1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Generation of bytecode + relocation information *)
open Config
open Misc
open Asttypes
open Lambda
open Instruct
open Opcodes
open Cmo_format
module String = Misc.Stdlib.String
type error = Not_compatible_32 of (string * string)
exception Error of error
(* marshal and possibly check 32bit compat *)
let marshal_to_channel_with_possibly_32bit_compat ~filename ~kind outchan obj =
try
Marshal.to_channel outchan obj
(if !Clflags.bytecode_compatible_32
then [Marshal.Compat_32] else [])
with Failure _ ->
raise (Error (Not_compatible_32 (filename, kind)))
let report_error ppf (file, kind) =
Format_doc.fprintf ppf "Generated %s %S cannot be used on a 32-bit platform"
kind file
let () =
Location.register_error_of_exn
(function
| Error (Not_compatible_32 info) ->
Some (Location.error_of_printer_file report_error info)
| _ ->
None
)
(* Buffering of bytecode *)
let create_bigarray = Bigarray.Array1.create Bigarray.Char Bigarray.c_layout
let copy_bigarray src dst size =
Bigarray.Array1.(blit (sub src 0 size) (sub dst 0 size))
let out_buffer = ref(create_bigarray 0)
and out_position = ref 0
let extend_buffer needed =
let size = Bigarray.Array1.dim !out_buffer in
let new_size = ref(max size 16) (* we need new_size > 0 *) in
while needed >= !new_size do new_size := 2 * !new_size done;
let new_buffer = create_bigarray !new_size in
copy_bigarray !out_buffer new_buffer size;
out_buffer := new_buffer
let out_word b1 b2 b3 b4 =
let p = !out_position in
let open Bigarray.Array1 in
if p+3 >= dim !out_buffer then extend_buffer (p+3);
set !out_buffer p (Char.unsafe_chr b1);
set !out_buffer (p+1) (Char.unsafe_chr b2);
set !out_buffer (p+2) (Char.unsafe_chr b3);
set !out_buffer (p+3) (Char.unsafe_chr b4);
out_position := p + 4
let out opcode =
out_word opcode 0 0 0
exception AsInt
let const_as_int = function
| Const_base(Const_int i) -> i
| Const_base(Const_char c) -> Char.code c
| _ -> raise AsInt
let is_immed i = immed_min <= i && i <= immed_max
let is_immed_const k =
try
is_immed (const_as_int k)
with
| AsInt -> false
let out_int n =
out_word n (n asr 8) (n asr 16) (n asr 24)
let out_const c =
try
out_int (const_as_int c)
with
| AsInt -> Misc.fatal_error "Emitcode.const_as_int"
(* Handling of local labels and backpatching *)
type label_definition =
Label_defined of int
| Label_undefined of (int * int) list
let label_table = ref ([| |] : label_definition array)
let extend_label_table needed =
let size = Array.length !label_table in
let new_size = ref(max size 16) (* we need new_size > 0 *) in
while needed >= !new_size do new_size := 2 * !new_size done;
let new_table = Array.make !new_size (Label_undefined []) in
Array.blit !label_table 0 new_table 0 (Array.length !label_table);
label_table := new_table
let backpatch (pos, orig) =
let displ = (!out_position - orig) asr 2 in
let open Bigarray.Array1 in
set !out_buffer pos (Char.unsafe_chr displ);
set !out_buffer (pos+1) (Char.unsafe_chr (displ asr 8));
set !out_buffer (pos+2) (Char.unsafe_chr (displ asr 16));
set !out_buffer (pos+3) (Char.unsafe_chr (displ asr 24))
let define_label lbl =
if lbl >= Array.length !label_table then extend_label_table lbl;
match (!label_table).(lbl) with
Label_defined _ ->
fatal_error "Emitcode.define_label"
| Label_undefined patchlist ->
List.iter backpatch patchlist;
(!label_table).(lbl) <- Label_defined !out_position
let out_label_with_orig orig lbl =
if lbl >= Array.length !label_table then extend_label_table lbl;
match (!label_table).(lbl) with
Label_defined def ->
out_int((def - orig) asr 2)
| Label_undefined patchlist ->
