1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
(***********************************************************************)
(* ocamlbuild *)
(* *)
(* Nicolas Pouillard, Berke Durak, projet Gallium, INRIA Rocquencourt *)
(* *)
(* Copyright 2007 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* Original author: Berke Durak *)
(* Glob *)
open My_std;;
open Bool;;
include Glob_ast;;
open Glob_lexer;;
let sf = Printf.sprintf;;
let brute_limit = 10;;
(*** string_of_token *)
let string_of_token = function
| ATOM _ -> "ATOM"
| AND -> "AND"
| OR -> "OR"
| NOT -> "NOT"
| LPAR -> "LPAR"
| RPAR -> "RPAR"
| TRUE -> "TRUE"
| FALSE -> "FALSE"
| EOF -> "EOF"
;;
(* ***)
(*** match_character_class *)
let match_character_class cl c =
Bool.eval
begin function (c1,c2) ->
c1 <= c && c <= c2
end
cl
;;
(* ***)
(*** NFA *)
module NFA =
struct
type transition =
| QCLASS of character_class
| QEPSILON
;;
module IS = Set.Make(struct type t = int let compare = compare let print = Format.pp_print_int end);;
module ISM = Map.Make(struct type t = IS.t let compare = IS.compare let print = IS.print end);;
type machine = {
mc_qi : IS.t;
mc_table : (character_class * IS.t) list array;
mc_qf : int;
mc_power_table : (char, IS.t ISM.t) Hashtbl.t
}
(*** build' *)
let build' p =
let count = ref 0 in
let transitions = ref [] in
let epsilons : (int * int) list ref = ref [] in
let state () = let id = !count in incr count; id in
let ( --> ) q1 t q2 =
match t with
| QEPSILON -> epsilons := (q1,q2) :: !epsilons; q1
| QCLASS cl -> transitions := (q1,cl,q2) :: !transitions; q1
in
(* Construit les transitions correspondant au motif donné et arrivant
* sur l'état qf. Retourne l'état d'origine. *)
let rec loop qf = function
| Epsilon -> qf
| Word u ->
let m = String.length u in
let q0 = state () in
let rec loop q i =
if i = m then
q0
else
begin
let q' =
if i = m - 1 then
qf
else
state ()
in
let _ = (q --> QCLASS(Atom(u.[i], u.[i]))) q' in
loop q' (i + 1)
end
in
loop q0 0
| Class cl ->
let q1 = state () in
(q1 --> QCLASS cl) qf
| Star p ->
(* The fucking Kleene star *)
let q2 = state () in
let q1 = loop q2 p in (* q1 -{p}-> q2 *)
let _ = (q1 --> QEPSILON) qf in
let _ = (q2 --> QEPSILON) q1 in
let _ = (q2 --> QEPSILON) q1 in
q1
| Concat(p1,p2) ->
let q12 = state () in
let q1 = loop q12 p1 in (* q1 -{p1}-> q12 *)
let q2 = loop qf p2 in (* q2 -{p2}-> qf *)
let _ = (q12 --> QEPSILON) q2 in
q1
| Union pl ->
let qi = state () in
List.iter
begin fun p ->
let q = loop qf p in (* q -{p2}-> qf *)
let _ = (qi --> QEPSILON) q in (* qi -{}---> q *)
()
end
pl;
qi
in
let qf = state () in
let qi = loop qf p in
let m = !count in
(* Compute epsilon closure *)
let graph = Array.make m IS.empty in
List.iter
begin fun (q,q') ->
graph.(q) <- IS.add q' graph.(q)
end
!epsilons;
let closure = Array.make m IS.empty in
let rec transitive past = function
| [] -> past
| q :: future ->
let past' = IS.add q past in
let future' =
IS.fold
begin fun q' future' ->
(* q -{}--> q' *)
if IS.mem q' past' then
future'
else
q' :: future'
end
graph.(q)
future
in
transitive past' future'
in
for i = 0 to m - 1 do
closure.(i) <- transitive IS.empty [i] (* O(n^2), I know *)
done;
(* Finally, build the table *)
let table = Array.make m [] in
List.iter
begin fun (q,t,q') ->
table.(q) <- (t, closure.(q')) :: table.(q)
end
!transitions;
(graph, closure,
{ mc_qi = closure.(qi);
mc_table = table;
mc_qf = qf;
mc_power_table = Hashtbl.create 37 })
;;
let build x = let (_,_, machine) = build' x in machine;;
(* ***)
(*** run *)
let run ?(trace=false) machine u =
let m = String.length u in
let apply qs c =
try
let t = Hashtbl.find machine.mc_power_table c in
ISM.find qs t
with
| Not_found ->
let qs' =
IS.fold
begin fun q qs' ->
List.fold_left
begin fun qs' (cl,qs'') ->
if match_character_class cl c then
IS.union qs' qs''
else
qs'
end
qs'
machine.mc_table.(q)
end
qs
IS.empty
in
let t =
try
Hashtbl.find machine.mc_power_table c
with
| Not_found -> ISM.empty
in
Hashtbl.replace machine.mc_power_table c (ISM.add qs qs' t);
qs'
in
let rec loop qs i =
if IS.is_empty qs then
false
else
begin
if i = m then
IS.mem machine.mc_qf qs
else
begin
let c = u.[i] in
if trace then
begin
Printf.printf "%d %C {" i c;
IS.iter (fun q -> Printf.printf " %d" q) qs;
Printf.printf " }\n%!"
