1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
|
@BEGIN_FROM_4_07_0@
include Seq
@END_FROM_4_07_0@
@BEGIN_BEFORE_4_07_0@
@BEGIN_WITH_SEQ_PKG@
include Seq
@END_WITH_SEQ_PKG@
@BEGIN_WITHOUT_SEQ_PKG@
type 'a t = unit -> 'a node
and 'a node =
'a Stdcompat__init.seq_node =
| Nil
| Cons of 'a * 'a t
let empty () = Nil
let return x () = Cons (x, empty)
let rec map f seq () = match seq () with
| Nil -> Nil
| Cons (x, next) -> Cons (f x, map f next)
let rec filter_map f seq () = match seq () with
| Nil -> Nil
| Cons (x, next) ->
match f x with
| None -> filter_map f next ()
| Some y -> Cons (y, filter_map f next)
let rec filter f seq () = match seq () with
| Nil -> Nil
| Cons (x, next) ->
if f x
then Cons (x, filter f next)
else filter f next ()
let rec flat_map f seq () = match seq () with
| Nil -> Nil
| Cons (x, next) ->
flat_map_app f (f x) next ()
and flat_map_app f seq tail () = match seq () with
| Nil -> flat_map f tail ()
| Cons (x, next) ->
Cons (x, flat_map_app f next tail)
let fold_left f acc seq =
let rec aux f acc seq = match seq () with
| Nil -> acc
| Cons (x, next) ->
let acc = f acc x in
aux f acc next
in
aux f acc seq
let iter f seq =
let rec aux seq = match seq () with
| Nil -> ()
| Cons (x, next) ->
f x;
aux next
in
aux seq
@END_WITHOUT_SEQ_PKG@
@END_BEFORE_4_07_0@
@BEGIN_BEFORE_4_11_0@
let cons x seq () =
Cons (x, seq)
let rec append a b () =
match a () with
| Nil -> b ()
| Cons (hd, tl) ->
Cons (hd, append tl b)
let rec unfold f state () =
match f state with
| None -> Nil
| Some (value, state) ->
Cons (value, unfold f state)
@END_BEFORE_4_11_0@
@BEGIN_BEFORE_4_13_0@
let concat_map = flat_map
let rec concat seq () =
match seq () with
| Nil -> Nil
| Cons (hd, tl) ->
append hd (concat tl) ()
@END_BEFORE_4_13_0@
@BEGIN_FROM_4_14_0@
(* Temporary reimplemented here for compatibility with alpha releases. *)
let fold_lefti f acc seq =
let rec aux f acc i seq = match seq () with
| Nil -> acc
| Cons (x, next) ->
let acc = f acc i x in
aux f acc (succ i) next
in
aux f acc 0 seq
@END_FROM_4_14_0@
@BEGIN_BEFORE_4_14_0@
let is_empty seq =
match seq () with
| Nil -> true
| Cons _ -> false
let uncons seq =
match seq () with
| Nil -> None
| Cons (hd, tl) -> Some (hd, tl)
let rec length_rec accu seq =
match seq () with
| Nil -> accu
| Cons (_hd, tl) -> length_rec (succ accu) tl
let length seq =
length_rec 0 seq
let iteri f seq =
let rec aux i seq = match seq () with
| Nil -> ()
| Cons (x, next) ->
f i x;
aux (succ i) next
in
aux 0 seq
let fold_lefti f acc seq =
let rec aux f acc i seq = match seq () with
| Nil -> acc
| Cons (x, next) ->
let acc = f acc i x in
aux f acc (succ i) next
in
aux f acc 0 seq
let rec for_all p seq =
match seq () with
| Nil -> true
| Cons (hd, tl) -> p hd && for_all p tl
let rec exists p seq =
match seq () with
| Nil -> false
| Cons (hd, tl) -> p hd || exists p tl
let rec find p seq =
match seq () with
| Nil -> None
| Cons (hd, tl) ->
if p hd then
Some hd
else
find p tl
let rec find_map f seq =
match seq () with
| Nil -> None
| Cons (hd, tl) ->
match f hd with
| None -> find_map f tl
| Some _ as result -> result
let iter2 f a b =
let rec aux a b =
match a () with
