1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* bytegen.ml : translation of lambda terms to lists of instructions. *)
open Misc
open Asttypes
open Primitive
open Lambda
open Switch
open Instruct
open Debuginfo.Scoped_location
(**** Label generation ****)
let label_counter = ref 0
let new_label () =
incr label_counter; !label_counter
(**** Operations on compilation environments. ****)
let empty_env =
{ ce_stack = Ident.empty; ce_closure = Not_in_closure }
(* Add a stack-allocated variable *)
let add_var id pos env =
{ ce_stack = Ident.add id pos env.ce_stack;
ce_closure = env.ce_closure }
let rec add_vars idlist pos env =
match idlist with
[] -> env
| id :: rem -> add_vars rem (pos + 1) (add_var id pos env)
(* Compute the closure environment *)
let rec add_positions entries pos_to_entry ~pos ~delta = function
| [] -> entries, pos
| id :: rem ->
let entries =
Ident.add id (pos_to_entry pos) entries
in
add_positions entries pos_to_entry ~pos:(pos + delta) ~delta rem
type function_definition =
| Single_non_recursive
| Multiple_recursive of Ident.t list
let closure_entries fun_defs fvs =
let funct_entries, pos_end_functs =
match fun_defs with
| Single_non_recursive ->
(* No need to store the function in the environment, but we still need to
reserve a slot in the closure block *)
Ident.empty, 3
| Multiple_recursive functs ->
add_positions Ident.empty (fun pos -> Function pos) ~pos:0 ~delta:3 functs
in
(* Note: [pos_end_functs] is the position where we would store the next
function if there was one, and points after an eventual infix tag.
Since that was the last function, we don't need the last infix tag
and start storing free variables at [pos_end_functs - 1]. *)
let all_entries, _end_pos =
add_positions funct_entries (fun pos -> Free_variable pos)
~pos:(pos_end_functs - 1) ~delta:1 fvs
in
all_entries
(**** Examination of the continuation ****)
(* Return a label to the beginning of the given continuation.
If the sequence starts with a branch, use the target of that branch
as the label, thus avoiding a jump to a jump. *)
let label_code = function
Kbranch lbl :: _ as cont -> (lbl, cont)
| Klabel lbl :: _ as cont -> (lbl, cont)
| cont -> let lbl = new_label() in (lbl, Klabel lbl :: cont)
(* Return a branch to the continuation. That is, an instruction that,
when executed, branches to the continuation or performs what the
continuation performs. We avoid generating branches to branches and
branches to returns. *)
let rec make_branch_2 lbl n cont =
function
Kreturn m :: _ -> (Kreturn (n + m), cont)
| Klabel _ :: c -> make_branch_2 lbl n cont c
| Kpop m :: c -> make_branch_2 lbl (n + m) cont c
| _ ->
match lbl with
Some lbl -> (Kbranch lbl, cont)
| None -> let lbl = new_label() in (Kbranch lbl, Klabel lbl :: cont)
let make_branch cont =
match cont with
(Kbranch _ as branch) :: _ -> (branch, cont)
| (Kreturn _ as return) :: _ -> (return, cont)
| Kraise k :: _ -> (Kraise k, cont)
| Klabel lbl :: _ -> make_branch_2 (Some lbl) 0 cont cont
| _ -> make_branch_2 (None) 0 cont cont
(* Avoid a branch to a label that follows immediately *)
let branch_to label cont = match cont with
| Klabel label0::_ when label = label0 -> cont
| _ -> Kbranch label::cont
(* Discard all instructions up to the next label.
This function is to be applied to the continuation before adding a
non-terminating instruction (branch, raise, return) in front of it. *)
let rec discard_dead_code = function
[] -> []
| (Klabel _ | Krestart | Ksetglobal _) :: _ as cont -> cont
| _ :: cont -> discard_dead_code cont
(* Check if we're in tailcall position *)
let rec is_tailcall = function
Kreturn _ :: _ -> true
| Klabel _ :: c -> is_tailcall c
| Kpop _ :: c -> is_tailcall c
| _ -> false
(* Will this primitive result in an OCaml call which would benefit
from the tail call optimization? *)
let preserve_tailcall_for_prim = function
| Popaque | Psequor | Psequand
| Prunstack | Pperform | Presume | Preperform | Ppoll ->
true
| Pbytes_to_string | Pbytes_of_string | Pignore | Pgetglobal _ | Psetglobal _
| Pmakeblock _ | Pfield _ | Pfield_computed | Psetfield _
| Psetfield_computed _ | Pfloatfield _ | Psetfloatfield _ | Pduprecord _
| Pccall _ | Praise _ | Pnot | Pnegint | Paddint | Psubint | Pmulint
| Pdivint _ | Pmodint _ | Pandint | Porint | Pxorint | Plslint | Plsrint
