File: QCheck2_tests.ml

package info (click to toggle)
ocaml-qcheck 0.91-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,160 kB
  • sloc: ml: 11,771; sh: 46; makefile: 39
file content (1216 lines) | stat: -rw-r--r-- 47,673 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
(** QCheck2 tests **)

(* Please add any additional tests to both [QCheck_tests.ml] and [QCheck2_tests.ml].
   This ensures that both generator approaches continue to work as expected
   and furthermore allows us to compare their behaviour with
   [diff -y test/core/QCheck_expect_test.expected test/core/QCheck2_expect_test.expected] *)

(** Module representing a integer tree data structure, used in tests *)
module IntTree = struct
  type tree = Leaf of int | Node of tree * tree

  let leaf x = Leaf x
  let node x y = Node (x,y)

  let rec depth = function
    | Leaf _ -> 1
    | Node (x, y) -> 1 + max (depth x) (depth y)

  let rec print_tree = function
    | Leaf x -> Printf.sprintf "Leaf %d" x
    | Node (x, y) -> Printf.sprintf "Node (%s, %s)" (print_tree x) (print_tree y)

  let gen_tree = QCheck2.Gen.(sized @@ fix
                        (fun self n -> match n with
                           | 0 -> map leaf nat
                           | n ->
                             oneof_weighted
                               [1, map leaf nat;
                                2, map2 node (self (n/2)) (self (n/2))]
                        ))

  let rec rev_tree = function
    | Node (x, y) -> Node (rev_tree y, rev_tree x)
    | Leaf x -> Leaf x

  let rec contains_only_n tree n = match tree with
    | Leaf n' -> n = n'
    | Node (x, y) -> contains_only_n x n && contains_only_n y n
end

(* tests of overall functionality *)
module Overall = struct
  open QCheck2

  let passing =
    Test.make ~name:"list_rev_is_involutive" ~count:100 ~long_factor:100
      ~print:Print.(list int)
      Gen.(list int_small) (fun l -> List.rev (List.rev l) = l)

  let failing =
    Test.make ~name:"should_fail_sort_id" ~count:10 ~print:Print.(list int)
      Gen.(list_small nat_small) (fun l -> l = List.sort compare l)

  let max_fail =
    Test.make ~name:"max_fail" ~count:1000 ~max_fail:3 ~print:Print.(list int)
      Gen.(list nat_small) (fun l -> l = List.rev l)

  exception Error

  let error =
    Test.make ~name:"should_error_raise_exn" ~count:10 ~print:Print.int
      Gen.int (fun _ -> raise Error)

  let collect =
    Test.make ~name:"collect_results" ~count:100 ~long_factor:100
      ~print:Print.int ~collect:string_of_int
      (Gen.int_bound 4) (fun _ -> true)

  let stats =
    Test.make ~name:"with_stats" ~count:100 ~long_factor:100 ~print:Print.int
      ~stats:[
        "mod4", (fun i->i mod 4);
        "num", (fun i->i);
      ]
      (Gen.int_bound 120) (fun _ -> true)

  let retries =
    Test.make ~name:"with shrinking retries" ~retries:10 ~print:Print.int
      Gen.nat_small (fun i -> Printf.printf "%i %!" i; i mod 3 <> 1)

  let bad_assume_warn =
    Test.make ~name:"WARN_unlikely_precond" ~count:2_000 ~print:Print.int
      Gen.int
      (fun x ->
         QCheck.assume (x mod 100 = 1);
         true)

  let bad_assume_fail =
    Test.make ~name:"FAIL_unlikely_precond" ~count:2_000
      ~if_assumptions_fail:(`Fatal, 0.1) ~print:Print.int
      Gen.int
      (fun x ->
         QCheck.assume (x mod 100 = 1);
         true)

  let bad_gen_fail =
    Test.make ~name:"FAIL_bad_gen"
      Gen.(int >>= fun j -> int_bound j >>= fun i -> return (i,j))
      (fun (_i,_j) -> true) (* i may be negative, causing int_bound to fail *)

  let bad_shrinker_fail =
    Test.make ~name:"FAIL_bad_shrinker"
      (Gen.make_primitive
        ~shrink:(fun _i -> raise Error)
        ~gen:(fun rs -> Random.State.int rs))
      (fun _i -> false)

  let neg_test_fail_as_expected =
    Test.make_neg ~name:"all ints are even" ~print:Print.int Gen.int_small (fun i -> i mod 2 = 0)

  let neg_test_unexpected_success =
    Test.make_neg ~name:"int double" ~print:Print.int Gen.int_small (fun i -> i + i = i * 2)

  let neg_test_fail_with_shrinking =
    Test.make_neg ~name:"list rev concat" ~print:Print.(pair (list int) (list int))
      Gen.(pair (list int_small) (list int_small)) (fun (is,js) -> (List.rev is)@(List.rev js) = List.rev (is@js))

  let pos_test_fails_with_error =
    Test.make ~name:"pos fail with error" ~print:Print.int Gen.nat_small (fun _i -> raise Error)

  let neg_test_fail_with_error =
    Test.make_neg ~name:"neg fail with error" ~print:Print.int Gen.nat_small (fun _i -> raise Error)

  (* [apply_n f x n] computes f(f(...f(x))) with n applications of f *)
  let rec apply_n f x n =
    if n=0
    then x
    else apply_n f (f x) (pred n)

  (* test from #236 *)
  let bad_fun_repro =
    let sleep_time = 0.175 in
    let count = ref 0 in
    Test.make ~count:10 ~name:"bad function reproducability"
      Gen.(triple nat_small (fun1 Observable.int nat_small) nat_small)
      (fun (i,f,j) ->
         incr count;
         Printf.printf "(%i,fun,%i)%s%!" i j (if !count mod 10 = 0 then "\n" else " ");
         Unix.sleepf sleep_time;
         if 1 = Float.to_int (Unix.time ()) mod 2
         then
           (ignore(apply_n (Fn.apply f) i j > 0); true)
         else
           (ignore(apply_n (Fn.apply f) i i > 0); true))

  let tests = [
    passing;
    failing;
    max_fail;
    error;
    collect;
    stats;
    retries;
    bad_assume_warn;
    bad_assume_fail;
    bad_gen_fail;
    (*bad_shrinker_fail;*)
    neg_test_fail_as_expected;
    neg_test_unexpected_success;
    neg_test_fail_with_shrinking;
    pos_test_fails_with_error;
    neg_test_fail_with_error;
    (* we repeat the following multiple times to check the expected output for duplicate lines *)
    bad_fun_repro;
    bad_fun_repro;
    bad_fun_repro;
    bad_fun_repro;
    bad_fun_repro;
    bad_fun_repro;
    bad_fun_repro;
    bad_fun_repro;
  ]
end

(* positive tests of the various generators *)
module Generator = struct
  open QCheck2