| Nil -> ()
| Cons (a_hd, a_tl) ->
match b () with
| Nil -> ()
| Cons (b_hd, b_tl) ->
f a_hd b_hd;
aux a_tl b_tl
in
aux a b
let fold_left2 f acc a b =
let rec aux acc a b =
match a () with
| Nil -> acc
| Cons (a_hd, a_tl) ->
match b () with
| Nil -> acc
| Cons (b_hd, b_tl) ->
aux (f acc a_hd b_hd) a_tl b_tl
in
aux acc a b
let rec for_all2 p a b =
match a () with
| Nil -> true
| Cons (a_hd, a_tl) ->
match b () with
| Nil -> true
| Cons (b_hd, b_tl) -> p a_hd b_hd && for_all2 p a_tl b_tl
let rec exists2 p a b =
match a () with
| Nil -> false
| Cons (a_hd, a_tl) ->
match b () with
| Nil -> false
| Cons (b_hd, b_tl) -> p a_hd b_hd || exists2 p a_tl b_tl
let rec equal p a b =
match a (), b () with
| Nil, Nil -> true
| Nil, Cons _ | Cons _, Nil -> false
| Cons (a_hd, a_tl), Cons (b_hd, b_tl) -> p a_hd b_hd && equal p a_tl b_tl
let rec compare o a b =
match a (), b () with
| Nil, Nil -> 0
| Nil, Cons _ -> -1
| Cons _, Nil -> 1
| Cons (a_hd, a_tl), Cons (b_hd, b_tl) ->
match o a_hd b_hd with
| 0 -> compare o a_tl b_tl
| result -> result
let init n f =
let rec aux i () =
if i < n then
Cons (f i, aux (succ i))
else
Nil in
if n < 0 then
invalid_arg "Seq.init: length should be non-negative";
aux 0
let rec repeat x () =
Cons (x, repeat x)
let rec forever gen () =
Cons (gen (), forever gen)
let cycle seq () =
match seq () with
| Nil -> Nil
| Cons (hd, tl) ->
let rec aux tl' () =
match tl' () with
| Nil -> Cons (hd, aux tl)
| Cons (hd', tl') -> Cons (hd', aux tl') in
Cons (hd, aux tl)
let rec iterate1 f x () =
let fx = f x in
Cons (fx, iterate1 f fx)
let iterate f x () =
Cons (x, iterate1 f x)
let mapi f seq =
let rec aux i seq () = match seq () with
| Nil -> Nil
| Cons (x, next) ->
Cons (f i x, aux (succ i) next)
in
aux 0 seq
let scan f acc seq =
let rec aux f acc seq () = match seq () with
| Nil -> Nil
| Cons (x, next) ->
let acc = f acc x in
Cons (acc, aux f acc next)
in
cons acc (aux f acc seq)
let rec take_rec n seq =
if n > 0 then fun () ->
match seq () with
| Nil -> Nil
| Cons (hd, tl) ->
Cons (hd, take_rec (pred n) tl)
else
empty
let take n seq =
if n < 0 then
invalid_arg "Seq.take: length should be non-negative";
take_rec n seq
let rec drop_rec n seq =
match seq () with
| Nil -> empty
| Cons (_hd, tl) ->
let n' = pred n in
if n' > 0 then
drop_rec n' tl
else
tl
let drop n seq =
if n < 0 then
invalid_arg "Seq.drop: length should be non-negative";
if n = 0 then
seq
else
drop_rec n seq
let rec take_while p seq () =
match seq () with
| Nil -> Nil
| Cons (hd, tl) ->
if p hd then
Cons (hd, take_while p tl)
else
Nil
let rec drop_while_rec p seq =
match seq () with
| Nil -> Nil
| Cons (hd, tl) as result ->
if p hd then
drop_while_rec p tl
else
result
let drop_while p seq () =
drop_while_rec p seq
let rec group eq seq () =
match seq () with
| Nil -> Nil
| Cons (hd, tl) ->
Cons (cons hd (take_while (eq hd) tl), group eq (drop_while (eq hd) tl))
let rec memoize seq =
let next =
lazy (match seq () with
| Nil -> Nil
| Cons (hd, tl) -> Cons (hd, memoize tl)) in
fun () -> Lazy.force next
exception Forced_twice
let rec once seq =
let consumed = ref false in
fun () ->
if !consumed then
raise Forced_twice;
consumed := true;
