1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
|
/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Damien Doligez, projet Para, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. All rights reserved. This file is distributed */
/* under the terms of the GNU Library General Public License, with */
/* the special exception on linking described in file ../LICENSE. */
/* */
/***********************************************************************/
/* $Id: memory.c 9117 2008-11-02 14:30:05Z xleroy $ */
#include <stdlib.h>
#include <string.h>
#include "fail.h"
#include "freelist.h"
#include "gc.h"
#include "gc_ctrl.h"
#include "major_gc.h"
#include "memory.h"
#include "major_gc.h"
#include "minor_gc.h"
#include "misc.h"
#include "mlvalues.h"
#include "signals.h"
extern uintnat caml_percent_free; /* major_gc.c */
/* Page table management */
#define Page(p) ((uintnat) (p) >> Page_log)
#define Page_mask ((uintnat) -1 << Page_log)
#ifdef ARCH_SIXTYFOUR
/* 64-bit implementation:
The page table is represented sparsely as a hash table
with linear probing */
struct page_table {
mlsize_t size; /* size == 1 << (wordsize - shift) */
int shift;
mlsize_t mask; /* mask == size - 1 */
mlsize_t occupancy;
uintnat * entries; /* [size] */
};
static struct page_table caml_page_table;
/* Page table entries are the logical 'or' of
- the key: address of a page (low Page_log bits = 0)
- the data: a 8-bit integer */
#define Page_entry_matches(entry,addr) \
((((entry) ^ (addr)) & Page_mask) == 0)
/* Multiplicative Fibonacci hashing
(Knuth, TAOCP vol 3, section 6.4, page 518).
HASH_FACTOR is (sqrt(5) - 1) / 2 * 2^wordsize. */
#ifdef ARCH_SIXTYFOUR
#define HASH_FACTOR 11400714819323198486UL
#else
#define HASH_FACTOR 2654435769UL
#endif
#define Hash(v) (((v) * HASH_FACTOR) >> caml_page_table.shift)
int caml_page_table_lookup(void * addr)
{
uintnat h, e;
h = Hash(Page(addr));
/* The first hit is almost always successful, so optimize for this case */
e = caml_page_table.entries[h];
if (Page_entry_matches(e, (uintnat)addr)) return e & 0xFF;
while(1) {
if (e == 0) return 0;
h = (h + 1) & caml_page_table.mask;
e = caml_page_table.entries[h];
if (Page_entry_matches(e, (uintnat)addr)) return e & 0xFF;
}
}
int caml_page_table_initialize(mlsize_t bytesize)
{
uintnat pagesize = Page(bytesize);
caml_page_table.size = 1;
caml_page_table.shift = 8 * sizeof(uintnat);
/* Aim for initial load factor between 1/4 and 1/2 */
while (caml_page_table.size < 2 * pagesize) {
caml_page_table.size <<= 1;
caml_page_table.shift -= 1;
}
caml_page_table.mask = caml_page_table.size - 1;
caml_page_table.occupancy = 0;
caml_page_table.entries = calloc(caml_page_table.size, sizeof(uintnat));
if (caml_page_table.entries == NULL)
return -1;
else
return 0;
}
static int caml_page_table_resize(void)
{
struct page_table old = caml_page_table;
uintnat * new_entries;
uintnat i, h;
caml_gc_message (0x08, "Growing page table to %lu entries\n",
caml_page_table.size);
new_entries = calloc(2 * old.size, sizeof(uintnat));
if (new_entries == NULL) {
caml_gc_message (0x08, "No room for growing page table\n", 0);
return -1;
}
caml_page_table.size = 2 * old.size;
caml_page_table.shift = old.shift - 1;
caml_page_table.mask = caml_page_table.size - 1;
caml_page_table.occupancy = old.occupancy;
caml_page_table.entries = new_entries;
for (i = 0; i < old.size; i++) {
uintnat e = old.entries[i];
if (e == 0) continue;
h = Hash(Page(e));
while (caml_page_table.entries[h] != 0)
h = (h + 1) & caml_page_table.mask;
caml_page_table.entries[h] = e;
}
free(old.entries);
return 0;
}
static int caml_page_table_modify(uintnat page, int toclear, int toset)
{
uintnat h;
Assert ((page & ~Page_mask) == 0);
/* Resize to keep load factor below 1/2 */
if (caml_page_table.occupancy * 2 >= caml_page_table.size) {
if (caml_page_table_resize() != 0) return -1;