  (* example from issue #23 *)
  let char_dist_issue_23 =
    Test.make ~name:"char never produces '\\255'" ~count:1_000_000
      ~print:Print.char
      Gen.char (fun c -> c <> '\255')

  let char_test =
    Test.make ~name:"char has right range'" ~count:1000 ~print:Print.char
      Gen.char (fun c -> '\000' <= c && c <= '\255')

  let char_range_test =
    Test.make ~name:"char_range 'a' 'z' has right range" ~count:1000 ~print:Print.char
      (Gen.char_range 'a' 'z') (fun c -> 'a' <= c && c <= 'z')

  let char_printable_test =
    Test.make ~name:"char_printable has right range" ~count:1000 ~print:Print.char
      Gen.char_printable (fun c -> c = '\n' || 32 <= Char.code c && Char.code c <= 126)

  let char_numeral_test =
    Test.make ~name:"char_numeral has right range" ~count:1000 ~print:Print.char
      Gen.char_numeral (fun c -> '0' <= c && c <= '9')

  let nat_test =
    Test.make ~name:"nat has right range" ~count:1000 ~print:Print.int
      Gen.nat (fun n -> 0 <= n && n < 10000)

  let int_test =
    Test.make ~name:"int doubling" ~count:1000 ~print:Print.int
      Gen.int (fun i -> i+i = 2*i)

  let int32_test =
    Test.make ~name:"int32 doubling" ~count:1000 ~print:Print.int32
      Gen.int32 (fun i -> Int32.add i i = Int32.mul 2l i)

  let int64_test =
    Test.make ~name:"int64 doubling" ~count:1000 ~print:Print.int64
      Gen.int64 (fun i -> Int64.add i i = Int64.mul 2L i)

  let bytes_test =
    Test.make ~name:"bytes has right length and content" ~count:1000 ~print:Print.bytes
      Gen.bytes
      (fun s ->
         let len = Bytes.length s in
         0 <= len && len < 10000
         && Bytes.to_seq s |>
            Seq.fold_left (fun acc c -> acc && '\000' <= c && c <= '\255') true)

  let string_test =
    Test.make ~name:"string has right length and content" ~count:1000 ~print:Print.string
      Gen.string
      (fun s ->
         let len = String.length s in
         0 <= len && len < 10000
         && String.to_seq s |>
            Seq.fold_left (fun acc c -> acc && '\000' <= c && c <= '\255') true)

  let pair_test =
    Test.make ~name:"int pairs - commute over +" ~count:1000 ~print:Print.(pair int int)
      Gen.(pair nat_small nat_small) (fun (i,j) -> i+j = j+i)

  let triple_test =
    Test.make ~name:"int triples - associative over +" ~count:1000
      ~print:Print.(triple int int int)
      Gen.(triple nat_small nat_small nat_small) (fun (i,j,k) -> i+(j+k) = (i+j)+k)

  let quad_test =
    Test.make ~name:"int quadruples - product of sums" ~count:1000
      ~print:Print.(quad int int int int)
      Gen.(quad nat_small nat_small nat_small nat_small)
      (fun (h,i,j,k) -> (h+i)*(j+k) = h*j + h*k + i*j + i*k)

  let test_tup2 =
    Test.make ~count:10
      ~name:"forall x in (0, 1): x = (0, 1)"
      Gen.(tup2 (pure 0) (pure 1))
      (fun x -> x = (0, 1))

  let test_tup3 =
    Test.make ~count:10
      ~name:"forall x in (0, 1, 2): x = (0, 1, 2)"
      Gen.(tup3 (pure 0) (pure 1) (pure 2))
      (fun x -> x = (0, 1, 2))

  let test_tup4 =
    Test.make ~count:10
      ~name:"forall x in (0, 1, 2, 3): x = (0, 1, 2, 3)"
      Gen.(tup4 (pure 0) (pure 1) (pure 2) (pure 3))
      (fun x -> x = (0, 1, 2, 3))

  let test_tup5 =
    Test.make ~count:10
      ~name:"forall x in (0, 1, 2, 3, 4): x = (0, 1, 2, 3, 4)"
      Gen.(tup5 (pure 0) (pure 1) (pure 2) (pure 3) (pure 4))
      (fun x -> x = (0, 1, 2, 3, 4))

  let test_tup6 =
    Test.make ~count:10
      ~name:"forall x in (0, 1, 2, 3, 4, 5): x = (0, 1, 2, 3, 4, 5)"
      Gen.(tup6 (pure 0) (pure 1) (pure 2) (pure 3) (pure 4) (pure 5))
      (fun x -> x = (0, 1, 2, 3, 4, 5))

  let test_tup7 =
    Test.make ~count:10
      ~name:"forall x in (0, 1, 2, 3, 4, 5, 6): x = (0, 1, 2, 3, 4, 5, 6)"
      Gen.(tup7
         (pure 0) (pure 1) (pure 2) (pure 3) (pure 4)
         (pure 5) (pure 6))
      (fun x -> x = (0, 1, 2, 3, 4, 5, 6))

  let test_tup8 =
    Test.make ~count:10
      ~name:"forall x in (0, 1, 2, 3, 4, 5, 6, 7): x = (0, 1, 2, 3, 4, 5, 6, 7)"
      Gen.(tup8
         (pure 0) (pure 1) (pure 2) (pure 3) (pure 4)
         (pure 5) (pure 6) (pure 7))
      (fun x -> x = (0, 1, 2, 3, 4, 5, 6, 7))

  let test_tup9 =
    Test.make ~count:10
      ~name:"forall x in (0, 1, 2, 3, 4, 5, 6, 7, 8): x = (0, 1, 2, 3, 4, 5, 6, 7, 8)"
      Gen.(tup9
         (pure 0) (pure 1) (pure 2) (pure 3) (pure 4)
         (pure 5) (pure 6) (pure 7) (pure 8))
      (fun x -> x = (0, 1, 2, 3, 4, 5, 6, 7, 8))

  let bind_test =
    Test.make ~name:"bind test for ordered pairs" ~count:1000 ~print:Print.(pair int int)
      Gen.(nat_small >>= fun j -> int_bound j >>= fun i -> return (i,j))
      (fun (i,j) -> i<=j)

  let bind_pair_list_length =
    Test.make ~name:"bind list length" ~count:1000 ~print:Print.(pair int (list int))
      Gen.(int_bound 1000 >>= fun len ->
           list_size (return len) (int_bound 10) >>= fun xs -> return (len,xs))
      (fun (len,xs) -> len = List.length xs)

  let list_test =
    Test.make ~name:"list has right length" ~count:1000
      ~print:Print.(list unit)
      Gen.(list unit) (fun l -> let len = List.length l in 0 <= len && len < 10_000)

  let int_option_test =
    Test.make ~name:"int option right range" ~count:1000 ~print:Print.(option int)
      Gen.(option (int_bound 1000))
      (function None -> true | Some i -> 0 <= i && i <= 1000)

  let int_string_result_test =
    Test.make ~name:"(int,string) result right range" ~count:1000 ~print:Print.(result int string)
      Gen.(result (int_bound 1000) string_small)
      (function Ok i -> 0 <= i && i <= 1000 | Error s -> String.length s < 100)

  let passing_tree_rev =
    Test.make ~name:"tree_rev_is_involutive" ~count:1000
      IntTree.gen_tree
      (fun tree -> IntTree.(rev_tree (rev_tree tree)) = tree)

  let float_test =
    Test.make ~name:"regression test negative float range" ~count:1000
      ~print:Print.float
      (Gen.float_range (-2.) (-1.))
      (fun _ -> false)

  let tests = [
    char_dist_issue_23;
    char_test;
    char_range_test;
    char_printable_test;
    char_numeral_test;
    nat_test;
    int_test;
    int32_test;
    int64_test;
    bytes_test;
    string_test;
    pair_test;
    triple_test;
    quad_test;
    test_tup2;
    test_tup3;
    test_tup4;
    test_tup5;
    test_tup6;
    test_tup7;
    test_tup8;
    test_tup9;
    bind_test;
    bind_pair_list_length;
    list_test;
    int_option_test;
    int_string_result_test;
    passing_tree_rev;
    float_test;
  ]
end