| Pasrint | Pintcomp _ | Poffsetint _ | Poffsetref _ | Pintoffloat
| Pfloatofint | Pnegfloat | Pabsfloat | Paddfloat | Psubfloat | Pmulfloat
| Pdivfloat | Pfloatcomp _ | Pstringlength | Pstringrefu | Pstringrefs
| Pcompare_ints | Pcompare_floats | Pcompare_bints _
| Pbyteslength | Pbytesrefu | Pbytessetu | Pbytesrefs | Pbytessets
| Pmakearray _ | Pduparray _ | Parraylength _ | Parrayrefu _ | Parraysetu _
| Parrayrefs _ | Parraysets _ | Pisint | Pisout | Pbintofint _ | Pintofbint _
| Pcvtbint _ | Pnegbint _ | Paddbint _ | Psubbint _ | Pmulbint _ | Pdivbint _
| Pmodbint _ | Pandbint _ | Porbint _ | Pxorbint _ | Plslbint _ | Plsrbint _
| Pasrbint _ | Pbintcomp _ | Pbigarrayref _ | Pbigarrayset _ | Pbigarraydim _
| Pstring_load_16 _ | Pstring_load_32 _ | Pstring_load_64 _ | Pbytes_load_16 _
| Pbytes_load_32 _ | Pbytes_load_64 _ | Pbytes_set_16 _ | Pbytes_set_32 _
| Pbytes_set_64 _ | Pbigstring_load_16 _ | Pbigstring_load_32 _
| Pbigstring_load_64 _ | Pbigstring_set_16 _ | Pbigstring_set_32 _
| Pbigstring_set_64 _ | Pctconst _ | Pbswap16 | Pbbswap _ | Pint_as_pointer
| Patomic_exchange | Patomic_cas | Patomic_fetch_add | Patomic_load _
| Pdls_get ->
false
(* Add a Kpop N instruction in front of a continuation *)
let rec add_pop n cont =
if n = 0 then cont else
match cont with
Kpop m :: cont -> add_pop (n + m) cont
| Kreturn m :: cont -> Kreturn(n + m) :: cont
| Kraise _ :: _ -> cont
| _ -> Kpop n :: cont
(* Add the constant "unit" in front of a continuation *)
let add_const_unit = function
(Kacc _ | Kconst _ | Kgetglobal _ | Kpush_retaddr _) :: _ as cont -> cont
| cont -> Kconst const_unit :: cont
let rec push_dummies n k = match n with
| 0 -> k
| _ -> Kconst const_unit::Kpush::push_dummies (n-1) k
(**** Merging consecutive events ****)
let copy_event ev kind info repr =
{ ev with
ev_pos = 0; (* patched in emitcode *)
ev_kind = kind;
ev_info = info;
ev_repr = repr }
let merge_infos ev ev' =
match ev.ev_info, ev'.ev_info with
Event_other, info -> info
| info, Event_other -> info
| _ -> fatal_error "Bytegen.merge_infos"
let merge_repr ev ev' =
match ev.ev_repr, ev'.ev_repr with
Event_none, x -> x
| x, Event_none -> x
| Event_parent r, Event_child r' when r == r' && !r = 1 -> Event_none
| Event_child r, Event_parent r' when r == r' -> Event_parent r
| _, _ -> fatal_error "Bytegen.merge_repr"
let merge_events ev ev' =
let (maj, min) =
match ev.ev_kind, ev'.ev_kind with
(* Discard pseudo-events *)
Event_pseudo, _ -> ev', ev
| _, Event_pseudo -> ev, ev'
(* Keep following event, supposedly more informative *)
| Event_before, (Event_after _ | Event_before) -> ev', ev
(* Discard following events, supposedly less informative *)
| Event_after _, (Event_after _ | Event_before) -> ev, ev'
in
copy_event maj maj.ev_kind (merge_infos maj min) (merge_repr maj min)
let weaken_event ev cont =
match ev.ev_kind with
Event_after _ ->
begin match cont with
Kpush :: Kevent ({ev_repr = Event_none} as ev') :: c ->
begin match ev.ev_info with
Event_return _ ->
(* Weaken event *)
let repr = ref 1 in
let ev =
copy_event ev Event_pseudo ev.ev_info (Event_parent repr)
and ev' =
copy_event ev' ev'.ev_kind ev'.ev_info (Event_child repr)
in
Kevent ev :: Kpush :: Kevent ev' :: c
| _ ->
(* Only keep following event, equivalent *)
cont
end
| _ ->
Kevent ev :: cont
end
| _ ->
Kevent ev :: cont
let add_event ev =
function
Kevent ev' :: cont -> weaken_event (merge_events ev ev') cont
| cont -> weaken_event ev cont
(* Pseudo events are ignored by the debugger. They are only used for
generating backtraces.
We prefer adding this event here rather than in lambda generation
1) there are many different situations where a Pmakeblock can
be generated
2) we prefer inserting a pseudo event rather than an event after
to prevent the debugger to stop at every single allocation. *)
let add_pseudo_event loc modname c =
if !Clflags.debug then
let ev_defname = string_of_scoped_location loc in
let ev =
{ ev_pos = 0; (* patched in emitcode *)
ev_module = modname;
ev_loc = to_location loc;
ev_defname;
ev_kind = Event_pseudo;
ev_info = Event_other; (* Dummy *)
ev_typenv = Env.Env_empty; (* Dummy *)
ev_typsubst = Subst.identity; (* Dummy *)
ev_compenv = empty_env; (* Dummy *)
ev_stacksize = 0; (* Dummy *)
ev_repr = Event_none } (* Dummy *)
in
add_event ev c
else c
(**** Compilation of a lambda expression ****)
type stack_info = {