}
h = Hash(Page(page));
while (1) {
if (caml_page_table.entries[h] == 0) {
caml_page_table.entries[h] = page | toset;
caml_page_table.occupancy++;
break;
}
if (Page_entry_matches(caml_page_table.entries[h], page)) {
caml_page_table.entries[h] =
(caml_page_table.entries[h] & ~toclear) | toset;
break;
}
h = (h + 1) & caml_page_table.mask;
}
return 0;
}
#else
/* 32-bit implementation:
The page table is represented as a 2-level array of unsigned char */
CAMLexport unsigned char * caml_page_table[Pagetable1_size];
static unsigned char caml_page_table_empty[Pagetable2_size] = { 0, };
int caml_page_table_initialize(mlsize_t bytesize)
{
int i;
for (i = 0; i < Pagetable1_size; i++)
caml_page_table[i] = caml_page_table_empty;
return 0;
}
static int caml_page_table_modify(uintnat page, int toclear, int toset)
{
uintnat i = Pagetable_index1(page);
uintnat j = Pagetable_index2(page);
if (caml_page_table[i] == caml_page_table_empty) {
unsigned char * new_tbl = calloc(Pagetable2_size, 1);
if (new_tbl == 0) return -1;
caml_page_table[i] = new_tbl;
}
caml_page_table[i][j] = (caml_page_table[i][j] & ~toclear) | toset;
return 0;
}
#endif
int caml_page_table_add(int kind, void * start, void * end)
{
uintnat pstart = (uintnat) start & Page_mask;
uintnat pend = ((uintnat) end - 1) & Page_mask;
uintnat p;
for (p = pstart; p <= pend; p += Page_size)
if (caml_page_table_modify(p, 0, kind) != 0) return -1;
return 0;
}
int caml_page_table_remove(int kind, void * start, void * end)
{
uintnat pstart = (uintnat) start & Page_mask;
uintnat pend = ((uintnat) end - 1) & Page_mask;
uintnat p;
for (p = pstart; p <= pend; p += Page_size)
if (caml_page_table_modify(p, kind, 0) != 0) return -1;
return 0;
}
/* Allocate a block of the requested size, to be passed to
[caml_add_to_heap] later.
[request] must be a multiple of [Page_size].
[caml_alloc_for_heap] returns NULL if the request cannot be satisfied.
The returned pointer is a hp, but the header must be initialized by
the caller.
*/
char *caml_alloc_for_heap (asize_t request)
{
char *mem;
void *block;
Assert (request % Page_size == 0);
mem = caml_aligned_malloc (request + sizeof (heap_chunk_head),
sizeof (heap_chunk_head), &block);
if (mem == NULL) return NULL;
mem += sizeof (heap_chunk_head);
Chunk_size (mem) = request;
Chunk_block (mem) = block;
return mem;
}
/* Use this function to free a block allocated with [caml_alloc_for_heap]
if you don't add it with [caml_add_to_heap].
*/
void caml_free_for_heap (char *mem)
{
free (Chunk_block (mem));
}
/* Take a chunk of memory as argument, which must be the result of a
call to [caml_alloc_for_heap], and insert it into the heap chaining.
The contents of the chunk must be a sequence of valid blocks and
fragments: no space between blocks and no trailing garbage. If
some blocks are blue, they must be added to the free list by the
caller. All other blocks must have the color [caml_allocation_color(m)].
The caller must update [caml_allocated_words] if applicable.
Return value: 0 if no error; -1 in case of error.
*/
int caml_add_to_heap (char *m)
{
Assert (Chunk_size (m) % Page_size == 0);
#ifdef DEBUG
/* Should check the contents of the block. */
#endif /* debug */
caml_gc_message (0x04, "Growing heap to %luk bytes\n",
(caml_stat_heap_size + Chunk_size (m)) / 1024);
/* Register block in page table */
if (caml_page_table_add(In_heap, m, m + Chunk_size(m)) != 0)
return -1;
/* Chain this heap chunk. */
{
char **last = &caml_heap_start;
char *cur = *last;
while (cur != NULL && cur < m){
last = &(Chunk_next (cur));
cur = *last;
}
Chunk_next (m) = cur;
*last = m;
++ caml_stat_heap_chunks;
}
caml_stat_heap_size += Chunk_size (m);
if (caml_stat_heap_size > caml_stat_top_heap_size){
caml_stat_top_heap_size = caml_stat_heap_size;
}
return 0;
}
/* Allocate more memory from malloc for the heap.