(!label_table).(lbl) <-
Label_undefined((!out_position, orig) :: patchlist);
out_int 0
let out_label l = out_label_with_orig !out_position l
(* Relocation information *)
let reloc_info = ref ([] : (reloc_info * int) list)
let enter info =
reloc_info := (info, !out_position) :: !reloc_info
let slot_for_literal sc =
enter (Reloc_literal (Symtable.transl_const sc));
out_int 0
and slot_for_getglobal id =
let name = Ident.name id in
let reloc_info =
if Ident.is_predef id then (Reloc_getpredef (Predef_exn name))
else if Ident.global id then (Reloc_getcompunit (Compunit name))
else assert false
in
enter reloc_info;
out_int 0
and slot_for_setglobal id =
let name = Ident.name id in
let reloc_info =
if Ident.persistent id then (Reloc_setcompunit (Compunit name))
else assert false
in
enter reloc_info;
out_int 0
and slot_for_c_prim name =
enter (Reloc_primitive name);
out_int 0
(* Debugging events *)
let events = ref ([] : debug_event list)
let debug_dirs = ref String.Set.empty
let record_event ev =
let path = ev.ev_loc.Location.loc_start.Lexing.pos_fname in
let abspath = Location.absolute_path path in
debug_dirs := String.Set.add (Filename.dirname abspath) !debug_dirs;
if Filename.is_relative path then begin
let cwd = Location.rewrite_absolute_path (Sys.getcwd ()) in
debug_dirs := String.Set.add cwd !debug_dirs;
end;
ev.ev_pos <- !out_position;
events := ev :: !events
(* Initialization *)
let clear() =
out_position := 0;
label_table := [||];
reloc_info := [];
debug_dirs := String.Set.empty;
events := [];
out_buffer := create_bigarray 0
let init () =
clear ();
label_table := Array.make 16 (Label_undefined []);
out_buffer := create_bigarray 1024
(* Emission of one instruction *)
let emit_comp = function
| Ceq -> out opEQ | Cne -> out opNEQ
| Clt -> out opLTINT | Cle -> out opLEINT
| Cgt -> out opGTINT | Cge -> out opGEINT
and emit_branch_comp = function
| Ceq -> out opBEQ | Cne -> out opBNEQ
| Clt -> out opBLTINT | Cle -> out opBLEINT
| Cgt -> out opBGTINT | Cge -> out opBGEINT
let emit_instr = function
Klabel lbl -> define_label lbl
| Kacc n ->
if n < 8 then out(opACC0 + n) else (out opACC; out_int n)
| Kenvacc n ->
if n >= 1 && n <= 4
then out(opENVACC1 + n - 1)
else (out opENVACC; out_int n)
| Kpush ->
out opPUSH
| Kpop n ->
out opPOP; out_int n
| Kassign n ->
out opASSIGN; out_int n
| Kpush_retaddr lbl -> out opPUSH_RETADDR; out_label lbl
| Kapply n ->
if n < 4 then out(opAPPLY1 + n - 1) else (out opAPPLY; out_int n)
| Kappterm(n, sz) ->
if n < 4 then (out(opAPPTERM1 + n - 1); out_int sz)
else (out opAPPTERM; out_int n; out_int sz)
| Kreturn n -> out opRETURN; out_int n
| Krestart -> out opRESTART
| Kgrab n -> out opGRAB; out_int n
| Kclosure(lbl, n) -> out opCLOSURE; out_int n; out_label lbl
| Kclosurerec(lbls, n) ->
out opCLOSUREREC; out_int (List.length lbls); out_int n;
let org = !out_position in
List.iter (out_label_with_orig org) lbls
| Koffsetclosure ofs ->
if ofs = -3 || ofs = 0 || ofs = 3
then out (opOFFSETCLOSURE0 + ofs / 3)
else (out opOFFSETCLOSURE; out_int ofs)
| Kgetglobal q -> out opGETGLOBAL; slot_for_getglobal q
| Ksetglobal q -> out opSETGLOBAL; slot_for_setglobal q
| Kconst sc ->
begin match sc with
Const_base(Const_int i) when is_immed i ->
if i >= 0 && i <= 3
then out (opCONST0 + i)
else (out opCONSTINT; out_int i)
| Const_base(Const_char c) ->
out opCONSTINT; out_int (Char.code c)
| Const_block(t, []) ->
if t = 0 then out opATOM0 else (out opATOM; out_int t)
| _ ->
out opGETGLOBAL; slot_for_literal sc
end
| Kmakeblock(n, t) ->
if n = 0 then
if t = 0 then out opATOM0 else (out opATOM; out_int t)