try_blocks : int list;
(* list of stack size for each nested try block *)
sz_static_raises : (int * (int * int * int list)) list;
(* association staticraise numbers -> (lbl,size of stack, try_blocks *)
max_stack_used : int ref;
(* Maximal stack size reached during the current function body *)
}
let create_stack_info () = {
try_blocks = [];
sz_static_raises = [];
max_stack_used = ref 0
}
(* association staticraise numbers -> (lbl,size of stack, try_blocks *)
let push_static_raise stack_info i lbl_handler sz =
{ stack_info
with
sz_static_raises = (i, (lbl_handler, sz, stack_info.try_blocks))
:: stack_info.sz_static_raises
}
let find_raise_label stack_info i =
try
List.assoc i stack_info.sz_static_raises
with
| Not_found ->
Misc.fatal_error
("exit("^Int.to_string i^") outside appropriated catch")
(* Will the translation of l lead to a jump to label ? *)
let code_as_jump stack_info l sz = match l with
| Lstaticraise (i,[]) ->
let label,size,tb = find_raise_label stack_info i in
if sz = size && tb == stack_info.try_blocks then
Some label
else
None
| _ -> None
(* Function bodies that remain to be compiled *)
type function_to_compile =
{ params: Ident.t list; (* function parameters *)
body: lambda; (* the function body *)
label: label; (* the label of the function entry *)
entries: closure_entry Ident.tbl; (* the offsets for the free variables
and mutually recursive functions *)
rec_pos: int } (* rank in recursive definition *)
let functions_to_compile = (Stack.create () : function_to_compile Stack.t)
(* Name of current compilation unit (for debugging events) *)
let compunit_name = ref ""
let check_stack stack_info sz =
let curr = stack_info.max_stack_used in
if sz > !curr then curr := sz
(* Sequence of string tests *)
(* Translate a primitive to a bytecode instruction (possibly a call to a C
function) *)
let comp_bint_primitive bi suff args =
let pref =
match bi with Pnativeint -> "caml_nativeint_"
| Pint32 -> "caml_int32_"
| Pint64 -> "caml_int64_" in
Kccall(pref ^ suff, List.length args)
let comp_primitive stack_info p sz args =
check_stack stack_info sz;
match p with
Pgetglobal id -> Kgetglobal id
| Psetglobal id -> Ksetglobal id
| Pintcomp cmp -> Kintcomp cmp
| Pcompare_ints -> Kccall("caml_int_compare", 2)
| Pcompare_floats -> Kccall("caml_float_compare", 2)
| Pcompare_bints bi -> comp_bint_primitive bi "compare" args
| Pfield(n, _ptr, _mut) -> Kgetfield n
| Pfield_computed -> Kgetvectitem
| Psetfield(n, _ptr, _init) -> Ksetfield n
| Psetfield_computed(_ptr, _init) -> Ksetvectitem
| Psetfloatfield (n, _init) -> Ksetfloatfield n
| Pduprecord _ -> Kccall("caml_obj_dup", 1)
| Pccall p -> Kccall(p.prim_name, p.prim_arity)
| Pperform ->
check_stack stack_info (sz + 4);
Kperform
| Pnegint -> Knegint
| Paddint -> Kaddint
| Psubint -> Ksubint
| Pmulint -> Kmulint
| Pdivint _ -> Kdivint
| Pmodint _ -> Kmodint
| Pandint -> Kandint
| Porint -> Korint
| Pxorint -> Kxorint
| Plslint -> Klslint
| Plsrint -> Klsrint
| Pasrint -> Kasrint
| Poffsetint n -> Koffsetint n
| Poffsetref n -> Koffsetref n
| Pintoffloat -> Kccall("caml_int_of_float", 1)
| Pfloatofint -> Kccall("caml_float_of_int", 1)
| Pnegfloat -> Kccall("caml_neg_float", 1)
| Pabsfloat -> Kccall("caml_abs_float", 1)
| Paddfloat -> Kccall("caml_add_float", 2)
| Psubfloat -> Kccall("caml_sub_float", 2)
| Pmulfloat -> Kccall("caml_mul_float", 2)
| Pdivfloat -> Kccall("caml_div_float", 2)
| Pstringlength -> Kccall("caml_ml_string_length", 1)
| Pbyteslength -> Kccall("caml_ml_bytes_length", 1)
| Pstringrefs -> Kccall("caml_string_get", 2)
| Pbytesrefs -> Kccall("caml_bytes_get", 2)
| Pbytessets -> Kccall("caml_bytes_set", 3)
| Pstringrefu -> Kgetstringchar
| Pbytesrefu -> Kgetbyteschar
| Pbytessetu -> Ksetbyteschar
| Pstring_load_16(_) -> Kccall("caml_string_get16", 2)
| Pstring_load_32(_) -> Kccall("caml_string_get32", 2)
| Pstring_load_64(_) -> Kccall("caml_string_get64", 2)
| Pbytes_set_16(_) -> Kccall("caml_bytes_set16", 3)
| Pbytes_set_32(_) -> Kccall("caml_bytes_set32", 3)
| Pbytes_set_64(_) -> Kccall("caml_bytes_set64", 3)
| Pbytes_load_16(_) -> Kccall("caml_bytes_get16", 2)
| Pbytes_load_32(_) -> Kccall("caml_bytes_get32", 2)
| Pbytes_load_64(_) -> Kccall("caml_bytes_get64", 2)
| Parraylength _ -> Kvectlength
| Parrayrefs Pgenarray -> Kccall("caml_array_get", 2)