Return a blue block of at least the requested size.
The blue block is chained to a sequence of blue blocks (through their
field 0); the last block of the chain is pointed by field 1 of the
first. There may be a fragment after the last block.
The caller must insert the blocks into the free list.
The request must be less than or equal to Max_wosize.
Return NULL when out of memory.
*/
static char *expand_heap (mlsize_t request)
{
char *mem, *hp, *prev;
asize_t over_request, malloc_request, remain;
Assert (request <= Max_wosize);
over_request = request + request / 100 * caml_percent_free;
malloc_request = caml_round_heap_chunk_size (Bhsize_wosize (over_request));
mem = caml_alloc_for_heap (malloc_request);
if (mem == NULL){
caml_gc_message (0x04, "No room for growing heap\n", 0);
return NULL;
}
remain = malloc_request;
prev = hp = mem;
/* XXX find a way to do this with a call to caml_make_free_blocks */
while (Wosize_bhsize (remain) > Max_wosize){
Hd_hp (hp) = Make_header (Max_wosize, 0, Caml_blue);
#ifdef DEBUG
caml_set_fields (Bp_hp (hp), 0, Debug_free_major);
#endif
hp += Bhsize_wosize (Max_wosize);
remain -= Bhsize_wosize (Max_wosize);
Field (Op_hp (mem), 1) = Field (Op_hp (prev), 0) = (value) Op_hp (hp);
prev = hp;
}
if (remain > 1){
Hd_hp (hp) = Make_header (Wosize_bhsize (remain), 0, Caml_blue);
#ifdef DEBUG
caml_set_fields (Bp_hp (hp), 0, Debug_free_major);
#endif
Field (Op_hp (mem), 1) = Field (Op_hp (prev), 0) = (value) Op_hp (hp);
Field (Op_hp (hp), 0) = (value) NULL;
}else{
Field (Op_hp (prev), 0) = (value) NULL;
if (remain == 1) Hd_hp (hp) = Make_header (0, 0, Caml_white);
}
Assert (Wosize_hp (mem) >= request);
if (caml_add_to_heap (mem) != 0){
caml_free_for_heap (mem);
return NULL;
}
return Bp_hp (mem);
}
/* Remove the heap chunk [chunk] from the heap and give the memory back
to [free].
*/
void caml_shrink_heap (char *chunk)
{
char **cp;
/* Never deallocate the first block, because caml_heap_start is both the
first block and the base address for page numbers, and we don't
want to shift the page table, it's too messy (see above).
It will never happen anyway, because of the way compaction works.
(see compact.c)
*/
if (chunk == caml_heap_start) return;
caml_stat_heap_size -= Chunk_size (chunk);
caml_gc_message (0x04, "Shrinking heap to %luk bytes\n",
(unsigned long) caml_stat_heap_size / 1024);
#ifdef DEBUG
{
mlsize_t i;
for (i = 0; i < Wsize_bsize (Chunk_size (chunk)); i++){
((value *) chunk) [i] = Debug_free_shrink;
}
}
#endif
-- caml_stat_heap_chunks;
/* Remove [chunk] from the list of chunks. */
cp = &caml_heap_start;
while (*cp != chunk) cp = &(Chunk_next (*cp));
*cp = Chunk_next (chunk);
/* Remove the pages of [chunk] from the page table. */
caml_page_table_remove(In_heap, chunk, chunk + Chunk_size (chunk));
/* Free the [malloc] block that contains [chunk]. */
caml_free_for_heap (chunk);
}
color_t caml_allocation_color (void *hp)
{
if (caml_gc_phase == Phase_mark
|| (caml_gc_phase == Phase_sweep && (addr)hp >= (addr)caml_gc_sweep_hp)){
return Caml_black;
}else{
Assert (caml_gc_phase == Phase_idle
|| (caml_gc_phase == Phase_sweep
&& (addr)hp < (addr)caml_gc_sweep_hp));
return Caml_white;
}
}
CAMLexport value caml_alloc_shr (mlsize_t wosize, tag_t tag)
{
char *hp, *new_block;
if (wosize > Max_wosize) caml_raise_out_of_memory ();
hp = caml_fl_allocate (wosize);
if (hp == NULL){
new_block = expand_heap (wosize);
if (new_block == NULL) {
if (caml_in_minor_collection)
caml_fatal_error ("Fatal error: out of memory.\n");
else
caml_raise_out_of_memory ();
}
caml_fl_add_blocks (new_block);
hp = caml_fl_allocate (wosize);
}
Assert (Is_in_heap (Val_hp (hp)));
/* Inline expansion of caml_allocation_color. */
if (caml_gc_phase == Phase_mark
|| (caml_gc_phase == Phase_sweep && (addr)hp >= (addr)caml_gc_sweep_hp)){
Hd_hp (hp) = Make_header (wosize, tag, Caml_black);
}else{
Assert (caml_gc_phase == Phase_idle
|| (caml_gc_phase == Phase_sweep
&& (addr)hp < (addr)caml_gc_sweep_hp));
Hd_hp (hp) = Make_header (wosize, tag, Caml_white);
}
Assert (Hd_hp (hp) == Make_header (wosize, tag, caml_allocation_color (hp)));
caml_allocated_words += Whsize_wosize (wosize);
if (caml_allocated_words > Wsize_bsize (caml_minor_heap_size)){
caml_urge_major_slice ();
}
#ifdef DEBUG
{
uintnat i;
for (i = 0; i < wosize; i++){
Field (Val_hp (hp), i) = Debug_uninit_major;
}
}
#endif
return Val_hp (hp);
}
/* Dependent memory is all memory blocks allocated out of the heap
that depend on the GC (and finalizers) for deallocation.
