute
SubTargets in place of SubstituteMe, so the result expected is that
the equations for t, u and v point to SubTargets rather than SubstituteMe
```ocaml
# module_substitution ~idents:"SubstituteMe" ~targets:"SubTargets" "S" {|
module SubstituteMe : sig
type t
type u
type v
end
module SubTargets : sig
type t
type u
type v
end
module S : sig
type tt = SubstituteMe.t
type uu = SubstituteMe.u
type vv = SubstituteMe.v
end
|} ;;
BEFORE
======
S: sig
type tt/3 = local(SubstituteMe/2,false).t
type uu/4 = local(SubstituteMe/2,false).u
type vv/5 = local(SubstituteMe/2,false).v
(removed=[])end
AFTER
======
S: sig
type tt/6 = r(SubTargets/1).t
type uu/7 = r(SubTargets/1).u
type vv/8 = r(SubTargets/1).v
(removed=[])end
- : unit = ()
```
Now test by compiling signatures and printing the result:
```ocaml
(* Nicer output *)
#install_printer Component.Fmt.signature;;
let compile mli =
let open Component in
let id, sg, _ = Common.model_of_string mli in
let env = Env.env_for_testing ~linking:false in
Odoc_xref2.Compile.signature env (id :> Odoc_model.Paths.Identifier.Signature.t) sg
|> Of_Lang.(signature (empty ()))
```
```ocaml
# compile {|
module type Monad = sig
type 'a t
val map : 'a t -> ('a -> 'b) -> 'b t
val join : 'a t t -> 'a t
end
(** Simplest case *)
module SomeMonad : sig
type 'a t
include Monad with type 'a t := 'a t
end
(** Substitute with a more complex type *)
module ComplexTypeExpr : sig
type ('a, 'b) t
include Monad with type 'a t := (int, 'a) t * ('a, int) t
end
(** No abstraction *)
module Erase : sig
include Monad with type 'a t := 'a
end
|} ;;
- : Component.Signature.t =
module type Monad/68 = sig
type t/69
val map/70 : ([a] r(t/69)) -> ((a) -> b) -> [b] r(t/69)
val join/71 : ([[a] r(t/69)] r(t/69)) -> [a] r(t/69)
(removed=[])end
module SomeMonad/67 : sig
type t/72
include : r(Monad/68) with [r(root(Monad/68).t) = [a] r(t/72)] (sig =
val map/73 : ([a] r(t/72)) -> ((a) -> b) -> [b] r(t/72)
val join/74 : ([[a] r(t/72)] r(t/72)) -> [a] r(t/72)
(removed=[]))
(removed=[])end
module ComplexTypeExpr/65 : sig
type t/75
include : r(Monad/68) with [r(root(Monad/68).t) = ([r(int) * a] r(t/75) * [a * r(int)] r(t/75))] (sig =
val map/76 : (([r(int) * a] r(t/75) * [a * r(int)] r(t/75))) -> ((a) -> b) -> ([r(int) * b] r(t/75) * [b * r(int)] r(t/75))
val join/77 : (([r(int) * ([r(int) * a] r(t/75) * [a * r(int)] r(t/75))] r(t/75) * [([r(int) * a] r(t/75) * [a * r(int)] r(t/75)) * r(int)] r(t/75))) -> ([r(int) * a] r(t/75) * [a * r(int)] r(t/75))
(removed=[]))
(removed=[])end
module Erase/66 : sig
include : r(Monad/68) with [r(root(Monad/68).t) = a] (sig = val map/78 : (a) -> ((a) -> b) -> b
val join/79 : (a) -> a
(removed=[]))
(removed=[])end
(removed=[])
```
More tests with two type variables:
```ocaml
# compile {|
module type Monad_2 = sig
type ('a, 'err) t
val map : ('a, 'err) t -> f:('a -> 'b) -> ('b, 'err) t
val join : (('a, 'e) t, 'e) t -> ('a, 'e) t
val both : ('a, 'e) t -> ('b, 'e) t -> ('a * 'b, 'e) t
end
module SwappedVars : sig
type ('x, 'y) t
include Monad_2 with type ('a, 'b) t := ('b, 'a) t
end
|} ;;
- : Component.Signature.t =
module type Monad_2/121 = sig
type t/122
val map/123 : ([a * err] r(t/122)) -> f:((a) -> b) -> [b * err] r(t/122)
val join/124 : ([[a * e] r(t/122) * e] r(t/122)) -> [a * e] r(t/122)
val both/125 : ([a * e] r(t/122)) -> ([b * e] r(t/122)) -> [(a * b) * e] r(t/122)
(removed=[])end
module SwappedVars/120 : sig
type t/126
include : r(Monad_2/121) with [r(root(Monad_2/121).t) = [b * a] r(t/126)] (sig =
val map/127 : ([err * a] r(t/126)) -> f:((a) -> b) -> [err * b] r(t/126)
val join/128 : ([e * [e * a] r(t/126)] r(t/126)) -> [e * a] r(t/126)
val both/129 : ([e * a] r(t/126)) -> ([e * b] r(t/126)) -> [e * (a * b)] r(t/126)
(removed=[]))
(removed=[])end
(removed=[])
```
Edge cases:
```ocaml
# compile {|
module type S = sig
type 'a t
val map : 'a t -> ('a -> 'b) -> 'b t
end
module M : sig
type 'a t
include S with type 'a t := ([ `A of 'a * 'b ] as 'b) t
end
|} ;;
- : Component.Signature.t =
module type S/151 = sig
type t/152
val map/153 : ([a] r(t/152)) -> ((a) -> b) -> [b] r(t/152)
(removed=[])end
module M/150 : sig
type t/154
include : r(S/151) with [r(root(S/151).t) = [(alias (poly_var [ `A of (a * b) ]) b)] r(t/154)] (sig =
val map/155 : ([(alias (poly_var [ `A of (a * b) ]) b)] r(t/154)) -> ((a) -> b) -> [(alias (poly_var [ `A of (b * b) ]) b)] r(t/154)
(removed=[]))
(removed=[])end
(removed=[])
```
|