| Parrayrefs Pfloatarray -> Kccall("caml_floatarray_get", 2)
| Parrayrefs _ -> Kccall("caml_array_get_addr", 2)
| Parraysets Pgenarray -> Kccall("caml_array_set", 3)
| Parraysets Pfloatarray -> Kccall("caml_floatarray_set", 3)
| Parraysets _ -> Kccall("caml_array_set_addr", 3)
| Parrayrefu Pgenarray -> Kccall("caml_array_unsafe_get", 2)
| Parrayrefu Pfloatarray -> Kccall("caml_floatarray_unsafe_get", 2)
| Parrayrefu _ -> Kgetvectitem
| Parraysetu Pgenarray -> Kccall("caml_array_unsafe_set", 3)
| Parraysetu Pfloatarray -> Kccall("caml_floatarray_unsafe_set", 3)
| Parraysetu _ -> Ksetvectitem
| Pctconst c ->
let const_name = match c with
| Big_endian -> "big_endian"
| Word_size -> "word_size"
| Int_size -> "int_size"
| Max_wosize -> "max_wosize"
| Ostype_unix -> "ostype_unix"
| Ostype_win32 -> "ostype_win32"
| Ostype_cygwin -> "ostype_cygwin"
| Backend_type -> "backend_type" in
Kccall(Printf.sprintf "caml_sys_const_%s" const_name, 1)
| Pisint -> Kisint
| Pisout -> Kisout
| Pbintofint bi -> comp_bint_primitive bi "of_int" args
| Pintofbint bi -> comp_bint_primitive bi "to_int" args
| Pcvtbint(src, dst) ->
begin match (src, dst) with
| (Pint32, Pnativeint) -> Kccall("caml_nativeint_of_int32", 1)
| (Pnativeint, Pint32) -> Kccall("caml_nativeint_to_int32", 1)
| (Pint32, Pint64) -> Kccall("caml_int64_of_int32", 1)
| (Pint64, Pint32) -> Kccall("caml_int64_to_int32", 1)
| (Pnativeint, Pint64) -> Kccall("caml_int64_of_nativeint", 1)
| (Pint64, Pnativeint) -> Kccall("caml_int64_to_nativeint", 1)
| ((Pint32 | Pint64 | Pnativeint), _) ->
fatal_error "Bytegen.comp_primitive: invalid Pcvtbint cast"
end
| Pnegbint bi -> comp_bint_primitive bi "neg" args
| Paddbint bi -> comp_bint_primitive bi "add" args
| Psubbint bi -> comp_bint_primitive bi "sub" args
| Pmulbint bi -> comp_bint_primitive bi "mul" args
| Pdivbint { size = bi } -> comp_bint_primitive bi "div" args
| Pmodbint { size = bi } -> comp_bint_primitive bi "mod" args
| Pandbint bi -> comp_bint_primitive bi "and" args
| Porbint bi -> comp_bint_primitive bi "or" args
| Pxorbint bi -> comp_bint_primitive bi "xor" args
| Plslbint bi -> comp_bint_primitive bi "shift_left" args
| Plsrbint bi -> comp_bint_primitive bi "shift_right_unsigned" args
| Pasrbint bi -> comp_bint_primitive bi "shift_right" args
| Pbintcomp(_, Ceq) -> Kccall("caml_equal", 2)
| Pbintcomp(_, Cne) -> Kccall("caml_notequal", 2)
| Pbintcomp(_, Clt) -> Kccall("caml_lessthan", 2)
| Pbintcomp(_, Cgt) -> Kccall("caml_greaterthan", 2)
| Pbintcomp(_, Cle) -> Kccall("caml_lessequal", 2)
| Pbintcomp(_, Cge) -> Kccall("caml_greaterequal", 2)
| Pbigarrayref(_, n, _, _) -> Kccall("caml_ba_get_" ^ Int.to_string n, n + 1)
| Pbigarrayset(_, n, _, _) -> Kccall("caml_ba_set_" ^ Int.to_string n, n + 2)
| Pbigarraydim(n) -> Kccall("caml_ba_dim_" ^ Int.to_string n, 1)
| Pbigstring_load_16(_) -> Kccall("caml_ba_uint8_get16", 2)
| Pbigstring_load_32(_) -> Kccall("caml_ba_uint8_get32", 2)
| Pbigstring_load_64(_) -> Kccall("caml_ba_uint8_get64", 2)
| Pbigstring_set_16(_) -> Kccall("caml_ba_uint8_set16", 3)
| Pbigstring_set_32(_) -> Kccall("caml_ba_uint8_set32", 3)
| Pbigstring_set_64(_) -> Kccall("caml_ba_uint8_set64", 3)
| Pbswap16 -> Kccall("caml_bswap16", 1)
| Pbbswap(bi) -> comp_bint_primitive bi "bswap" args
| Pint_as_pointer -> Kccall("caml_int_as_pointer", 1)
| Pbytes_to_string -> Kccall("caml_string_of_bytes", 1)
| Pbytes_of_string -> Kccall("caml_bytes_of_string", 1)
| Patomic_load _ -> Kccall("caml_atomic_load", 1)
| Patomic_exchange -> Kccall("caml_atomic_exchange", 2)
| Patomic_cas -> Kccall("caml_atomic_cas", 3)
| Patomic_fetch_add -> Kccall("caml_atomic_fetch_add", 2)
| Pdls_get -> Kccall("caml_domain_dls_get", 1)
| Ppoll -> Kccall("caml_process_pending_actions_with_root", 1)
(* The cases below are handled in [comp_expr] before the [comp_primitive] call
(in the order in which they appear below),
so they should never be reached in this function. *)
| Prunstack | Presume | Preperform
| Pignore | Popaque
| Pnot | Psequand | Psequor
| Praise _
| Pmakearray _ | Pduparray _
| Pfloatcomp _
| Pmakeblock _
| Pfloatfield _
->
fatal_error "Bytegen.comp_primitive"
let is_immed n = immed_min <= n && n <= immed_max
module Storer =
Switch.Store
(struct type t = lambda type key = lambda
let compare_key = Stdlib.compare
let make_key = Lambda.make_key end)
(* Compile an expression.