else if n < 4 then (out(opMAKEBLOCK1 + n - 1); out_int t)
else (out opMAKEBLOCK; out_int n; out_int t)
| Kgetfield n ->
if n < 4 then out(opGETFIELD0 + n) else (out opGETFIELD; out_int n)
| Ksetfield n ->
if n < 4 then out(opSETFIELD0 + n) else (out opSETFIELD; out_int n)
| Kmakefloatblock(n) ->
if n = 0 then out opATOM0 else (out opMAKEFLOATBLOCK; out_int n)
| Kgetfloatfield n -> out opGETFLOATFIELD; out_int n
| Ksetfloatfield n -> out opSETFLOATFIELD; out_int n
| Kvectlength -> out opVECTLENGTH
| Kgetvectitem -> out opGETVECTITEM
| Ksetvectitem -> out opSETVECTITEM
| Kgetstringchar -> out opGETSTRINGCHAR
| Kgetbyteschar -> out opGETBYTESCHAR
| Ksetbyteschar -> out opSETBYTESCHAR
| Kbranch lbl -> out opBRANCH; out_label lbl
| Kbranchif lbl -> out opBRANCHIF; out_label lbl
| Kbranchifnot lbl -> out opBRANCHIFNOT; out_label lbl
| Kstrictbranchif lbl -> out opBRANCHIF; out_label lbl
| Kstrictbranchifnot lbl -> out opBRANCHIFNOT; out_label lbl
| Kswitch(tbl_const, tbl_block) ->
out opSWITCH;
out_int (Array.length tbl_const + (Array.length tbl_block lsl 16));
let org = !out_position in
Array.iter (out_label_with_orig org) tbl_const;
Array.iter (out_label_with_orig org) tbl_block
| Kboolnot -> out opBOOLNOT
| Kpushtrap lbl -> out opPUSHTRAP; out_label lbl
| Kpoptrap -> out opPOPTRAP
| Kraise Raise_regular -> out opRAISE
| Kraise Raise_reraise -> out opRERAISE
| Kraise Raise_notrace -> out opRAISE_NOTRACE
| Kcheck_signals -> out opCHECK_SIGNALS
| Kccall(name, n) ->
if n <= 5
then (out (opC_CALL1 + n - 1); slot_for_c_prim name)
else (out opC_CALLN; out_int n; slot_for_c_prim name)
| Knegint -> out opNEGINT | Kaddint -> out opADDINT
| Ksubint -> out opSUBINT | Kmulint -> out opMULINT
| Kdivint -> out opDIVINT | Kmodint -> out opMODINT
| Kandint -> out opANDINT | Korint -> out opORINT
| Kxorint -> out opXORINT | Klslint -> out opLSLINT
| Klsrint -> out opLSRINT | Kasrint -> out opASRINT
| Kintcomp c -> emit_comp c
| Koffsetint n -> out opOFFSETINT; out_int n
| Koffsetref n -> out opOFFSETREF; out_int n
| Kisint -> out opISINT
| Kisout -> out opULTINT
| Kgetmethod -> out opGETMETHOD
| Kgetpubmet tag -> out opGETPUBMET; out_int tag; out_int 0
| Kgetdynmet -> out opGETDYNMET
| Kevent ev -> record_event ev
| Kperform -> out opPERFORM
| Kresume -> out opRESUME
| Kresumeterm n -> out opRESUMETERM; out_int n
| Kreperformterm n -> out opREPERFORMTERM; out_int n
| Kstop -> out opSTOP
(* Emission of a list of instructions. Include some peephole optimization. *)
let remerge_events ev1 = function
| Kevent ev2 :: c ->
Kevent (Bytegen.merge_events ev1 ev2) :: c
| c -> Kevent ev1 :: c
let rec emit = function
[] -> ()
(* Peephole optimizations *)
(* optimization of integer tests *)
| Kpush::Kconst k::Kintcomp c::Kbranchif lbl::rem
when is_immed_const k ->
emit_branch_comp c ;
out_const k ;
out_label lbl ;
emit rem
| Kpush::Kconst k::Kintcomp c::Kbranchifnot lbl::rem
when is_immed_const k ->
emit_branch_comp (negate_integer_comparison c) ;
out_const k ;
out_label lbl ;
emit rem
(* same for range tests *)
| Kpush::Kconst k::Kisout::Kbranchif lbl::rem
when is_immed_const k ->
out opBULTINT ;
out_const k ;
out_label lbl ;
emit rem
| Kpush::Kconst k::Kisout::Kbranchifnot lbl::rem
when is_immed_const k ->
out opBUGEINT ;
out_const k ;
out_label lbl ;
emit rem
(* Some special case of push ; i ; ret generated by the match compiler *)
| Kpush :: Kacc 0 :: Kreturn m :: c ->
emit (Kreturn (m-1) :: c)
(* General push then access scheme *)
| Kpush :: Kacc n :: c ->
if n < 8 then out(opPUSHACC0 + n) else (out opPUSHACC; out_int n);
emit c
| Kpush :: Kenvacc n :: c ->
if n >= 1 && n < 4
