1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Pierre Chambart, OCamlPro *)
(* Mark Shinwell and Leo White, Jane Street Europe *)
(* *)
(* Copyright 2013--2016 OCamlPro SAS *)
(* Copyright 2014--2016 Jane Street Group LLC *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
[@@@ocaml.warning "+a-4-9-30-40-41-42"]
module A = Simple_value_approx
type value_string_contents =
| Contents of string
| Unknown_or_mutable
type value_string = {
contents : value_string_contents;
size : int;
}
type value_float_array_contents =
| Contents of float option array
| Unknown_or_mutable
type value_float_array = {
contents : value_float_array_contents;
size : int;
}
type descr =
| Value_block of Tag.t * approx array
| Value_mutable_block of Tag.t * int
| Value_int of int
| Value_char of char
| Value_float of float
| Value_float_array of value_float_array
| Value_boxed_int : 'a A.boxed_int * 'a -> descr
| Value_string of value_string
| Value_closure of value_closure
| Value_set_of_closures of value_set_of_closures
| Value_unknown_descr
and value_closure = {
closure_id : Closure_id.t;
set_of_closures : value_set_of_closures;
}
and value_set_of_closures = {
set_of_closures_id : Set_of_closures_id.t;
bound_vars : approx Var_within_closure.Map.t;
free_vars : Flambda.specialised_to Variable.Map.t;
results : approx Closure_id.Map.t;
aliased_symbol : Symbol.t option;
}
and approx =
| Value_unknown
| Value_id of Export_id.t
| Value_symbol of Symbol.t
let equal_approx (a1:approx) (a2:approx) =
match a1, a2 with
| Value_unknown, Value_unknown ->
true
| Value_id id1, Value_id id2 ->
Export_id.equal id1 id2
| Value_symbol s1, Value_symbol s2 ->
Symbol.equal s1 s2
| (Value_unknown | Value_symbol _ | Value_id _),
(Value_unknown | Value_symbol _ | Value_id _) ->
false
let equal_array eq a1 a2 =
Array.length a1 = Array.length a2 &&
try
Array.iteri (fun i v1 -> if not (eq a2.(i) v1) then raise Exit) a1;
true
with Exit -> false
let equal_option eq o1 o2 =
match o1, o2 with
| None, None -> true
| Some v1, Some v2 -> eq v1 v2
| Some _, None | None, Some _ -> false
let equal_set_of_closures (s1:value_set_of_closures)
(s2:value_set_of_closures) =
Set_of_closures_id.equal s1.set_of_closures_id s2.set_of_closures_id &&
Var_within_closure.Map.equal equal_approx s1.bound_vars s2.bound_vars &&
Closure_id.Map.equal equal_approx s1.results s2.results &&
equal_option Symbol.equal s1.aliased_symbol s2.aliased_symbol
let equal_descr (d1:descr) (d2:descr) : bool =
match d1, d2 with
| Value_unknown_descr, Value_unknown_descr ->
true
| Value_block (t1, f1), Value_block (t2, f2) ->
Tag.equal t1 t2 && equal_array equal_approx f1 f2
| Value_mutable_block (t1, s1), Value_mutable_block (t2, s2) ->
Tag.equal t1 t2 &&
s1 = s2
| Value_int i1, Value_int i2 ->
i1 = i2
| Value_char c1, Value_char c2 ->
c1 = c2
| Value_float f1, Value_float f2 ->
f1 = f2
| Value_float_array s1, Value_float_array s2 ->
s1 = s2
| Value_boxed_int (t1, v1), Value_boxed_int (t2, v2) ->
A.equal_boxed_int t1 v1 t2 v2
| Value_string s1, Value_string s2 ->
s1 = s2
| Value_closure c1, Value_closure c2 ->
Closure_id.equal c1.closure_id c2.closure_id &&
equal_set_of_closures c1.set_of_closures c2.set_of_closures
| Value_set_of_closures s1, Value_set_of_closures s2 ->
equal_set_of_closures s1 s2
| ( Value_block (_, _) | Value_mutable_block (_, _) | Value_int _
| Value_char _ | Value_float _ | Value_float_array _
| Value_boxed_int _ | Value_string _ | Value_closure _
| Value_set_of_closures _
| Value_unknown_descr ),
( Value_block (_, _) | Value_mutable_block (_, _) | Value_int _
