1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. All rights reserved. This file is distributed */
/* under the terms of the Q Public License version 1.0. */
/* */
/***********************************************************************/
/* $Id: parser.mly 7815 2007-01-29 16:44:16Z maranget $ */
/* The grammar for lexer definitions */
%{
open Syntax
(* Auxiliaries for the parser. *)
let named_regexps =
(Hashtbl.create 13 : (string, regular_expression) Hashtbl.t)
let regexp_for_string s =
let rec re_string n =
if n >= String.length s then Epsilon
else if succ n = String.length s then
Characters (Cset.singleton (Char.code s.[n]))
else
Sequence
(Characters(Cset.singleton (Char.code s.[n])),
re_string (succ n))
in re_string 0
let rec remove_as = function
| Bind (e,_) -> remove_as e
| Epsilon|Eof|Characters _ as e -> e
| Sequence (e1, e2) -> Sequence (remove_as e1, remove_as e2)
| Alternative (e1, e2) -> Alternative (remove_as e1, remove_as e2)
| Repetition e -> Repetition (remove_as e)
let as_cset = function
| Characters s -> s
| _ -> raise Cset.Bad
%}
%token <string> Tident
%token <int> Tchar
%token <string> Tstring
%token <Syntax.location> Taction
%token Trule Tparse Tparse_shortest Tand Tequal Tend Tor Tunderscore Teof Tlbracket Trbracket
%token Tstar Tmaybe Tplus Tlparen Trparen Tcaret Tdash Tlet Tas Tsharp
%right Tas
%left Tsharp
%left Tor
%nonassoc CONCAT
%nonassoc Tmaybe Tstar Tplus
Tident Tchar Tstring Tunderscore Teof Tlbracket Tlparen
%start lexer_definition
%type <Syntax.lexer_definition> lexer_definition
%%
lexer_definition:
header named_regexps Trule definition other_definitions header Tend
{ {header = $1;
entrypoints = $4 :: List.rev $5;
trailer = $6} }
;
header:
Taction
{ $1 }
| /*epsilon*/
{ { start_pos = 0; end_pos = 0; start_line = 1; start_col = 0 } }
;
named_regexps:
named_regexps Tlet Tident Tequal regexp
{ Hashtbl.add named_regexps $3 $5 }
| /*epsilon*/
{ () }
;
other_definitions:
other_definitions Tand definition
{ $3::$1 }
| /*epsilon*/
{ [] }
;
definition:
Tident arguments Tequal Tparse entry
{ {name=$1 ; shortest=false ; args=$2 ; clauses=$5} }
| Tident arguments Tequal Tparse_shortest entry
{ {name=$1 ; shortest=true ; args=$2 ; clauses=$5} }
;
arguments:
Tident arguments { $1::$2 }
| /*epsilon*/ { [] }
;
entry:
case rest_of_entry
{ $1::List.rev $2 }
| Tor case rest_of_entry
{ $2::List.rev $3 }
;
rest_of_entry:
rest_of_entry Tor case
{ $3::$1 }
|
{ [] }
;
case:
regexp Taction
{ ($1,$2) }
;
regexp:
Tunderscore
{ Characters Cset.all_chars }
| Teof
{ Eof }
| Tchar
{ Characters (Cset.singleton $1) }
| Tstring
{ regexp_for_string $1 }
| Tlbracket char_class Trbracket
{ Characters $2 }
| regexp Tstar
{ Repetition $1 }
| regexp Tmaybe
{ Alternative(Epsilon, $1) }
| regexp Tplus
{ Sequence(Repetition (remove_as $1), $1) }
| regexp Tsharp regexp
{
let s1 = as_cset $1
and s2 = as_cset $3 in
Characters (Cset.diff s1 s2)
}
| regexp Tor regexp
{ Alternative($1,$3) }
| regexp regexp %prec CONCAT
{ Sequence($1,$2) }
| Tlparen regexp Trparen
{ $2 }
| Tident
{ try
Hashtbl.find named_regexps $1
with Not_found ->
let p = Parsing.symbol_start_pos () in
Printf.eprintf "File \"%s\", line %d, character %d:\n\
Reference to unbound regexp name `%s'.\n"
p.Lexing.pos_fname p.Lexing.pos_lnum
(p.Lexing.pos_cnum - p.Lexing.pos_bol)
$1;
exit 2 }
| regexp Tas ident
{let p1 = Parsing.rhs_start_pos 3
and p2 = Parsing.rhs_end_pos 3 in
let p = {
start_pos = p1.Lexing.pos_cnum ;
end_pos = p2.Lexing.pos_cnum ;
start_line = p1.Lexing.pos_lnum ;
start_col = p1.Lexing.pos_cnum - p1.Lexing.pos_bol ; } in
Bind ($1, ($3, p))}
;
ident:
Tident {$1}
;
char_class:
Tcaret char_class1
{ Cset.complement $2 }
| char_class1
{ $1 }
;
char_class1:
Tchar Tdash Tchar
{ Cset.interval $1 $3 }
| Tchar
{ Cset.singleton $1 }
| char_class1 char_class1 %prec CONCAT
{ Cset.union $1 $2 }
;
%%
|