(* negative tests that exercise shrinking behaviour *)
module Shrink = struct
  open QCheck2

  let rec fac n = match n with
    | 0 -> 1
    | n -> n * fac (n - 1)

  (* example from issue #59 *)
  let test_fac_issue59 =
    Test.make ~name:"test fac issue59"
      (Gen.make_primitive ~gen:(fun st -> Gen.generate1 ~rand:st (Gen.int_small_corners ())) ~shrink:(fun _ -> Seq.empty))
      (fun n -> try (fac n) mod n = 0
                with
                (*| Stack_overflow   -> false*)
                | Division_by_zero -> (n=0))

  let big_bound_issue59 =
    Test.make ~name:"big bound issue59" ~print:Print.int
      (Gen.int_small_corners()) (fun i -> i < 209609)

  let long_shrink =
    let listgen = Gen.(list_size (int_range 1000 10000) int) in
    Test.make ~name:"long_shrink" ~print:Print.(pair (list int) (list int))
      (Gen.pair listgen listgen)
      (fun (xs,ys) -> List.rev (xs@ys) = (List.rev xs)@(List.rev ys))

  (* test from issue #36 *)
  let ints_arent_0_mod_3 =
    Test.make ~name:"ints arent 0 mod 3" ~count:1000 ~print:Print.int
      Gen.int (fun i -> i mod 3 <> 0)

  let ints_are_0 =
    Test.make ~name:"ints are 0" ~count:1000 ~print:Print.int
      Gen.int (fun i -> Printf.printf "%i\n" i; i = 0)

  let int32s_arent_0l_rem_3l =
    Test.make ~name:"int32s arent 0l rem 3l" ~count:1000 ~print:Print.int32
      Gen.int32 (fun i -> Int32.rem i 3l <> 0l)

  let int32s_are_0l =
    Test.make ~name:"int32s are 0l" ~count:1000 ~print:Print.int32
      Gen.int32 (fun i -> i = 0l)

  let int64s_arent_0L_rem_3L =
    Test.make ~name:"int64s arent 0L rem 3L" ~count:1000 ~print:Print.int64
      Gen.int64 (fun i -> Int64.rem i 3L <> 0L)

  let int64s_are_0L =
    Test.make ~name:"int64s are 0L" ~count:1000 ~print:Print.int64
      Gen.int64 (fun i -> i = 0L)

  (* test from issue #59 *)
  let ints_smaller_209609 =
    Test.make ~name:"ints < 209609" ~print:Print.int
      (Gen.int_small_corners()) (fun i -> i < 209609)

  let nats_smaller_5001 =
    Test.make ~name:"nat < 5001" ~count:1000 ~print:Print.int
      Gen.nat (fun n -> n < 5001)

  let float_leq_1e10 =
    Test.make ~name:"float <= 1e10" ~count:1000 ~print:Print.float
      Gen.float (fun f -> f <= 1e10)

  let float_lt_pi =
    Test.make ~name:"float < Float.pi" ~count:1000 ~print:Print.float
      Gen.float (fun f -> f < Float.pi)

  let float_leq_1 =
    Test.make ~name:"float <= 1.0" ~count:1000 ~print:Print.float
      Gen.float (fun f -> f <= 1.0)

  let float_lt_1 =
    Test.make ~name:"float < 1.0" ~count:1000 ~print:Print.float
      Gen.float (fun f -> f < 1.0)

  let float_leq_1em10 =
    Test.make ~name:"float <= 1e-10" ~count:1000 ~print:Print.float
      Gen.float (fun f -> f <= 1e-10)

  let float_geq_m1em10 =
    Test.make ~name:"float >= -1e-10" ~count:1000 ~print:Print.float
      Gen.float (fun f -> f >= -1e-10)

  let float_geq_m1e10 =
    Test.make ~name:"float >= -1e10" ~count:1000 ~print:Print.float
      Gen.float (fun f -> f >= -1e10)

  let float_not_nan =
    Test.make ~name:"float is not nan" ~count:10_000 ~print:Print.float
      Gen.float (fun f -> not (Float.is_nan f))

  let float_not_infinite =
    Test.make ~name:"float is not infinity" ~count:10_000 ~print:Print.float
      Gen.float (fun f -> not (Float.is_infinite f))

  let float_bound_inclusive_1e6_leq_10 =
    Test.make ~name:"float_bound_inclusive 1e6 <= 10." ~count:1000 ~print:Print.float
      (Gen.float_bound_inclusive 1e6) (fun f -> f <= 10.)

  let float_bound_inclusive_1e6_leq_pi =
    Test.make ~name:"float_bound_inclusive 1e6 <= pi" ~count:1000 ~print:Print.float
      (Gen.float_bound_inclusive 1e6) (fun f -> f <= Float.pi)

  let float_bound_inclusive_1_leq_5em1 =
    Test.make ~name:"float_bound_inclusive 1. <= 0.5" ~count:1000 ~print:Print.float
      (Gen.float_bound_inclusive 1.) (fun f -> f <= 0.5)

  let float_bound_inclusive_1_leq_min_float =
    Test.make ~name:"float_bound_inclusive 1. <= min_float" ~count:1000 ~print:Print.float
      (Gen.float_bound_inclusive 1.) (fun f -> f <= min_float)

  let float_bound_inclusive_m1_geq_m5em1 =
    Test.make ~name:"float_bound_inclusive -1. >= -0.5" ~count:1000 ~print:Print.float
      (Gen.float_bound_inclusive (-1.)) (fun f -> f >= -0.5)

  let float_bound_inclusive_m1e6_geq_mpi =
    Test.make ~name:"float_bound_inclusive -1e6 >= -.pi" ~count:1000 ~print:Print.float
      (Gen.float_bound_inclusive (-1e6)) (fun f -> f >= -.Float.pi)

  let float_bound_exclusive_1e6_leq_10 =
    Test.make ~name:"float_bound_exclusive 1e6 <= 10." ~count:1000 ~print:Print.float
      (Gen.float_bound_exclusive 1e6) (fun f -> f <= 10.)