The value of the expression is left in the accumulator.
env = compilation environment
exp = the lambda expression to compile
sz = current size of the stack frame
cont = list of instructions to execute afterwards
Result = list of instructions that evaluate exp, then perform cont. *)
let rec comp_expr stack_info env exp sz cont =
check_stack stack_info sz;
match exp with
Lvar id | Lmutvar id ->
begin try
let pos = Ident.find_same id env.ce_stack in
Kacc(sz - pos) :: cont
with Not_found ->
let not_found () =
fatal_error ("Bytegen.comp_expr: var " ^ Ident.unique_name id)
in
match env.ce_closure with
| Not_in_closure -> not_found ()
| In_closure { entries; env_pos } ->
match Ident.find_same id entries with
| Free_variable pos ->
Kenvacc(pos - env_pos) :: cont
| Function pos ->
Koffsetclosure(pos - env_pos) :: cont
| exception Not_found -> not_found ()
end
| Lconst cst ->
Kconst cst :: cont
| Lapply{ap_func = func; ap_args = args} ->
let nargs = List.length args in
if is_tailcall cont then begin
comp_args stack_info env args sz
(Kpush :: comp_expr stack_info env func (sz + nargs)
(Kappterm(nargs, sz + nargs) :: discard_dead_code cont))
end else begin
if nargs < 4 then
comp_args stack_info env args sz
(Kpush ::
comp_expr stack_info env func (sz + nargs) (Kapply nargs :: cont))
else begin
let (lbl, cont1) = label_code cont in
Kpush_retaddr lbl ::
comp_args stack_info env args (sz + 3)
(Kpush :: comp_expr stack_info env func (sz + 3 + nargs)
(Kapply nargs :: cont1))
end
end
| Lsend(kind, met, obj, args, _) ->
assert (kind <> Cached);
let nargs = List.length args + 1 in
let getmethod, args' =
if kind = Self then (Kgetmethod, met::obj::args) else
match met with
Lconst(Const_base(Const_int n)) -> (Kgetpubmet n, obj::args)
| _ -> (Kgetdynmet, met::obj::args)
in
if is_tailcall cont then
comp_args stack_info env args' sz
(getmethod :: Kappterm(nargs, sz + nargs) :: discard_dead_code cont)
else
if nargs < 4 then
comp_args stack_info env args' sz
(getmethod :: Kapply nargs :: cont)
else begin
let (lbl, cont1) = label_code cont in
Kpush_retaddr lbl ::
comp_args stack_info env args' (sz + 3)
(getmethod :: Kapply nargs :: cont1)
end
| Lfunction{params; body; loc} -> (* assume kind = Curried *)
let cont = add_pseudo_event loc !compunit_name cont in
let lbl = new_label() in
let fv = Ident.Set.elements(free_variables exp) in
let entries = closure_entries Single_non_recursive fv in
let to_compile =
{ params = List.map fst params; body = body; label = lbl;
entries = entries; rec_pos = 0 } in
Stack.push to_compile functions_to_compile;
comp_args stack_info env (List.map (fun n -> Lvar n) fv) sz
(Kclosure(lbl, List.length fv) :: cont)
| Llet(_, _k, id, arg, body)
| Lmutlet(_k, id, arg, body) ->
comp_expr stack_info env arg sz
(Kpush :: comp_expr stack_info (add_var id (sz+1) env) body (sz+1)
(add_pop 1 cont))
| Lletrec(decl, body) ->
let ndecl = List.length decl in
let fv =
Ident.Set.elements (free_variables (Lletrec(decl, lambda_unit))) in
let rec_idents = List.map (fun { id } -> id) decl in
let entries =
closure_entries (Multiple_recursive rec_idents) fv
in
let rec comp_fun pos = function
[] -> []
| { def = {params; body} } :: rem ->
let lbl = new_label() in
let to_compile =
{ params = List.map fst params; body = body; label = lbl;
entries = entries; rec_pos = pos} in
Stack.push to_compile functions_to_compile;
lbl :: comp_fun (pos + 1) rem
in
let lbls = comp_fun 0 decl in
comp_args stack_info env (List.map (fun n -> Lvar n) fv) sz
(Kclosurerec(lbls, List.length fv) ::
(comp_expr stack_info
(add_vars rec_idents (sz+1) env) body (sz + ndecl)
(add_pop ndecl cont)))
| Lprim(Popaque, [arg], _) ->
comp_expr stack_info env arg sz cont
| Lprim(Pignore, [arg], _) ->
comp_expr stack_info env arg sz (add_const_unit cont)
| Lprim(Pnot, [arg], _) ->
let newcont =
match cont with
Kbranchif lbl :: cont1 -> Kbranchifnot lbl :: cont1
| Kbranchifnot lbl :: cont1 -> Kbranchif lbl :: cont1
| _ -> Kboolnot :: cont in
comp_expr stack_info env arg sz newcont
| Lprim(Psequand, [exp1; exp2], _) ->
begin match cont with
Kbranchifnot lbl :: _ ->
comp_expr stack_info env exp1 sz (Kbranchifnot lbl ::
comp_expr stack_info env exp2 sz cont)
| Kbranchif lbl :: cont1 ->
let (lbl2, cont2) = label_code cont1 in
comp_expr stack_info env exp1 sz (Kbranchifnot lbl2 ::
comp_expr stack_info env exp2 sz (Kbranchif lbl :: cont2))
| _ ->
let (lbl, cont1) = label_code cont in
comp_expr stack_info env exp1 sz (Kstrictbranchifnot lbl ::
comp_expr stack_info env exp2 sz cont1)
end
| Lprim(Psequor, [exp1; exp2], _) ->
begin match cont with
Kbranchif lbl :: _ ->
comp_expr stack_info env exp1 sz (Kbranchif lbl ::
comp_expr stack_info env exp2 sz cont)
| Kbranchifnot lbl :: cont1 ->
let (lbl2, cont2) = label_code cont1 in
comp_expr stack_info env exp1 sz (Kbranchif lbl2 ::