| Value_char _ | Value_float _ | Value_float_array _
| Value_boxed_int _ | Value_string _ | Value_closure _
| Value_set_of_closures _
| Value_unknown_descr ) ->
false
type t = {
sets_of_closures : A.function_declarations Set_of_closures_id.Map.t;
values : descr Export_id.Map.t Compilation_unit.Map.t;
symbol_id : Export_id.t Symbol.Map.t;
offset_fun : int Closure_id.Map.t;
offset_fv : int Var_within_closure.Map.t;
constant_closures : Closure_id.Set.t;
invariant_params : Variable.Set.t Variable.Map.t Set_of_closures_id.Map.t;
recursive : Variable.Set.t Set_of_closures_id.Map.t;
}
type transient = {
sets_of_closures : A.function_declarations Set_of_closures_id.Map.t;
values : descr Export_id.Map.t Compilation_unit.Map.t;
symbol_id : Export_id.t Symbol.Map.t;
invariant_params : Variable.Set.t Variable.Map.t Set_of_closures_id.Map.t;
recursive : Variable.Set.t Set_of_closures_id.Map.t;
relevant_local_closure_ids : Closure_id.Set.t;
relevant_imported_closure_ids : Closure_id.Set.t;
relevant_local_vars_within_closure : Var_within_closure.Set.t;
relevant_imported_vars_within_closure : Var_within_closure.Set.t;
}
let empty : t = {
sets_of_closures = Set_of_closures_id.Map.empty;
values = Compilation_unit.Map.empty;
symbol_id = Symbol.Map.empty;
offset_fun = Closure_id.Map.empty;
offset_fv = Var_within_closure.Map.empty;
constant_closures = Closure_id.Set.empty;
invariant_params = Set_of_closures_id.Map.empty;
recursive = Set_of_closures_id.Map.empty;
}
let opaque_transient ~compilation_unit ~root_symbol : transient =
let export_id = Export_id.create compilation_unit in
let values =
let map = Export_id.Map.singleton export_id Value_unknown_descr in
Compilation_unit.Map.singleton compilation_unit map
in
let symbol_id = Symbol.Map.singleton root_symbol export_id in
{ sets_of_closures = Set_of_closures_id.Map.empty;
values;
symbol_id;
invariant_params = Set_of_closures_id.Map.empty;
recursive = Set_of_closures_id.Map.empty;
relevant_local_closure_ids = Closure_id.Set.empty;
relevant_imported_closure_ids = Closure_id.Set.empty;
relevant_local_vars_within_closure = Var_within_closure.Set.empty;
relevant_imported_vars_within_closure = Var_within_closure.Set.empty;
}
let create ~sets_of_closures ~values ~symbol_id
~offset_fun ~offset_fv ~constant_closures
~invariant_params ~recursive =
{ sets_of_closures;
values;
symbol_id;
offset_fun;
offset_fv;
constant_closures;
invariant_params;
recursive;
}
let create_transient
~sets_of_closures ~values ~symbol_id ~invariant_params ~recursive
~relevant_local_closure_ids ~relevant_imported_closure_ids
~relevant_local_vars_within_closure
~relevant_imported_vars_within_closure =
{ sets_of_closures;
values;
symbol_id;
invariant_params;
recursive;
relevant_local_closure_ids;
relevant_imported_closure_ids;
relevant_local_vars_within_closure;
relevant_imported_vars_within_closure;
}
let t_of_transient transient
~program:_
~local_offset_fun ~local_offset_fv
~imported_offset_fun ~imported_offset_fv
~constant_closures =
let offset_fun =
let fold_map set =
Closure_id.Map.fold (fun key value unchanged ->
if Closure_id.Set.mem key set then
Closure_id.Map.add key value unchanged
else
unchanged)
in
Closure_id.Map.empty
|> fold_map transient.relevant_local_closure_ids local_offset_fun
|> fold_map transient.relevant_imported_closure_ids imported_offset_fun
in
let offset_fv =
let fold_map set =
Var_within_closure.Map.fold (fun key value unchanged ->
if Var_within_closure.Set.mem key set then
Var_within_closure.Map.add key value unchanged
else
unchanged)
in
Var_within_closure.Map.empty
|> fold_map transient.relevant_local_vars_within_closure local_offset_fv