match seq () with
| Nil -> Nil
| Cons (hd, tl) -> Cons (hd, once tl)
let rec transpose seq () =
match seq () with
| Nil -> Nil
| Cons (hd, tl) ->
let first () =
let hd_opt seq =
match seq () with
| Nil -> None
| Cons (hd, _tl) -> Some hd in
let tl' = filter_map hd_opt tl in
match hd () with
| Nil -> tl' ()
| Cons (hd, _tl) -> Cons (hd, tl') in
let others () =
let tl_opt seq =
match seq () with
| Nil -> None
| Cons (_hd, tl) -> Some tl in
let tl' = filter_map tl_opt tl in
match hd () with
| Nil -> tl' ()
| Cons (_hd, tl) -> Cons (tl, tl') in
if is_empty first then
Nil
else
Cons (first, transpose others)
let rec zip a b () =
match a () with
| Nil -> Nil
| Cons (a_hd, a_tl) ->
match b () with
| Nil -> Nil
| Cons (b_hd, b_tl) ->
Cons ((a_hd, b_hd), zip a_tl b_tl)
let rec map2 f a b () =
match a () with
| Nil -> Nil
| Cons (a_hd, a_tl) ->
match b () with
| Nil -> Nil
| Cons (b_hd, b_tl) ->
Cons (f a_hd b_hd, map2 f a_tl b_tl)
let rec interleave a b () =
match a () with
| Nil -> b ()
| Cons (hd, tl) ->
Cons (hd, interleave b tl)
let rec sorted_merge1l o a_cell a_hd a_tl b () =
match b () with
| Nil -> a_cell
| Cons (b_hd, b_tl) as b_cell ->
sorted_merge1 o a_cell a_hd a_tl b_cell b_hd b_tl
and sorted_merge1r o a b_cell b_hd b_tl () =
match a () with
| Nil -> b_cell
| Cons (a_hd, a_tl) as a_cell ->
sorted_merge1 o a_cell a_hd a_tl b_cell b_hd b_tl
and sorted_merge1 o a_cell a_hd a_tl b_cell b_hd b_tl =
if o a_hd b_hd <= 0 then
Cons (a_hd, sorted_merge1r o a_tl b_cell b_hd b_tl)
else
Cons (b_hd, sorted_merge1l o a_cell a_hd a_tl b_tl)
let sorted_merge o a b () =
match a (), b () with
| Nil, Nil -> Nil
| Nil, c | c, Nil -> c
| Cons (a_hd, a_tl) as a_cell, (Cons (b_hd, b_tl) as b_cell) ->
sorted_merge1 o a_cell a_hd a_tl b_cell b_hd b_tl
let rec map_product1 f a_hd a_tl b =
match b () with
| Nil -> Nil
| Cons (b_hd, b_tl) ->
Cons (f a_hd b_hd,
append (map (fun ai -> f ai b_hd) a_tl)
(fun () -> map_product1 f a_hd a_tl b_tl))
let map_product f a b () =
match a () with
| Nil -> Nil
| Cons (a_hd, a_tl) ->
map_product1 f a_hd a_tl b
let product a b =
map_product (fun a b -> (a, b)) a b
let unzip seq =
(map fst seq, map snd seq)
let split = unzip
let partition_map f seq =
filter_map (fun x -> Stdcompat__either.find_left (f x)) seq,
filter_map (fun x -> Stdcompat__either.find_right (f x)) seq
let partition p seq =
filter p seq, filter (fun x -> not (p x)) seq
let rec of_dispenser f () =
match f () with
| None -> Nil
| Some item -> Cons (item, of_dispenser f)
let to_dispenser seq =
let seq_ref = ref seq in
fun () ->
match !seq_ref () with
| Nil -> None
| Cons (hd, tl) ->
seq_ref := tl;
Some hd
let rec ints i () =
Cons (i, ints (succ i))
@END_BEFORE_4_14_0@
@BEGIN_BEFORE_5_1_0@
let rec find_index_from index p seq =
match seq () with
| Nil -> None
| Cons (hd, tl) ->
if p hd then
Some index
else
find_index_from (succ index) p tl
let find_index p seq =
find_index_from 0 p seq
let rec find_mapi_from index f seq =
match seq () with
| Nil -> None
| Cons (hd, tl) ->
match f index hd with
| None -> find_mapi_from (succ index) f tl
| some -> some
let find_mapi f seq =
find_mapi_from 0 f seq
@END_BEFORE_5_1_0@
|