For the GC to take dependent memory into account when computing
its automatic speed setting,
you must call [caml_alloc_dependent_memory] when you alloate some
dependent memory, and [caml_free_dependent_memory] when you
free it. In both cases, you pass as argument the size (in bytes)
of the block being allocated or freed.
*/
CAMLexport void caml_alloc_dependent_memory (mlsize_t nbytes)
{
caml_dependent_size += nbytes / sizeof (value);
caml_dependent_allocated += nbytes / sizeof (value);
}
CAMLexport void caml_free_dependent_memory (mlsize_t nbytes)
{
if (caml_dependent_size < nbytes / sizeof (value)){
caml_dependent_size = 0;
}else{
caml_dependent_size -= nbytes / sizeof (value);
}
}
/* Use this function to tell the major GC to speed up when you use
finalized blocks to automatically deallocate resources (other
than memory). The GC will do at least one cycle every [max]
allocated resources; [res] is the number of resources allocated
this time.
Note that only [res/max] is relevant. The units (and kind of
resource) can change between calls to [caml_adjust_gc_speed].
*/
CAMLexport void caml_adjust_gc_speed (mlsize_t res, mlsize_t max)
{
if (max == 0) max = 1;
if (res > max) res = max;
caml_extra_heap_resources += (double) res / (double) max;
if (caml_extra_heap_resources > 1.0){
caml_extra_heap_resources = 1.0;
caml_urge_major_slice ();
}
if (caml_extra_heap_resources
> (double) Wsize_bsize (caml_minor_heap_size) / 2.0
/ (double) Wsize_bsize (caml_stat_heap_size)) {
caml_urge_major_slice ();
}
}
/* You must use [caml_initialize] to store the initial value in a field of
a shared block, unless you are sure the value is not a young block.
A block value [v] is a shared block if and only if [Is_in_heap (v)]
is true.
*/
/* [caml_initialize] never calls the GC, so you may call it while an block is
unfinished (i.e. just after a call to [caml_alloc_shr].) */
void caml_initialize (value *fp, value val)
{
*fp = val;
if (Is_block (val) && Is_young (val) && Is_in_heap (fp)){
if (caml_ref_table.ptr >= caml_ref_table.limit){
caml_realloc_ref_table (&caml_ref_table);
}
*caml_ref_table.ptr++ = fp;
}
}
/* You must use [caml_modify] to change a field of an existing shared block,
unless you are sure the value being overwritten is not a shared block and
the value being written is not a young block. */
/* [caml_modify] never calls the GC. */
void caml_modify (value *fp, value val)
{
Modify (fp, val);
}
CAMLexport void * caml_stat_alloc (asize_t sz)
{
void * result = malloc (sz);
/* malloc() may return NULL if size is 0 */
if (result == NULL && sz != 0) caml_raise_out_of_memory ();
#ifdef DEBUG
memset (result, Debug_uninit_stat, sz);
#endif
return result;
}
CAMLexport void caml_stat_free (void * blk)
{
free (blk);
}
CAMLexport void * caml_stat_resize (void * blk, asize_t sz)
{
void * result = realloc (blk, sz);
if (result == NULL) caml_raise_out_of_memory ();
return result;
}
|