  let float_bound_exclusive_1e6_leq_pi =
    Test.make ~name:"float_bound_exclusive 1e6 <= pi" ~count:1000 ~print:Print.float
      (Gen.float_bound_exclusive 1e6) (fun f -> f <= Float.pi)

  let float_bound_exclusive_1_leq_5em1 =
    Test.make ~name:"float_bound_exclusive 1. <= 0.5" ~count:1000 ~print:Print.float
      (Gen.float_bound_exclusive 1.) (fun f -> f <= 0.5)

  let float_bound_exclusive_1_leq_min_float =
    Test.make ~name:"float_bound_exclusive 1. <= min_float" ~count:1000 ~print:Print.float
      (Gen.float_bound_exclusive 1.) (fun f -> f <= min_float)

  let float_bound_exclusive_m1_geq_m5em1 =
    Test.make ~name:"float_bound_exclusive -1. >= -0.5" ~count:1000 ~print:Print.float
      (Gen.float_bound_exclusive (-1.)) (fun f -> f >= -0.5)

  let float_bound_exclusive_m1e6_geq_mpi =
    Test.make ~name:"float_bound_exclusive -1e6 >= -.pi" ~count:1000 ~print:Print.float
      (Gen.float_bound_exclusive (-1e6)) (fun f -> f >= -.Float.pi)

  let float_range_1_10_leq_pi =
    Test.make ~name:"float_range 1. 10. <= pi" ~count:1000 ~print:Print.float
      (Gen.float_range 1. 10.) (fun f -> f <= Float.pi)

  let float_range_m10_10_square_leq_2 =
    Test.make ~name:"(float_range -10. 10.)^2 <= 2." ~count:1000 ~print:Print.float
      (Gen.float_range (-10.) 10.) (fun f -> f *. f <= 2.)

  let float_range_m10_m1_geq_mpi =
    Test.make ~name:"float_range -10. -1. >= -.pi" ~count:1000 ~print:Print.float
      (Gen.float_range (-10.) (-1.)) (fun f -> f >= -.Float.pi)

  let float_pos_lt_pi =
    Test.make ~name:"float_pos < Float.pi" ~count:1000 ~print:Print.float
      Gen.float_pos (fun f -> f < Float.pi)

  let float_pos_not_nan =
    Test.make ~name:"float_pos is not nan" ~count:10_000 ~print:Print.float
      Gen.float_pos (fun f -> not (Float.is_nan f))

  let float_pos_not_infinite =
    Test.make ~name:"float_pos is not infinity" ~count:10_000 ~print:Print.float
      Gen.float_pos (fun f -> not (Float.is_infinite f))

  let float_neg_gt_mpi =
    Test.make ~name:"float_neg > Float.pi" ~count:1000 ~print:Print.float
      Gen.float_neg (fun f -> f > -.Float.pi)

  let float_neg_not_nan =
    Test.make ~name:"float_neg is not nan" ~count:10_000 ~print:Print.float
      Gen.float_neg (fun f -> not (Float.is_nan f))

  let float_neg_not_infinite =
    Test.make ~name:"float_neg is not infinity" ~count:10_000 ~print:Print.float
      Gen.float_neg (fun f -> not (Float.is_infinite f))

  let float_exp_10_lt_pi =
    Test.make ~name:"float_exp 10. < Float.pi" ~count:1000 ~print:Print.float
      (Gen.float_exp 10.) (fun f -> f < Float.pi)

  let float_exp_m10_gt_mpi =
    Test.make ~name:"float_exp -10. > -. Float.pi" ~count:1000 ~print:Print.float
      (Gen.float_exp (-10.)) (fun f -> f > -. Float.pi)

  let char_is_never_abcdef =
    Test.make ~name:"char never produces 'abcdef'" ~count:1000 ~print:Print.char
      Gen.char (fun c -> not (List.mem c ['a';'b';'c';'d';'e';'f']))

  let char_range_is_never_abc =
    Test.make ~name:"char never 'abc'" ~count:1000 ~print:Print.char
      (Gen.char_range 'a' 'z') (fun c -> not (c < 'c'))

  let char_printable_is_never_sign = (* should shrink towards '!' with lowest ascii code 33 *)
    Test.make ~name:"char_printable never produces '!\"#$%&'" ~count:1000 ~print:Print.char
      Gen.char_printable (fun c -> not (List.mem c ['!';'"';'#';'$';'%';'&']))

  let char_numeral_is_never_less_5 =
    Test.make ~name:"char_numeral never produces less than '5'" ~count:1000 ~print:Print.char
      Gen.char_numeral (fun c -> c >= '5')

  let bytes_are_empty =
    Test.make ~name:"bytes are empty" ~count:1000 ~print:Print.bytes
      Gen.bytes (fun s -> s = Bytes.empty)

  let bytes_never_has_000_char =
    Test.make ~name:"bytes never has a \\000 char" ~count:1000 ~print:Print.bytes
      Gen.bytes
      (fun s -> Bytes.to_seq s |> Seq.fold_left (fun acc c -> acc && c <> '\000') true)

  let bytes_never_has_255_char =
    Test.make ~name:"bytes never has a \\255 char" ~count:1000 ~print:Print.bytes
      Gen.bytes
      (fun s -> Bytes.to_seq s |> Seq.fold_left (fun acc c -> acc && c <> '\255') true)

  let bytes_unique_chars =
    Test.make ~name:"bytes have unique chars" ~count:1000 ~print:Print.bytes
      Gen.bytes
      (fun s ->
         let ch_list = Bytes.to_seq s |> List.of_seq in
         List.length ch_list = List.length (List.sort_uniq Char.compare ch_list))

  let strings_are_empty =
    Test.make ~name:"strings are empty" ~count:1000 ~print:Print.string
      Gen.string (fun s -> s = "")

  let string_never_has_000_char =
    Test.make ~name:"string never has a \\000 char" ~count:1000 ~print:Print.string
      Gen.string
      (fun s -> String.to_seq s |> Seq.fold_left (fun acc c -> acc && c <> '\000') true)

  let string_never_has_255_char =
    Test.make ~name:"string never has a \\255 char" ~count:1000 ~print:Print.string
      Gen.string
      (fun s -> String.to_seq s |> Seq.fold_left (fun acc c -> acc && c <> '\255') true)

  let string_unique_chars =
    Test.make ~name:"strings have unique chars" ~count:1000 ~print:Print.string
      Gen.string
      (fun s ->
         let ch_list = String.to_seq s |> List.of_seq in
         List.length ch_list = List.length (List.sort_uniq Char.compare ch_list))

  (* test from issue #167 *)
  let pair_diff_issue_64 =
    Test.make ~name:"pairs have different components" ~print:Print.(pair int int)
      Gen.(pair nat_small nat_small) (fun (i,j) -> i<>j)

  let pair_same =
    Test.make ~name:"pairs have same components" ~print:Print.(pair int int)
      Gen.(pair int int) (fun (i,j) -> i=j)

  let pair_one_zero =
    Test.make ~name:"pairs have a zero component" ~print:Print.(pair int int)
      Gen.(pair int int) (fun (i,j) -> i=0 || j=0)

  let pair_all_zero =
    Test.make ~name:"pairs are (0,0)" ~print:Print.(pair int int)
      Gen.(pair int int) (fun (i,j) -> i=0 && j=0)

  let pair_ordered =
    Test.make ~name:"pairs are ordered" ~print:Print.(pair int int)
      Gen.(pair int_pos int_pos) (fun (i,j) -> i<=j)

  let pair_ordered_rev =
    Test.make ~name:"pairs are ordered reversely" ~print:Print.(pair int int)
      Gen.(pair int_pos int_pos) (fun (i,j) -> i>=j)

