1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Damien Doligez, projet Para, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(** Pseudo-random number generators (PRNG). *)
(** {1 Basic functions} *)
val init : int -> unit
(** Initialize the generator, using the argument as a seed.
The same seed will always yield the same sequence of numbers. *)
val full_init : int array -> unit
(** Same as {!Random3.init} but takes more data as seed. *)
val self_init : unit -> unit
(** Initialize the generator with a random seed chosen
in a system-dependent way. If [/dev/urandom] is available on
the host machine, it is used to provide a highly random initial
seed. Otherwise, a less random seed is computed from system
parameters (current time, process IDs). *)
val bits : unit -> int
(** Return 30 random bits in a nonnegative integer.*)
val int : int -> int
(** [Random3.int bound] returns a random integer between 0 (inclusive)
and [bound] (exclusive). [bound] must be greater than 0 and less
than 2{^30}.
@raise Invalid_argument if [bound] <= 0 or [bound] >= 2{^30}.
*)
val full_int : int -> int
(** [Random3.full_int bound] returns a random integer between 0 (inclusive)
and [bound] (exclusive). [bound] may be any positive integer.
If [bound] is less than 2{^31},
then [Random3.full_int bound] yields identical output
across systems with varying [int] sizes.
If [bound] is less than 2{^30},
then [Random3.full_int bound] is equal to {!Random3.int}[ bound].
If [bound] is at least 2{^30}
(on 64-bit systems, or non-standard environments such as JavaScript),
then [Random3.full_int] returns a value
whereas {!Random3.int} raises {!Stdlib.Invalid_argument}.
@raise Invalid_argument if [bound] <= 0.
@since 4.13 *)
val int_in_range : min:int -> max:int -> int
(** [Random3.int_in_range ~min ~max] returns a random integer
between [min] (inclusive) and [max] (inclusive).
Both [min] and [max] are allowed to be negative;
[min] must be less than or equal to [max].
If both bounds fit in 32-bit signed integers
(that is, if -2{^31} <= [min] and [max] < 2{^31}),
then [int_in_range] yields identical output
across systems with varying [int] sizes.
@raise Invalid_argument if [min > max].
@since 5.2 *)
val int32 : Int32.t -> Int32.t
(** [Random3.int32 bound] returns a random integer between 0 (inclusive)
and [bound] (exclusive). [bound] must be greater than 0.
@raise Invalid_argument if [bound] <= 0.
*)
val int32_in_range : min:int32 -> max:int32 -> int32
(** [Random3.int32_in_range ~min ~max] returns a random integer
between [min] (inclusive) and [max] (inclusive).
Both [min] and [max] are allowed to be negative;
[min] must be less than or equal to [max].
@raise Invalid_argument if [min > max].
@since 5.2 *)
val nativeint : Nativeint.t -> Nativeint.t
(** [Random3.nativeint bound] returns a random integer between 0 (inclusive)
and [bound] (exclusive). [bound] must be greater than 0.
@raise Invalid_argument if [bound] <= 0.
*)
val nativeint_in_range : min:nativeint -> max:nativeint -> nativeint
(** [Random3.nativeint_in_range ~min ~max] returns a random integer
between [min] (inclusive) and [max] (inclusive).
Both [min] and [max] are allowed to be negative;
[min] must be less than or equal to [max].
@raise Invalid_argument if [min > max].
@since 5.2 *)
val int64 : Int64.t -> Int64.t
(** [Random3.int64 bound] returns a random integer between 0 (inclusive)
and [bound] (exclusive). [bound] must be greater than 0.
@raise Invalid_argument if [bound] <= 0.
*)
val int64_in_range : min:int64 -> max:int64 -> int64
(** [Random3.int64_in_range ~min ~max] returns a random integer
between [min] (inclusive) and [max] (inclusive).
Both [min] and [max] are allowed to be negative;
[min] must be less than or equal to [max].
@raise Invalid_argument if [min > max].
@since 5.2 *)
val float : float -> float
(** [Random3.float bound] returns a random floating-point number
between 0 and [bound] (inclusive). If [bound] is
negative, the result is negative or zero. If [bound] is 0,
the result is 0. *)
val bool : unit -> bool
(** [Random3.bool ()] returns [true] or [false] with probability 0.5 each. *)
val bits32 : unit -> Int32.t
(** [Random3.bits32 ()] returns 32 random bits as an integer between
{!Int32.min_int} and {!Int32.max_int}.
*)
val bits64 : unit -> Int64.t
(** [Random3.bits64 ()] returns 64 random bits as an integer between
{!Int64.min_int} and {!Int64.max_int}.
@since 4.14 *)
val nativebits : unit -> Nativeint.t
(** [Random3.nativebits ()] returns 32 or 64 random bits (depending on
the bit width of the platform) as an integer between
{!Nativeint.min_int} and {!Nativeint.max_int}.
@since 4.14 *)
(** {1 Advanced functions} *)
(** The functions from module {!State} manipulate the current state
of the random generator explicitly.
This allows using one or several deterministic PRNGs,
even in a multi-threaded program, without interference from
other parts of the program.
*)
module State : sig
type t
(** The type of PRNG states. *)
val make : int array -> t
(** Create a new state and initialize it with the given seed. *)
val make_self_init : unit -> t
(** Create a new state and initialize it with a system-dependent
low-entropy seed. *)
val copy : t -> t
(** Return a copy of the given state. *)
val bits : t -> int
val int : t -> int -> int
val full_int : t -> int -> int
val int_in_range : t -> min:int -> max:int -> int
val int32 : t -> Int32.t -> Int32.t
val int32_in_range : t -> min:int32 -> max:int32 -> int32
val nativeint : t -> Nativeint.t -> Nativeint.t
val nativeint_in_range : t -> min:nativeint -> max:nativeint -> nativeint
val int64 : t -> Int64.t -> Int64.t
val int64_in_range : t -> min:int64 -> max:int64 -> int64
val float : t -> float -> float
val bool : t -> bool
val bits32 : t -> Int32.t
val bits64 : t -> Int64.t
val nativebits : t -> Nativeint.t
(** These functions are the same as the basic functions, except that they
use (and update) the given PRNG state instead of the default one.
*)
val to_binary_string : t -> string
(** Serializes the PRNG state into an immutable sequence of bytes.
See {!of_binary_string} for deserialization.
The [string] type is intended here for serialization only, the
encoding is not human-readable and may not be printable.
Note that the serialization format may differ across OCaml
versions.
@since 5.1
*)
val of_binary_string : string -> t
(** Deserializes a byte sequence obtained by calling
{!to_binary_string}. The resulting PRNG state will produce the
same random numbers as the state that was passed as input to
{!to_binary_string}.
@raise Failure if the input is not in the expected format.
Note that the serialization format may differ across OCaml
versions.
Unlike the functions provided by the {!Marshal} module, this
function either produces a valid state or fails cleanly with
a [Failure] exception. It can be safely used on user-provided,
untrusted inputs.
@since 5.1
*)
end
val get_state : unit -> State.t
(** Return the current state of the generator used by the basic functions. *)
val set_state : State.t -> unit
(** Set the state of the generator used by the basic functions. *)
|