end;
let qs' = apply qs c in
loop qs' (i + 1)
end
end
in
loop machine.mc_qi 0
;;
(* ***)
end
;;
(* ***)
(*** Brute *)
module Brute =
struct
exception Succeed;;
exception Fail;;
exception Too_hard;;
(*** match_pattern *)
let match_pattern counter p u =
let m = String.length u in
(** [loop i n p] returns [true] iff the word [u.(i .. i + n - 1)] is in the
** language generated by the pattern [p].
** We must have 0 <= i and i + n <= m *)
let rec loop (i,n,p) =
assert (0 <= i && 0 <= n && i + n <= m);
incr counter;
if !counter >= brute_limit then raise Too_hard;
match p with
| Word v ->
String.length v = n &&
begin
let rec check j = j = n or (v.[j] = u.[i + j] && check (j + 1))
in
check 0
end
| Epsilon -> n = 0
| Star(Class True) -> true
| Star(Class cl) ->
let rec check k =
if k = n then
true
else
(match_character_class cl u.[i + k]) && check (k + 1)
in
check 0
| Star _ -> raise Too_hard
| Class cl -> n = 1 && match_character_class cl u.[i]
| Concat(p1,p2) ->
let rec scan j =
j <= n && ((loop (i,j,p1) && loop (i+j, n - j,p2)) || scan (j + 1))
in
scan 0
| Union pl -> List.exists (fun p' -> loop (i,n,p')) pl
in
loop (0,m,p)
;;
(* ***)
end
;;
(* ***)
(*** fast_pattern_contents, fast_pattern, globber *)
type fast_pattern_contents =
| Brute of int ref * pattern
| Machine of NFA.machine
;;
type fast_pattern = fast_pattern_contents ref;;
type globber = fast_pattern atom Bool.boolean;;
(* ***)
(*** fast_pattern_of_pattern *)
let fast_pattern_of_pattern p = ref (Brute(ref 0, p));;
(* ***)
(*** add_dir *)
let add_dir dir x =
match dir with
| None -> x
| Some(dir) ->
match x with
| Constant(s) ->
Constant(My_std.filename_concat dir s)
| Pattern(p) ->
Pattern(Concat(Word(My_std.filename_concat dir ""), p))
;;
(* ***)
(*** add_ast_dir *)
let add_ast_dir dir x =
match dir with
| None -> x
| Some dir ->
let slash = Class(Atom('/','/')) in
let any = Class True in
let q = Union[Epsilon; Concat(slash, Star any)] in (* ( /** )? *)
And[Atom(Pattern(ref (Brute(ref 0, Concat(Word dir, q))))); x]
;;
(* ***)
(*** parse *)
let parse ?dir u =
let l = Lexing.from_string u in
let tok = ref None in
let f =
fun () ->
match !tok with
| None -> token l
| Some x ->
tok := None;
x
in
let g t =
match !tok with
| None -> tok := Some t
| Some t' ->
raise (Parse_error(sf "Trying to unput token %s while %s is active" (string_of_token t) (string_of_token t')))
in
let read x =
let y = f () in
if x = y then
()
else
raise (Parse_error(sf "Unexpected token, expecting %s, got %s" (string_of_token x) (string_of_token y)))
in
let rec atomizer continuation = match f () with
| NOT -> atomizer (fun x -> continuation (Not x))
| ATOM x ->
begin
let a =
match add_dir dir x with
| Constant u -> Constant u
| Pattern p -> Pattern(fast_pattern_of_pattern p)
in
continuation (Atom a)
end
| TRUE -> continuation True
| FALSE -> continuation False
| LPAR ->
let y = parse_s () in
read RPAR;
continuation y
| t -> raise (Parse_error(sf "Unexpected token %s in atomizer" (string_of_token t)))
and parse_s1 x = match f () with
| OR -> let y = parse_s () in Or[x; y]
| AND -> parse_t x
| t -> g t; x
and parse_t1 x y = match f () with
| OR -> let z = parse_s () in Or[And[x;y]; z]
| AND -> parse_t (And[x;y])
| t -> g t; And[x;y]
and parse_s () = atomizer parse_s1
and parse_t x = atomizer (parse_t1 x)
in
let x = parse_s () in
read EOF;
add_ast_dir dir x
;;
(* ***)
(*** eval *)
let eval g u =
Bool.eval
begin function
| Constant v -> u = v
| Pattern kind ->
match !kind with
| Brute(count, p) ->
begin
let do_nfa () =
let m = NFA.build p in
kind := Machine m;
NFA.run m u
in
if !count >= brute_limit then
do_nfa ()
else
try
Brute.match_pattern count p u
with
| Brute.Too_hard -> do_nfa ()
end
| Machine m -> NFA.run m u
end
g
(* ***)
(*** Debug *)
(*let (Atom(Pattern x)) = parse "<{a,b}>";;
#install_printer IS.print;;
#install_printer ISM.print;;
let (graph, closure, machine) = build' x;;*)
(* ***)
|