  let pair_sum_lt_128 =
    Test.make ~name:"pairs sum to less than 128" ~print:Print.(pair int int)
      Gen.(pair int_pos int_pos) (fun (i,j) -> i+j<128)

  let pair_lists_rev_concat =
    Test.make ~name:"pairs lists rev concat" ~print:Print.(pair (list int) (list int))
      Gen.(pair (list int_pos) (list int_pos))
      (fun (xs,ys) -> List.rev (xs@ys) = (List.rev xs)@(List.rev ys))

  let pair_lists_no_overlap =
    Test.make ~name:"pairs lists no overlap" ~print:Print.(pair (list int) (list int))
      Gen.(pair (list nat_small) (list nat_small))
      (fun (xs,ys) -> List.for_all (fun x -> not (List.mem x ys)) xs)

  let triple_diff =
    Test.make ~name:"triples have pair-wise different components" ~print:Print.(triple int int int)
      Gen.(triple nat_small nat_small nat_small) (fun (i,j,k) -> i<>j && j<>k)

  let triple_same =
    Test.make ~name:"triples have same components" ~print:Print.(triple int int int)
      Gen.(triple int int int) (fun (i,j,k) -> i=j || j=k)

  let triple_ordered =
    Test.make ~name:"triples are ordered" ~print:Print.(triple int int int)
      Gen.(triple int int int) (fun (i,j,k) -> i<=j && j<=k)

  let triple_ordered_rev =
    Test.make ~name:"triples are ordered reversely" ~print:Print.(triple int int int)
      Gen.(triple int int int) (fun (i,j,k) -> i>=j && j>=k)

  let quad_diff =
    Test.make ~name:"quadruples have pair-wise different components" ~print:Print.(quad int int int int)
      Gen.(quad nat_small nat_small nat_small nat_small) (fun (h,i,j,k) -> h<>i && i<>j && j<>k)

  let quad_same =
    Test.make ~name:"quadruples have same components" ~print:Print.(quad int int int int)
      Gen.(quad int int int int) (fun (h,i,j,k) -> h=i || i=j || j=k)

  let quad_ordered =
    Test.make ~name:"quadruples are ordered" ~print:Print.(quad int int int int)
      Gen.(quad int int int int) (fun (h,i,j,k) -> h <= i && i <= j && j <= k)

  let quad_ordered_rev =
    Test.make ~name:"quadruples are ordered reversely" ~print:Print.(quad int int int int)
      Gen.(quad int int int int) (fun (h,i,j,k) -> h >= i && i >= j && j >= k)

  let test_tup2 =
    Test.make
      ~print:Print.(tup2 int int)
      ~name:"forall (a, b) in nat: a < b"
      Gen.(tup2 nat_small nat_small)
      (fun (a, b) -> a < b)

  let test_tup3 =
    Test.make
      ~print:Print.(tup3 int int int)
      ~name:"forall (a, b, c) in nat: a < b < c"
      Gen.(tup3 nat_small nat_small nat_small)
      (fun (a, b, c) -> a < b && b < c)

  let test_tup4 =
    Test.make
      ~print:Print.(tup4 int int int int)
      ~name:"forall (a, b, c, d) in nat: a < b < c < d"
      Gen.(tup4 nat_small nat_small nat_small nat_small)
      (fun (a, b, c, d) -> a < b && b < c && c < d)

  let test_tup5 =
    Test.make
      ~print:Print.(tup5 int int int int int)
      ~name:"forall (a, b, c, d, e) in nat: a < b < c < d < e"
      Gen.(tup5 nat_small nat_small nat_small nat_small nat_small)
      (fun (a, b, c, d, e) -> a < b && b < c && c < d && d < e)

  let test_tup6 =
    Test.make
      ~print:Print.(tup6 int int int int int int)
      ~name:"forall (a, b, c, d, e, f) in nat: a < b < c < d < e < f"
      Gen.(tup6 nat_small nat_small nat_small nat_small nat_small nat_small)
      (fun (a, b, c, d, e, f) -> a < b && b < c && c < d && d < e && e < f)

  let test_tup7 =
    Test.make
      ~print:Print.(tup7 int int int int int int int)
      ~name:"forall (a, b, c, d, e, f, g) in nat: a < b < c < d < e < f < g"
      Gen.(tup7 nat_small nat_small nat_small nat_small nat_small nat_small nat_small)
      (fun (a, b, c, d, e, f, g) -> a < b && b < c && c < d && d < e && e < f && f < g)

  let test_tup8 =
    Test.make
      ~print:Print.(tup8 int int int int int int int int)
      ~name:"forall (a, b, c, d, e, f, g, h) in nat: a < b < c < d < e < f < g < h"
      Gen.(tup8 nat_small nat_small nat_small nat_small nat_small nat_small nat_small nat_small)
      (fun (a, b, c, d, e, f, g, h) -> a < b && b < c && c < d && d < e && e < f && f < g && g < h)

  let test_tup9 =
    Test.make
      ~print:Print.(tup9 int int int int int int int int int)
      ~name:"forall (a, b, c, d, e, f, g, h, i) in nat: a < b < c < d < e < f < g < h < i"
      Gen.(tup9 nat_small nat_small nat_small nat_small nat_small nat_small nat_small nat_small nat_small)
      (fun (a, b, c, d, e, f, g, h, i) -> a < b && b < c && c < d && d < e && e < f && f < g && g < h && h < i)

  let bind_pair_ordered =
    Test.make ~name:"bind ordered pairs" ~print:Print.(pair int int)
      Gen.(int_pos >>= fun j -> int_bound j >>= fun i -> return (i,j))
      (fun (_i,_j) -> false)

  let bind_pair_list_size =
    Test.make ~name:"bind list_size constant" ~print:Print.(pair int (list int))
      Gen.(int_bound 1000 >>= fun len ->
           list_size (return len) (int_bound 1000) >>= fun xs -> return (len,xs))
      (fun (len,xs) -> let len' = List.length xs in len=len' && len' < 4)

  (* tests from issue #64 *)
  let print_list xs = print_endline Print.(list int xs)

  let lists_are_empty_issue_64 =
    Test.make ~name:"lists are empty" ~print:Print.(list int)
      Gen.(list nat_small) (fun xs -> print_list xs; xs = [])

  let list_shorter_10 =
    Test.make ~name:"lists shorter than 10" ~print:Print.(list int)
      Gen.(list nat_small) (fun xs -> List.length xs < 10)

  let length_printer xs =
    Printf.sprintf "[...] list length: %i" (List.length xs)

  let size_gen = Gen.(oneof [nat_small; int_bound 750_000])

  let list_shorter_432 =
    Test.make ~name:"lists shorter than 432" ~print:length_printer
      Gen.(list_size size_gen nat_small)
      (fun xs -> List.length xs < 432)

  let list_shorter_4332 =
    Test.make ~name:"lists shorter than 4332" ~print:length_printer
      Gen.(list_size size_gen nat_small)
      (fun xs -> List.length xs < 4332)

  let list_equal_dupl =
    Test.make ~name:"lists equal to duplication" ~print:Print.(list int)
      Gen.(list_size size_gen int_small)
      (fun xs -> try xs = xs @ xs
                 with Stack_overflow -> false)