|> fold_map transient.relevant_imported_vars_within_closure
imported_offset_fv
in
{ sets_of_closures = transient.sets_of_closures;
values = transient.values;
symbol_id = transient.symbol_id;
invariant_params = transient.invariant_params;
recursive = transient.recursive;
offset_fun;
offset_fv;
constant_closures;
}
let merge (t1 : t) (t2 : t) : t =
let eidmap_disjoint_union ?eq map1 map2 =
Compilation_unit.Map.merge (fun _id map1 map2 ->
match map1, map2 with
| None, None -> None
| None, Some map
| Some map, None -> Some map
| Some map1, Some map2 ->
Some (Export_id.Map.disjoint_union ?eq map1 map2))
map1 map2
in
let int_eq (i : int) j = i = j in
{ values = eidmap_disjoint_union ~eq:equal_descr t1.values t2.values;
sets_of_closures =
Set_of_closures_id.Map.disjoint_union t1.sets_of_closures
t2.sets_of_closures;
symbol_id =
Symbol.Map.disjoint_union ~print:Export_id.print t1.symbol_id
t2.symbol_id;
offset_fun = Closure_id.Map.disjoint_union
~eq:int_eq t1.offset_fun t2.offset_fun;
offset_fv = Var_within_closure.Map.disjoint_union
~eq:int_eq t1.offset_fv t2.offset_fv;
constant_closures =
Closure_id.Set.union t1.constant_closures t2.constant_closures;
invariant_params =
Set_of_closures_id.Map.disjoint_union
~print:(Variable.Map.print Variable.Set.print)
~eq:(Variable.Map.equal Variable.Set.equal)
t1.invariant_params t2.invariant_params;
recursive =
Set_of_closures_id.Map.disjoint_union
~print:Variable.Set.print
~eq:Variable.Set.equal
t1.recursive t2.recursive;
}
let find_value eid map =
let unit_map =
Compilation_unit.Map.find (Export_id.get_compilation_unit eid) map
in
Export_id.Map.find eid unit_map
let find_description (t : t) eid =
find_value eid t.values
let nest_eid_map map =
let add_map eid v map =
let unit = Export_id.get_compilation_unit eid in
let m =
try Compilation_unit.Map.find unit map
with Not_found -> Export_id.Map.empty
in
Compilation_unit.Map.add unit (Export_id.Map.add eid v m) map
in
Export_id.Map.fold add_map map Compilation_unit.Map.empty
let print_raw_approx ppf approx =
let fprintf = Format.fprintf in
match approx with
| Value_unknown -> fprintf ppf "(Unknown)"
| Value_id export_id -> fprintf ppf "(Id %a)" Export_id.print export_id
| Value_symbol symbol -> fprintf ppf "(Symbol %a)" Symbol.print symbol
let print_value_set_of_closures ppf (t : value_set_of_closures) =
let print_bound_vars ppf bound_vars =
Format.fprintf ppf "(%a)"
(Var_within_closure.Map.print print_raw_approx)
bound_vars
in
let print_free_vars ppf free_vars =
Format.fprintf ppf "(%a)"
(Variable.Map.print Flambda.print_specialised_to)
free_vars
in
let print_results ppf results =
Format.fprintf ppf "(%a)" (Closure_id.Map.print print_raw_approx) results
in
let print_aliased_symbol ppf aliased_symbol =
match aliased_symbol with
| None -> Format.fprintf ppf "<None>"
| Some symbol -> Format.fprintf ppf "(%a)" Symbol.print symbol
in
Format.fprintf ppf
"((set_of_closures_id %a) \
(bound_vars %a) \
(free_vars %a) \
(results %a) \
(aliased_symbol %a))"
Set_of_closures_id.print t.set_of_closures_id
print_bound_vars t.bound_vars
print_free_vars t.free_vars
print_results t.results
print_aliased_symbol t.aliased_symbol
let print_value_closure ppf (t : value_closure) =
Format.fprintf ppf "((closure_id %a) (set_of_closures %a))"
Closure_id.print t.closure_id
print_value_set_of_closures t.set_of_closures
let print_value_float_array_contents
ppf (value : value_float_array_contents) =
match value with
| Unknown_or_mutable -> Format.fprintf ppf "(Unknown_or_mutable)"
| Contents _ -> Format.fprintf ppf "(Contents ...)"