comp_expr stack_info env exp2 sz (Kbranchifnot lbl :: cont2))
| _ ->
let (lbl, cont1) = label_code cont in
comp_expr stack_info env exp1 sz (Kstrictbranchif lbl ::
comp_expr stack_info env exp2 sz cont1)
end
| Lprim(Praise k, [arg], _) ->
comp_expr stack_info env arg sz (Kraise k :: discard_dead_code cont)
| Lprim(Paddint, [arg; Lconst(Const_base(Const_int n))], _)
when is_immed n ->
comp_expr stack_info env arg sz (Koffsetint n :: cont)
| Lprim(Psubint, [arg; Lconst(Const_base(Const_int n))], _)
when is_immed (-n) ->
comp_expr stack_info env arg sz (Koffsetint (-n) :: cont)
| Lprim (Poffsetint n, [arg], _)
when not (is_immed n) ->
comp_expr stack_info env arg sz
(Kpush::
Kconst (Const_base (Const_int n))::
Kaddint::cont)
| Lprim(Pmakearray (kind, _), args, loc) ->
let cont = add_pseudo_event loc !compunit_name cont in
begin match kind with
Pintarray | Paddrarray ->
comp_args stack_info env args sz
(Kmakeblock(List.length args, 0) :: cont)
| Pfloatarray ->
comp_args stack_info env args sz
(Kmakefloatblock(List.length args) :: cont)
| Pgenarray ->
if args = []
then Kmakeblock(0, 0) :: cont
else comp_args stack_info env args sz
(Kmakeblock(List.length args, 0) ::
Kccall("caml_array_of_uniform_array", 1) :: cont)
end
| Lprim(Presume, args, _) ->
let nargs = List.length args - 1 in
assert (nargs = 3);
if is_tailcall cont then begin
(* Resumeterm itself only pushes 2 words, but perform adds another *)
check_stack stack_info 3;
comp_args stack_info env args sz
(Kresumeterm(sz + nargs) :: discard_dead_code cont)
end else begin
(* Resume itself only pushes 2 words, but perform adds another *)
check_stack stack_info (sz + nargs + 3);
comp_args stack_info env args sz (Kresume :: cont)
end
| Lprim(Prunstack, args, _) ->
let nargs = List.length args in
assert (nargs = 3);
if is_tailcall cont then begin
(* Resumeterm itself only pushes 2 words, but perform adds another *)
check_stack stack_info 3;
Kconst const_unit :: Kpush ::
comp_args stack_info env args (sz + 1)
(Kresumeterm(sz + nargs) :: discard_dead_code cont)
end else begin
(* Resume itself only pushes 2 words, but perform adds another *)
check_stack stack_info (sz + nargs + 3);
Kconst const_unit :: Kpush ::
comp_args stack_info env args (sz + 1) (Kresume :: cont)
end
| Lprim(Preperform, args, _) ->
let nargs = List.length args - 1 in
assert (nargs = 2);
check_stack stack_info (sz + 3);
if is_tailcall cont then
comp_args stack_info env args sz
(Kreperformterm(sz + nargs) :: discard_dead_code cont)
else
fatal_error "Reperform used in non-tail position"
| Lprim (Pduparray (kind, mutability),
[Lprim (Pmakearray (kind',_),args,_)], loc) ->
assert (kind = kind');
comp_expr stack_info env
(Lprim (Pmakearray (kind, mutability), args, loc)) sz cont
| Lprim (Pduparray _, [arg], loc) ->
let prim_obj_dup =
Primitive.simple ~name:"caml_obj_dup" ~arity:1 ~alloc:true
in
comp_expr stack_info env (Lprim (Pccall prim_obj_dup, [arg], loc)) sz cont
| Lprim (Pduparray _, _, _) ->
Misc.fatal_error "Bytegen.comp_expr: Pduparray takes exactly one arg"
(* Integer first for enabling further optimization (cf. emitcode.ml) *)
| Lprim (Pintcomp c, [arg ; (Lconst _ as k)], _) ->
let p = Pintcomp (swap_integer_comparison c)
and args = [k ; arg] in
let nargs = List.length args - 1 in
comp_args stack_info env args sz
(comp_primitive stack_info p (sz + nargs - 1) args :: cont)
| Lprim (Pfloatcomp cmp, args, _) ->
let cont =
match cmp with
| CFeq -> Kccall("caml_eq_float", 2) :: cont
| CFneq -> Kccall("caml_neq_float", 2) :: cont
| CFlt -> Kccall("caml_lt_float", 2) :: cont
| CFnlt -> Kccall("caml_lt_float", 2) :: Kboolnot :: cont
| CFgt -> Kccall("caml_gt_float", 2) :: cont
| CFngt -> Kccall("caml_gt_float", 2) :: Kboolnot :: cont
| CFle -> Kccall("caml_le_float", 2) :: cont
| CFnle -> Kccall("caml_le_float", 2) :: Kboolnot :: cont
| CFge -> Kccall("caml_ge_float", 2) :: cont
| CFnge -> Kccall("caml_ge_float", 2) :: Kboolnot :: cont
in
comp_args stack_info env args sz cont
| Lprim(Pmakeblock(tag, _mut, _), args, loc) ->
let cont = add_pseudo_event loc !compunit_name cont in
comp_args stack_info env args sz
(Kmakeblock(List.length args, tag) :: cont)
| Lprim(Pfloatfield n, args, loc) ->
let cont = add_pseudo_event loc !compunit_name cont in
comp_args stack_info env args sz (Kgetfloatfield n :: cont)
| Lprim(p, args, _) ->
let nargs = List.length args - 1 in
comp_args stack_info env args sz
(comp_primitive stack_info p (sz + nargs - 1) args :: cont)
| Lstaticcatch (body, (i, vars) , handler) ->
let vars = List.map fst vars in
let nvars = List.length vars in
let branch1, cont1 = make_branch cont in
let r =
if nvars <> 1 then begin (* general case *)
let lbl_handler, cont2 =
label_code
(comp_expr
stack_info
(add_vars vars (sz+1) env)
handler (sz+nvars) (add_pop nvars cont1)) in