  let list_unique_elems =
    Test.make ~name:"lists have unique elems" ~print:Print.(list int)
      Gen.(list nat_small)
      (fun xs -> let ys = List.sort_uniq Int.compare xs in
                 print_list xs; List.length xs = List.length ys)

  let int_option_are_none =
    Test.make ~name:"int option are none" ~count:1000 ~print:Print.(option int)
      Gen.(option (int_bound 1000)) (function None -> true | Some _ -> false)

  let int_option_are_some_100_or_more =
    Test.make ~name:"int option are some 100 or more" ~count:1000 ~print:Print.(option int)
      Gen.(option (int_bound 1000)) (function None -> false | Some i -> i >= 100)

  let int_string_result_are_ok =
    Test.make ~name:"(int,string) result are Ok" ~count:1000 ~print:Print.(result int string)
      Gen.(result (int_bound 1000) string_small) (function Ok _ -> true | Error _ -> false)

  let int_string_result_are_error =
    Test.make ~name:"(int,string) result are Error" ~count:1000 ~print:Print.(result int string)
      Gen.(result (int_bound 1000) string_small) (function Ok _ -> false | Error _ -> true)

  let tree_contains_only_42 =
    Test.make ~name:"tree contains only 42" ~print:IntTree.print_tree
      IntTree.gen_tree
      (fun tree -> IntTree.contains_only_n tree 42)

  let test_gen_no_shrink =
    Test.make ~name:"sum list = 0 with no_shrink" ~print:Print.(list int)
      Gen.(no_shrink @@ list nat_small)
      (fun xs -> List.fold_left (+) 0 xs = 0)


  let tests = [
    (*test_fac_issue59;*)
    big_bound_issue59;
    long_shrink;
    ints_arent_0_mod_3;
    ints_are_0;
    int32s_arent_0l_rem_3l;
    int32s_are_0l;
    int64s_arent_0L_rem_3L;
    int64s_are_0L;
    ints_smaller_209609;
    nats_smaller_5001;
    float_leq_1e10;
    float_lt_pi;
    float_leq_1;
    float_lt_1;
    float_leq_1em10;
    float_geq_m1em10;
    float_geq_m1e10;
    float_not_nan;
    float_not_infinite;
    float_bound_inclusive_1e6_leq_10;
    float_bound_inclusive_1e6_leq_pi;
    float_bound_inclusive_1_leq_5em1;
    float_bound_inclusive_1_leq_min_float;
    float_bound_inclusive_m1_geq_m5em1;
    float_bound_inclusive_m1e6_geq_mpi;
    float_bound_exclusive_1e6_leq_10;
    float_bound_exclusive_1e6_leq_pi;
    float_bound_exclusive_1_leq_5em1;
    float_bound_exclusive_1_leq_min_float;
    float_bound_exclusive_m1_geq_m5em1;
    float_bound_exclusive_m1e6_geq_mpi;
    float_range_1_10_leq_pi;
    float_range_m10_10_square_leq_2;
    float_range_m10_m1_geq_mpi;
    float_pos_lt_pi;
    float_pos_not_nan;
    float_pos_not_infinite;
    float_neg_gt_mpi;
    float_neg_not_nan;
    float_neg_not_infinite;
    float_exp_10_lt_pi;
    float_exp_m10_gt_mpi;
    char_is_never_abcdef;
    char_range_is_never_abc;
    char_printable_is_never_sign;
    char_numeral_is_never_less_5;
    bytes_are_empty;
    bytes_never_has_000_char;
    bytes_never_has_255_char;
    bytes_unique_chars;
    strings_are_empty;
    string_never_has_000_char;
    string_never_has_255_char;
    string_unique_chars;
    pair_diff_issue_64;
    pair_same;
    pair_one_zero;
    pair_all_zero;
    pair_ordered;
    pair_ordered_rev;
    pair_sum_lt_128;
    pair_lists_rev_concat;
    pair_lists_no_overlap;
    triple_diff;
    triple_same;
    triple_ordered;
    triple_ordered_rev;
    quad_diff;
    quad_same;
    quad_ordered;
    quad_ordered_rev;
    test_tup2;
    test_tup3;
    test_tup4;
    test_tup5;
    test_tup6;
    test_tup7;
    test_tup8;
    test_tup9;
    bind_pair_ordered;
    bind_pair_list_size;
    lists_are_empty_issue_64;
    list_shorter_10;
    list_shorter_432;
    list_shorter_4332;
    (*list_equal_dupl;*)
    list_unique_elems;
    int_option_are_none;
    int_option_are_some_100_or_more;
    int_string_result_are_ok;
    int_string_result_are_error;
    tree_contains_only_42;
    test_gen_no_shrink;
  ]
end

(* tests function generator and shrinker *)
module Function = struct
  open QCheck2

  let fail_pred_map_commute_int =
    Test.make ~name:"fail_pred_map_commute_int" ~count:100 ~long_factor:100
      ~print:Print.(triple (list int) Fn.print Fn.print)
      Gen.(triple
             (list_small nat_small)
             (fun1 ~print:Print.int Observable.int int)
             (fun1 ~print:Print.bool Observable.int bool))
      (fun (l,Fun (_,f),Fun (_,p)) ->
         List.filter p (List.map f l) = List.map f (List.filter p l))

  let fail_pred_map_commute_int32 =
    Test.make ~name:"fail_pred_map_commute_int32" ~count:100 ~long_factor:100
      ~print:Print.(triple (list int32) Fn.print Fn.print)
      Gen.(triple
             (list_small int32)
             (fun1 ~print:Print.int32 Observable.int32 int32)
             (fun1 ~print:Print.bool Observable.int32 bool))
      (fun (l,Fun (_,f),Fun (_,p)) ->
         List.filter p (List.map f l) = List.map f (List.filter p l))

  let fail_pred_map_commute_int64 =
    Test.make ~name:"fail_pred_map_commute_int64" ~count:100 ~long_factor:100
      ~print:Print.(triple (list int64) Fn.print Fn.print)
      Gen.(triple
             (list_small int64)
             (fun1 ~print:Print.int64 Observable.int64 int64)
             (fun1 ~print:Print.bool Observable.int64 bool))
      (fun (l,Fun (_,f),Fun (_,p)) ->
         List.filter p (List.map f l) = List.map f (List.filter p l))

  let fail_pred_strings =
    Test.make ~name:"fail_pred_strings" ~count:100 ~print:Fn.print
      (fun1 Observable.string ~print:Print.bool Gen.bool)
      (fun (Fun (_,p)) -> not (p "some random string") || p "some other string")

  let int_gen = Gen.nat_small (* int *)

  (* Another example (false) property *)
  let prop_foldleft_foldright =
    Test.make ~name:"fold_left fold_right" ~count:1000 ~long_factor:20
      ~print:Print.(triple int (list int) Fn.print)
      Gen.(triple
             int_gen
             (list int_gen)
             (fun2 ~print:Print.int Observable.int Observable.int int_gen))
      (fun (z,xs,f) ->
         let l1 = List.fold_right (Fn.apply f) xs z in
         let l2 = List.fold_left (Fn.apply f) z xs in
         if l1=l2 then true
         else Test.fail_reportf "l=%s, fold_left=%s, fold_right=%s@."
             (Print.(list int) xs)
             (Print.int l1)
             (Print.int l2)
      )