let print_value_float_array ppf (value : value_float_array) =
Format.fprintf ppf "((size %d) (contents %a))"
value.size
print_value_float_array_contents value.contents
let print_value_string_contents ppf (value : value_string_contents) =
match value with
| Unknown_or_mutable -> Format.fprintf ppf "(Unknown_or_mutable)"
| Contents _ -> Format.fprintf ppf "(Contents ...)"
let print_value_string ppf (value : value_string) =
Format.fprintf ppf "((size %d) (contents %a))"
value.size
print_value_string_contents value.contents
let print_raw_descr ppf descr =
let fprintf = Format.fprintf in
let print_approx_array ppf arr =
Array.iter (fun approx -> fprintf ppf "%a " print_raw_approx approx) arr
in
match descr with
| Value_block (tag, approx_array) ->
fprintf ppf "(Value_block (%a %a))"
Tag.print tag
print_approx_array approx_array
| Value_mutable_block (tag, i) ->
fprintf ppf "(Value_mutable-block (%a %d))" Tag.print tag i
| Value_int i -> fprintf ppf "(Value_int %d)" i
| Value_char c -> fprintf ppf "(Value_char %c)" c
| Value_float f -> fprintf ppf "(Value_float %.3f)" f
| Value_float_array value_float_array ->
fprintf ppf "(Value_float_array %a)"
print_value_float_array value_float_array
| Value_boxed_int _ ->
fprintf ppf "(Value_Boxed_int)"
| Value_string value_string ->
fprintf ppf "(Value_string %a)" print_value_string value_string
| Value_closure value_closure ->
fprintf ppf "(Value_closure %a)"
print_value_closure value_closure
| Value_set_of_closures value_set_of_closures ->
fprintf ppf "(Value_set_of_closures %a)"
print_value_set_of_closures value_set_of_closures
| Value_unknown_descr -> fprintf ppf "(Value_unknown_descr)"
let print_approx_components ppf ~symbol_id ~values
(root_symbols : Symbol.t list) =
let fprintf = Format.fprintf in
let printed = ref Export_id.Set.empty in
let recorded_symbol = ref Symbol.Set.empty in
let symbols_to_print = Queue.create () in
let printed_set_of_closures = ref Set_of_closures_id.Set.empty in
let rec print_approx ppf (approx : approx) =
match approx with
| Value_unknown -> fprintf ppf "?"
| Value_id id ->
if Export_id.Set.mem id !printed then
fprintf ppf "(%a: _)" Export_id.print id
else begin
try
let descr = find_value id values in
printed := Export_id.Set.add id !printed;
fprintf ppf "@[<hov 2>(%a:@ %a)@]"
Export_id.print id print_descr descr
with Not_found ->
fprintf ppf "(%a: Not available)" Export_id.print id
end
| Value_symbol sym ->
if not (Symbol.Set.mem sym !recorded_symbol) then begin
recorded_symbol := Symbol.Set.add sym !recorded_symbol;
Queue.push sym symbols_to_print;
end;
Symbol.print ppf sym
and print_descr ppf (descr : descr) =
match descr with
| Value_int i -> Format.pp_print_int ppf i
| Value_char c -> fprintf ppf "%c" c
| Value_block (tag, fields) ->
fprintf ppf "[%a:%a]" Tag.print tag print_fields fields
| Value_mutable_block (tag, size) ->
fprintf ppf "[mutable %a:%i]" Tag.print tag size
| Value_closure {closure_id; set_of_closures} ->
fprintf ppf "(closure %a, %a)" Closure_id.print closure_id
print_set_of_closures set_of_closures
| Value_set_of_closures set_of_closures ->
fprintf ppf "(set_of_closures %a)" print_set_of_closures set_of_closures
| Value_string { contents; size } ->
begin match contents with
| Unknown_or_mutable -> Format.fprintf ppf "string %i" size
| Contents s ->
let s =
if size > 10
then String.sub s 0 8 ^ "..."