let stack_info =
push_static_raise stack_info i lbl_handler (sz+nvars) in
push_dummies nvars
(comp_expr stack_info env body (sz+nvars)
(add_pop nvars (branch1 :: cont2)))
end else begin (* small optimization for nvars = 1 *)
let var = match vars with [var] -> var | _ -> assert false in
let lbl_handler, cont2 =
label_code
(Kpush::comp_expr stack_info
(add_var var (sz+1) env)
handler (sz+1) (add_pop 1 cont1)) in
let stack_info =
push_static_raise stack_info i lbl_handler sz in
comp_expr stack_info env body sz (branch1 :: cont2)
end in
r
| Lstaticraise (i, args) ->
let cont = discard_dead_code cont in
let label,size,tb = find_raise_label stack_info i in
let cont = branch_to label cont in
let rec loop sz tbb =
if tb == tbb then add_pop (sz-size) cont
else match tbb with
| [] -> assert false
| try_sz :: tbb -> add_pop (sz-try_sz-4) (Kpoptrap :: loop try_sz tbb)
in
let cont = loop sz stack_info.try_blocks in
begin match args with
| [arg] -> (* optim, argument passed in accumulator *)
comp_expr stack_info env arg sz cont
| _ -> comp_exit_args stack_info env args sz size cont
end
| Ltrywith(body, id, handler) ->
let (branch1, cont1) = make_branch cont in
let lbl_handler = new_label() in
let body_cont =
Kpoptrap :: branch1 ::
Klabel lbl_handler :: Kpush ::
comp_expr
stack_info (add_var id (sz+1) env) handler (sz+1) (add_pop 1 cont1)
in
let stack_info =
{ stack_info with try_blocks = sz :: stack_info.try_blocks } in
let l = comp_expr stack_info env body (sz+4) body_cont in
Kpushtrap lbl_handler :: l
| Lifthenelse(cond, ifso, ifnot) ->
comp_binary_test stack_info env cond ifso ifnot sz cont
| Lsequence(exp1, exp2) ->
comp_expr stack_info env exp1 sz (comp_expr stack_info env exp2 sz cont)
| Lwhile(cond, body) ->
let lbl_loop = new_label() in
let lbl_test = new_label() in
Kbranch lbl_test :: Klabel lbl_loop :: Kcheck_signals ::
comp_expr stack_info env body sz
(Klabel lbl_test ::
comp_expr stack_info env cond sz
(Kbranchif lbl_loop :: add_const_unit cont))
| Lfor(param, start, stop, dir, body) ->
let lbl_loop = new_label() in
let lbl_exit = new_label() in
let offset = match dir with Upto -> 1 | Downto -> -1 in
let comp = match dir with Upto -> Cgt | Downto -> Clt in
comp_expr stack_info env start sz
(Kpush :: comp_expr stack_info env stop (sz+1)
(Kpush :: Kpush :: Kacc 2 :: Kintcomp comp :: Kbranchif lbl_exit ::
Klabel lbl_loop :: Kcheck_signals ::
comp_expr stack_info (add_var param (sz+1) env) body (sz+2)
(Kacc 1 :: Kpush :: Koffsetint offset :: Kassign 2 ::
Kacc 1 :: Kintcomp Cne :: Kbranchif lbl_loop ::
Klabel lbl_exit :: add_const_unit (add_pop 2 cont))))
| Lswitch(arg, sw, _loc) ->
let (branch, cont1) = make_branch cont in
let c = ref (discard_dead_code cont1) in
(* Build indirection vectors *)
let store = Storer.mk_store () in
let act_consts = Array.make sw.sw_numconsts 0
and act_blocks = Array.make sw.sw_numblocks 0 in
begin match sw.sw_failaction with (* default is index 0 *)
| Some fail -> ignore (store.act_store () fail)
| None -> ()
end ;
List.iter
(fun (n, act) -> act_consts.(n) <- store.act_store () act) sw.sw_consts;
List.iter
(fun (n, act) -> act_blocks.(n) <- store.act_store () act) sw.sw_blocks;
(* Compile and label actions *)
let acts = store.act_get () in
(*
let a = store.act_get_shared () in
Array.iter
(function
| Switch.Shared (Lstaticraise _) -> ()
| Switch.Shared act ->
Printlambda.lambda Format.str_formatter act ;
Printf.eprintf "SHARE BYTE:\n%s\n" (Format.flush_str_formatter ())
| _ -> ())
a ;
*)
let lbls = Array.make (Array.length acts) 0 in
for i = Array.length acts-1 downto 0 do
let lbl,c1 =
label_code (comp_expr stack_info env acts.(i) sz (branch :: !c)) in
lbls.(i) <- lbl ;
c := discard_dead_code c1
done ;
(* Build label vectors *)
let lbl_blocks = Array.make sw.sw_numblocks 0 in
for i = sw.sw_numblocks - 1 downto 0 do
lbl_blocks.(i) <- lbls.(act_blocks.(i))
done;
let lbl_consts = Array.make sw.sw_numconsts 0 in
for i = sw.sw_numconsts - 1 downto 0 do
lbl_consts.(i) <- lbls.(act_consts.(i))
done;
comp_expr stack_info env arg sz (Kswitch(lbl_consts, lbl_blocks) :: !c)
| Lstringswitch (arg,sw,d,loc) ->
comp_expr stack_info env
(Matching.expand_stringswitch loc arg sw d) sz cont
| Lassign(id, expr) ->
begin try
let pos = Ident.find_same id env.ce_stack in
comp_expr stack_info env expr sz (Kassign(sz - pos) :: cont)
with Not_found ->
fatal_error "Bytegen.comp_expr: assign"
end
| Levent(lam, lev) ->
let ev_defname = string_of_scoped_location lev.lev_loc in
let event kind info =
{ ev_pos = 0; (* patched in emitcode *)
ev_module = !compunit_name;
ev_loc = to_location lev.lev_loc;
ev_kind = kind;
ev_defname;
ev_info = info;
ev_typenv = Env.summary lev.lev_env;
ev_typsubst = Subst.identity;
ev_compenv = env;
ev_stacksize = sz;
ev_repr =
begin match lev.lev_repr with