  (* Another example (false) property *)
  let prop_foldleft_foldright_uncurry =
    Test.make ~name:"fold_left fold_right uncurried" ~count:1000 ~long_factor:20
      ~print:Print.(triple Fn.print int (list int))
      Gen.(triple
             (fun1 ~print:Print.int Observable.(pair int int) int_gen)
             int_gen
             (list int_gen))
      (fun (f,z,xs) ->
         List.fold_right (fun x y -> Fn.apply f (x,y)) xs z =
         List.fold_left (fun x y -> Fn.apply f (x,y)) z xs)

  (* Same as the above (false) property, but generating+shrinking functions last *)
  let prop_foldleft_foldright_uncurry_funlast =
    Test.make ~name:"fold_left fold_right uncurried fun last" ~count:1000 ~long_factor:20
      ~print:Print.(triple int (list int) Fn.print)
      Gen.(triple
             int_gen
             (list int_gen)
             (fun1 ~print:Print.int Observable.(pair int int) int_gen))
      (fun (z,xs,f) ->
         List.fold_right (fun x y -> Fn.apply f (x,y)) xs z =
         List.fold_left (fun x y -> Fn.apply f (x,y)) z xs)

  (* test from issue #64 *)
  let fold_left_test =
    Test.make ~name:"fold_left test, fun first" ~print:Print.(quad Fn.print string (list int) (list int))
      Gen.(quad  (* string -> int -> string *)
             (fun2 ~print:Print.string Observable.string Observable.int string_small)
             string_small
             (list nat_small)
             (list nat_small))
      (fun (f,acc,is,js) ->
         let f = Fn.apply f in
         List.fold_left f acc (is @ js)
         = List.fold_left f (List.fold_left f acc is) is) (*Typo*)

  let tests = [
    fail_pred_map_commute_int;
    fail_pred_map_commute_int32;
    fail_pred_map_commute_int64;
    fail_pred_strings;
    prop_foldleft_foldright;
    prop_foldleft_foldright_uncurry;
    prop_foldleft_foldright_uncurry_funlast;
    fold_left_test;
  ]
end

(* tests of (inner) find_example(_gen) behaviour *)
module FindExample = struct
  open QCheck2

  let find_ex =
    Test.make ~name:"find_example" ~print:Print.int
      Gen.(2--50)
      (fun n ->
         let st = Random.State.make [| 0 |] in
         let f m = n < m && m < 2 * n in
         try
           let m = find_example_gen ~rand:st ~count:100_000 ~f Gen.(0 -- 1000) in
           f m
         with No_example_found _ -> false)

  let find_ex_uncaught_issue_99_1_fail =
    let rs = (find_example ~count:10 ~f:(fun _ -> false) Gen.int) in
    Test.make ~name:"FAIL_#99_1" rs (fun _ -> true)

  let find_ex_uncaught_issue_99_2_succeed =
    Test.make ~name:"should_succeed_#99_2" ~count:10
      Gen.int (fun i -> i <= max_int)

  let tests = [
    find_ex;
    find_ex_uncaught_issue_99_1_fail;
    find_ex_uncaught_issue_99_2_succeed;
  ]
end

(* tests of statistics and histogram display *)
module Stats = struct
  open QCheck2

  let bool_dist =
    Test.make ~name:"bool dist" ~count:500_000 ~collect:Bool.to_string Gen.bool (fun _ -> true)

  let char_dist_tests =
    [
    Test.make ~name:"char code dist"           ~count:500_000 ~stats:[("char code", Char.code)] Gen.char                 (fun _ -> true);
    Test.make ~name:"char_range code dist"     ~count:500_000 ~stats:[("char code", Char.code)] (Gen.char_range 'A' 'Z') (fun _ -> true);
    Test.make ~name:"char_printable code dist" ~count:500_000 ~stats:[("char code", Char.code)] Gen.char_printable       (fun _ -> true);
    Test.make ~name:"char_numeral code dist"   ~count:500_000 ~stats:[("char code", Char.code)] Gen.char_numeral         (fun _ -> true);
  ]

  let bytes_len_tests =
    let len = ("len",Bytes.length) in
    [
      Test.make ~name:"bytes_size len dist"      ~count:5_000 ~stats:[len] Gen.(bytes_size (int_range 5 10)) (fun _ -> true);
      Test.make ~name:"bytes len dist"           ~count:5_000 ~stats:[len] Gen.bytes                         (fun _ -> true);
      Test.make ~name:"bytes_of len dist"        ~count:5_000 ~stats:[len] Gen.(bytes_of (return 'a'))       (fun _ -> true);
      Test.make ~name:"bytes_printable len dist" ~count:5_000 ~stats:[len] Gen.bytes_printable               (fun _ -> true);
      Test.make ~name:"bytes_small len dist"     ~count:5_000 ~stats:[len] Gen.bytes_small                   (fun _ -> true);
    ]

  let string_len_tests =
    let len = ("len",String.length) in
    [
      Test.make ~name:"string_size len dist"      ~count:5_000 ~stats:[len] Gen.(string_size (int_range 5 10)) (fun _ -> true);
      Test.make ~name:"string len dist"           ~count:5_000 ~stats:[len] Gen.string                         (fun _ -> true);
      Test.make ~name:"string_of len dist"        ~count:5_000 ~stats:[len] Gen.(string_of (return 'a'))       (fun _ -> true);
      Test.make ~name:"string_printable len dist" ~count:5_000 ~stats:[len] Gen.string_printable               (fun _ -> true);
      Test.make ~name:"string_small len dist"     ~count:5_000 ~stats:[len] Gen.string_small                   (fun _ -> true);
    ]

  let pair_dist =
    Test.make ~name:"pair dist" ~count:500_000 ~stats:[("pair sum", (fun (i,j) -> i+j))]
      Gen.(pair (int_bound 100) (int_bound 100)) (fun _ -> true)

  let triple_dist =
    Test.make ~name:"triple dist" ~count:500_000 ~stats:[("triple sum", (fun (i,j,k) -> i+j+k))]
      Gen.(triple (int_bound 100) (int_bound 100) (int_bound 100)) (fun _ -> true)

  let quad_dist =
    Test.make ~name:"quad dist" ~count:500_000 ~stats:[("quad sum", (fun (h,i,j,k) -> h+i+j+k))]
      Gen.(quad (int_bound 100) (int_bound 100) (int_bound 100) (int_bound 100)) (fun _ -> true)

  let bind_dist =
    Test.make ~name:"bind dist" ~count:1_000_000
      ~stats:[("ordered pair difference", (fun (i,j) -> j-i));("ordered pair sum", (fun (i,j) -> i+j))]
      Gen.(int_bound 100 >>= fun j -> int_bound j >>= fun i -> return (i,j)) (fun _ -> true)

  let option_dist =
    Test.make ~name:"option dist" ~count:10_000
      ~collect:(function None -> "None" | Some _ -> "Some _") Gen.(option int) (fun _ -> true)

  let result_dist =
    Test.make ~name:"result dist" ~count:10_000
      ~collect:(function Ok _ -> "Ok _" | Error _ -> "Error _") Gen.(result int string) (fun _ -> true)