then out(opPUSHENVACC1 + n - 1)
else (out opPUSHENVACC; out_int n);
emit c
| Kpush :: Koffsetclosure ofs :: c ->
if ofs = -3 || ofs = 0 || ofs = 3
then out(opPUSHOFFSETCLOSURE0 + ofs / 3)
else (out opPUSHOFFSETCLOSURE; out_int ofs);
emit c
| Kpush :: Kgetglobal id :: Kgetfield n :: c ->
out opPUSHGETGLOBALFIELD; slot_for_getglobal id; out_int n; emit c
| Kpush :: Kgetglobal id :: c ->
out opPUSHGETGLOBAL; slot_for_getglobal id; emit c
| Kpush :: Kconst sc :: c ->
begin match sc with
Const_base(Const_int i) when is_immed i ->
if i >= 0 && i <= 3
then out (opPUSHCONST0 + i)
else (out opPUSHCONSTINT; out_int i)
| Const_base(Const_char c) ->
out opPUSHCONSTINT; out_int(Char.code c)
| Const_block(t, []) ->
if t = 0 then out opPUSHATOM0 else (out opPUSHATOM; out_int t)
| _ ->
out opPUSHGETGLOBAL; slot_for_literal sc
end;
emit c
| Kpush :: (Kevent ({ev_kind = Event_before} as ev)) ::
(Kgetglobal _ as instr1) :: (Kgetfield _ as instr2) :: c ->
emit (Kpush :: instr1 :: instr2 :: remerge_events ev c)
| Kpush :: (Kevent ({ev_kind = Event_before} as ev)) ::
(Kacc _ | Kenvacc _ | Koffsetclosure _ | Kgetglobal _ | Kconst _ as instr)::
c ->
emit (Kpush :: instr :: remerge_events ev c)
| Kgetglobal id :: Kgetfield n :: c ->
out opGETGLOBALFIELD; slot_for_getglobal id; out_int n; emit c
(* Default case *)
| instr :: c ->
emit_instr instr; emit c
(* Emission to a file *)
let to_file outchan artifact_info ~required_globals code =
init();
Fun.protect ~finally:clear (fun () ->
output_string outchan cmo_magic_number;
let pos_depl = pos_out outchan in
output_binary_int outchan 0;
let pos_code = pos_out outchan in
emit code;
Out_channel.output_bigarray outchan !out_buffer 0 !out_position;
let (pos_debug, size_debug) =
if !Clflags.debug then begin
let filename = Unit_info.Artifact.filename artifact_info in
debug_dirs := String.Set.add
(Filename.dirname (Location.absolute_path filename))
!debug_dirs;
let p = pos_out outchan in
Compression.output_value outchan !events;
Compression.output_value outchan (String.Set.elements !debug_dirs);
(p, pos_out outchan - p)
end else
(0, 0) in
let compunit =
{ cu_name = Cmo_format.Compunit (Unit_info.Artifact.modname artifact_info);
cu_pos = pos_code;
cu_codesize = !out_position;
cu_reloc = List.rev !reloc_info;
cu_imports = Env.imports();
cu_primitives = List.map Primitive.byte_name
!Translmod.primitive_declarations;
cu_required_compunits = List.map (fun id -> Compunit (Ident.name id))
(Ident.Set.elements required_globals);
cu_force_link = !Clflags.link_everything;
cu_debug = pos_debug;
cu_debugsize = size_debug } in
let pos_compunit = pos_out outchan in
let () =
(* Remove any cached abbreviation expansion before marshaling.
See doc-comment for [Types.abbrev_memo] *)
Btype.cleanup_abbrev ();
marshal_to_channel_with_possibly_32bit_compat
~filename:(Unit_info.Artifact.filename artifact_info)
~kind:"bytecode unit"
outchan compunit
in
seek_out outchan pos_depl;
output_binary_int outchan pos_compunit)
(* Emission to a memory block *)
let to_memory instrs =
init();
Fun.protect ~finally:clear (fun () ->
emit instrs;
let code = create_bigarray !out_position in
copy_bigarray !out_buffer code !out_position;
let reloc = List.rev !reloc_info in
let events = !events in
(code, reloc, events))
(* Emission to a file for a packed library *)
let to_packed_file outchan code =
init ();
Fun.protect ~finally:clear (fun () ->
emit code;
Out_channel.output_bigarray outchan !out_buffer 0 !out_position;
let reloc = List.rev !reloc_info in
let events = !events in
let debug_dirs = !debug_dirs in
let size = !out_position in
(size, reloc, events, debug_dirs))
|