None ->
Event_none
| Some ({contents = 1} as repr) when lev.lev_kind = Lev_function ->
Event_child repr
| Some ({contents = 1} as repr) ->
Event_parent repr
| Some repr when lev.lev_kind = Lev_function ->
Event_parent repr
| Some repr ->
Event_child repr
end }
in
begin match lev.lev_kind with
Lev_before ->
let c = comp_expr stack_info env lam sz cont in
let ev = event Event_before Event_other in
add_event ev c
| Lev_function ->
let c = comp_expr stack_info env lam sz cont in
let ev = event Event_pseudo Event_function in
add_event ev c
| Lev_pseudo ->
let c = comp_expr stack_info env lam sz cont in
let ev = event Event_pseudo Event_other in
add_event ev c
| Lev_after ty ->
let preserve_tailcall =
match lam with
| Lprim(prim, _, _) -> preserve_tailcall_for_prim prim
| _ -> true
in
if preserve_tailcall && is_tailcall cont then
(* don't destroy tail call opt *)
comp_expr stack_info env lam sz cont
else begin
let info =
match lam with
Lapply{ap_args = args} -> Event_return (List.length args)
| Lsend(_, _, _, args, _) -> Event_return (List.length args + 1)
| Lprim(_,args,_) -> Event_return (List.length args)
| _ -> Event_other
in
let ev = event (Event_after ty) info in
let cont1 = add_event ev cont in
comp_expr stack_info env lam sz cont1
end
end
| Lifused (_, exp) ->
comp_expr stack_info env exp sz cont
(* Compile a list of arguments [e1; ...; eN] to a primitive operation.
The values of eN ... e2 are pushed on the stack, e2 at top of stack,
then e3, then ... The value of e1 is left in the accumulator. *)
and comp_args stack_info env argl sz cont =
comp_expr_list stack_info env (List.rev argl) sz cont
and comp_expr_list stack_info env exprl sz cont = match exprl with
[] -> cont
| [exp] -> comp_expr stack_info env exp sz cont
| exp :: rem ->
comp_expr stack_info env exp sz
(Kpush :: comp_expr_list stack_info env rem (sz+1) cont)
and comp_exit_args stack_info env argl sz pos cont =
comp_expr_list_assign stack_info env (List.rev argl) sz pos cont
and comp_expr_list_assign stack_info env exprl sz pos cont = match exprl with
| [] -> cont
| exp :: rem ->
comp_expr stack_info env exp sz
(Kassign (sz-pos)
::comp_expr_list_assign stack_info env rem sz (pos-1) cont)
(* Compile an if-then-else test. *)
and comp_binary_test stack_info env cond ifso ifnot sz cont =
let cont_cond =
if ifnot = Lconst const_unit then begin
let (lbl_end, cont1) = label_code cont in
Kstrictbranchifnot lbl_end :: comp_expr stack_info env ifso sz cont1
end else
match code_as_jump stack_info ifso sz with
| Some label ->
let cont = comp_expr stack_info env ifnot sz cont in
Kbranchif label :: cont
| None ->
match code_as_jump stack_info ifnot sz with
| Some label ->
let cont = comp_expr stack_info env ifso sz cont in
Kbranchifnot label :: cont
| None ->
let (branch_end, cont1) = make_branch cont in
let (lbl_not, cont2) =
label_code(comp_expr stack_info env ifnot sz cont1) in
Kbranchifnot lbl_not ::
comp_expr stack_info env ifso sz (branch_end :: cont2) in
comp_expr stack_info env cond sz cont_cond
(**** Compilation of a code block (with tracking of stack usage) ****)
let comp_block env exp sz cont =
let stack_info = create_stack_info () in
let code = comp_expr stack_info env exp sz cont in
let used_safe = !(stack_info.max_stack_used) + Config.stack_safety_margin in
if used_safe > Config.stack_threshold then
Kconst(Const_base(Const_int used_safe)) ::
Kccall("caml_ensure_stack_capacity", 1) ::
code
else
code
(**** Compilation of functions ****)
let comp_function tc cont =
let arity = List.length tc.params in
let ce_stack, _last_pos =
add_positions Ident.empty Fun.id ~pos:arity ~delta:(-1) tc.params
in
let env =
{ ce_stack;
ce_closure =
In_closure { entries = tc.entries; env_pos = 3 * tc.rec_pos }
}
in
let cont =
comp_block env tc.body arity (Kreturn arity :: cont) in
if arity > 1 then
Krestart :: Klabel tc.label :: Kgrab(arity - 1) :: cont
else
Klabel tc.label :: cont
let comp_remainder cont =
let c = ref cont in
begin try
while true do
c := comp_function (Stack.pop functions_to_compile) !c
done
with Stack.Empty ->
()
end;
!c
(**** Compilation of a lambda phrase ****)
let reset () =
label_counter := 0;
compunit_name := "";
Stack.clear functions_to_compile
let compile_gen ?modulename ~init_stack expr =
reset ();
begin match modulename with
| Some name -> compunit_name := name
| None -> ()
end;
Fun.protect ~finally:reset (fun () ->
let init_code = comp_block empty_env expr init_stack [] in
if Stack.length functions_to_compile > 0 then begin
let lbl_init = new_label() in
(Kbranch lbl_init :: comp_remainder (Klabel lbl_init :: init_code)),
false
end else
init_code, true)
let compile_implementation modulename expr =
fst (compile_gen ~modulename ~init_stack:0 expr)
let compile_phrase expr =
compile_gen ~init_stack:1 expr
|