  let list_len_tests =
    let len = ("len",List.length) in
    [ (* test from issue #30 *)
      Test.make ~name:"list len dist"        ~count:5_000 ~stats:[len] Gen.(list int)                       (fun _ -> true);
      Test.make ~name:"list_small len dist"  ~count:5_000 ~stats:[len] Gen.(list_small int)                 (fun _ -> true);
      Test.make ~name:"list_size len dist"   ~count:5_000 ~stats:[len] Gen.(list_size (int_range 5 10) int) (fun _ -> true);
    ]

  let array_len_tests =
    let len = ("len",Array.length) in
    [
      Test.make ~name:"array len dist"        ~count:5_000 ~stats:[len] Gen.(array int)                       (fun _ -> true);
      Test.make ~name:"array_small len dist"  ~count:5_000 ~stats:[len] Gen.(array_small int)                 (fun _ -> true);
      Test.make ~name:"array_size len dist"   ~count:5_000 ~stats:[len] Gen.(array_size (int_range 5 10) int) (fun _ -> true);
    ]

  let int_dist_tests =
    let dist = ("dist",fun x -> x) in
    [
      (* test from issue #40 *)
      Test.make ~name:"int_stats_neg"                  ~count:5000   ~stats:[dist] Gen.int_small                        (fun _ -> true);
      (* distribution tests from PR #45 *)
      Test.make ~name:"int dist"                       ~count:100000 ~stats:[dist] Gen.int                              (fun _ -> true);
      Test.make ~name:"int_bound 1000 dist"            ~count:10000  ~stats:[dist] (Gen.int_bound 1000)                 (fun _ -> true);
      Test.make ~name:"int_range (-43643) 435434 dist" ~count:1000   ~stats:[dist] (Gen.int_range (-43643) 435434)      (fun _ -> true);
      Test.make ~name:"int_range (-40000) 40000 dist"  ~count:1000   ~stats:[dist] (Gen.int_range (-40000) 40000)       (fun _ -> true);
      Test.make ~name:"int_range (-4) 4 dist"          ~count:1000   ~stats:[dist] (Gen.int_range (-4) 4)               (fun _ -> true);
      Test.make ~name:"int_range (-4) 17 dist"         ~count:1000   ~stats:[dist] (Gen.int_range (-4) 17)              (fun _ -> true);
      Test.make ~name:"int_small dist"                 ~count:1000   ~stats:[dist] Gen.int_small                        (fun _ -> true);
      Test.make ~name:"int_small_corners dist"         ~count:1000   ~stats:[dist] (Gen.int_small_corners ())           (fun _ -> true);
      Test.make ~name:"int_neg dist"                   ~count:10000  ~stats:[dist] Gen.int_neg                          (fun _ -> true);
      Test.make ~name:"int_pos dist"                   ~count:10000  ~stats:[dist] Gen.int_pos                          (fun _ -> true);
      Test.make ~name:"oneof_list int dist"            ~count:1000   ~stats:[dist] (Gen.oneof_list[min_int;-1;0;1;max_int]) (fun _ -> true);
      Test.make ~name:"nat dist"                       ~count:1000   ~stats:[dist] Gen.nat                              (fun _ -> true);
      Test.make ~name:"nat_small dist"                 ~count:1000   ~stats:[dist] Gen.nat_small                        (fun _ -> true);
    ]

  let int_32_64_dist_tests =
    let stat32 shift = [("dist",fun i -> Int32.(to_int (logand 0xffffl (shift i))))] in
    let stat64 shift = [("dist",fun i -> Int64.(to_int (logand 0xffffL (shift i))))] in
    [ (* stats are int-based, so for these to work for 31-bit ints, consider blocks of 16 bits *)
      Test.make ~name:"int32 lower dist"     ~count:10000 ~stats:(stat32 (fun i -> i)) Gen.int32                              (fun _ -> true);
      Test.make ~name:"int32 upper dist"     ~count:10000 ~stats:(stat32 (fun i -> Int32.shift_right_logical i 16)) Gen.int32 (fun _ -> true);
      Test.make ~name:"int64 lower dist"     ~count:10000 ~stats:(stat64 (fun i -> i)) Gen.int64                              (fun _ -> true);
      Test.make ~name:"int64 lower-mid dist" ~count:10000 ~stats:(stat64 (fun i -> Int64.shift_right i 16)) Gen.int64         (fun _ -> true);
      Test.make ~name:"int64 upper-mid dist" ~count:10000 ~stats:(stat64 (fun i -> Int64.shift_right i 32)) Gen.int64         (fun _ -> true);
      Test.make ~name:"int64 upper dist"     ~count:10000 ~stats:(stat64 (fun i -> Int64.shift_right_logical i 48)) Gen.int64 (fun _ -> true);
    ]

  let float_exp_tests =
    let float_dist = ("dist",int_of_float) in
    [ Test.make ~name:"exponential 10. dist" ~count:5_000 ~stats:[float_dist] (Gen.exponential 10.) (fun _ -> true);
      Test.make ~name:"exponential -10. dist" ~count:5_000 ~stats:[float_dist] (Gen.exponential (-10.)) (fun _ -> true);
    ]

  let float_tests = (* Float.frexp nan (and infinity) is undefined and may return a 32766 exponent on Alpine *)
    let float_expon_dist  = ("exponent",    fun f -> if Float.(is_nan f || is_infinite f) then 0 else snd (Float.frexp f)) in
    let float_signif_dist = ("significant", fun f -> if Float.(is_nan f || is_infinite f) (* int_of_float is undefined on nan and infinity *)
                                                     then 0 else let s = fst (Float.frexp f) in int_of_float (s *. 1000000.)) in
    let float_fpclass f = match Float.classify_float f with
      | FP_normal    -> "FP_normal"
      | FP_subnormal -> "FP_subnormal"
      | FP_zero      -> "FP_zero"
      | FP_infinite  -> "FP_infinite"
      | FP_nan       -> "FP_nan" in
    [ Test.make ~name:"float exponent"    ~count:5000 ~stats:[float_expon_dist] Gen.float (fun _ -> true);
      Test.make ~name:"float significant" ~count:5000 ~stats:[float_signif_dist] Gen.float (fun _ -> true);
      Test.make ~name:"float classify"    ~count:5000 ~collect:float_fpclass Gen.float (fun _ -> true);
    ]

  let tree_depth_test =
    let depth = ("depth", IntTree.depth) in
    Test.make ~name:"tree's depth" ~count:1000 ~stats:[depth] IntTree.gen_tree (fun _ -> true)

  let int_dist_empty_bucket =
    Test.make ~name:"int_dist_empty_bucket" ~count:1_000 ~stats:[("dist",fun x -> x)]
      Gen.(oneof [int_small_corners ();int]) (fun _ -> true)

  let tests =
    [ bool_dist; ]
    @ char_dist_tests
    @ [ tree_depth_test;]
    @ bytes_len_tests
    @ string_len_tests
    @ [pair_dist;
       triple_dist;
       quad_dist;
       bind_dist;
       option_dist;
       result_dist;]
    @ list_len_tests
    @ array_len_tests
    @ int_dist_tests
    @ int_32_64_dist_tests
    @ float_exp_tests
    @ float_tests
end