else s
in
Format.fprintf ppf "string %i %S" size s
end
| Value_float f -> Format.pp_print_float ppf f
| Value_float_array float_array ->
Format.fprintf ppf "float_array%s %i"
(match float_array.contents with
| Unknown_or_mutable -> ""
| Contents _ -> "_imm")
float_array.size
| Value_boxed_int (t, i) ->
begin match t with
| A.Int32 -> Format.fprintf ppf "%li" i
| A.Int64 -> Format.fprintf ppf "%Li" i
| A.Nativeint -> Format.fprintf ppf "%ni" i
end
| Value_unknown_descr -> Format.fprintf ppf "?"
and print_fields ppf fields =
Array.iter (fun approx -> fprintf ppf "%a@ " print_approx approx) fields
and print_set_of_closures ppf
{ set_of_closures_id; bound_vars; aliased_symbol; results } =
if Set_of_closures_id.Set.mem set_of_closures_id !printed_set_of_closures
then fprintf ppf "%a" Set_of_closures_id.print set_of_closures_id
else begin
printed_set_of_closures :=
Set_of_closures_id.Set.add set_of_closures_id !printed_set_of_closures;
let print_alias ppf = function
| None -> ()
| Some symbol ->
Format.fprintf ppf "@ (alias: %a)" Symbol.print symbol
in
fprintf ppf "{%a: %a%a => %a}"
Set_of_closures_id.print set_of_closures_id
print_binding bound_vars
print_alias aliased_symbol
(Closure_id.Map.print print_approx) results
end
and print_binding ppf bound_vars =
Var_within_closure.Map.iter (fun clos_id approx ->
fprintf ppf "%a -> %a,@ "
Var_within_closure.print clos_id
print_approx approx)
bound_vars
in
let rec print_recorded_symbols () =
if not (Queue.is_empty symbols_to_print) then begin
let sym = Queue.pop symbols_to_print in
begin match Symbol.Map.find sym symbol_id with
| exception Not_found -> ()
| id ->
fprintf ppf "@[<hov 2>%a:@ %a@];@ "
Symbol.print sym
print_approx (Value_id id)
end;
print_recorded_symbols ();
end
in
List.iter (fun s -> Queue.push s symbols_to_print) root_symbols;
fprintf ppf "@[<hov 2>Globals:@ ";
fprintf ppf "@]@ @[<hov 2>Symbols:@ ";
print_recorded_symbols ();
fprintf ppf "@]"
let print_approx ppf ((t : t), symbols) =
let symbol_id = t.symbol_id in
let values = t.values in
print_approx_components ppf ~symbol_id ~values symbols
let print_offsets ppf (t : t) =
Format.fprintf ppf "@[<v 2>offset_fun:@ ";
Closure_id.Map.iter (fun cid off ->
Format.fprintf ppf "%a -> %i@ "
Closure_id.print cid off) t.offset_fun;
Format.fprintf ppf "@]@ @[<v 2>offset_fv:@ ";
Var_within_closure.Map.iter (fun vid off ->
Format.fprintf ppf "%a -> %i@ "
Var_within_closure.print vid off) t.offset_fv;
Format.fprintf ppf "@]@ "
let print_functions ppf (t : t) =
Set_of_closures_id.Map.print
A.print_function_declarations ppf
t.sets_of_closures
let print_all ppf ((t, root_symbols) : t * Symbol.t list) =
let fprintf = Format.fprintf in
fprintf ppf "approxs@ %a@.@."
print_approx (t, root_symbols);
fprintf ppf "functions@ %a@.@."
print_functions t
|