1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Elimination of useless Llet(Alias) bindings.
Also transform let-bound references into variables. *)
open Asttypes
open Lambda
open Debuginfo.Scoped_location
(* To transform let-bound references into variables *)
exception Real_reference
let check_function_escape id lfun =
(* Check that the identifier is not one of the parameters *)
let param_is_id (param, _) = Ident.same id param in
assert (not (List.exists param_is_id lfun.params));
if Ident.Set.mem id (Lambda.free_variables lfun.body) then
raise Real_reference
let rec eliminate_ref id = function
Lvar v as lam ->
if Ident.same v id then raise Real_reference else lam
| Lmutvar _ | Lconst _ as lam -> lam
| Lapply ap ->
Lapply{ap with ap_func = eliminate_ref id ap.ap_func;
ap_args = List.map (eliminate_ref id) ap.ap_args}
| Lfunction lfun as lam ->
check_function_escape id lfun;
lam
| Llet(str, kind, v, e1, e2) ->
Llet(str, kind, v, eliminate_ref id e1, eliminate_ref id e2)
| Lmutlet(kind, v, e1, e2) ->
Lmutlet(kind, v, eliminate_ref id e1, eliminate_ref id e2)
| Lletrec(idel, e2) ->
List.iter (fun rb -> check_function_escape id rb.def) idel;
Lletrec(idel, eliminate_ref id e2)
| Lprim(Pfield (0, _, _), [Lvar v], _) when Ident.same v id ->
Lmutvar id
| Lprim(Psetfield(0, _, _), [Lvar v; e], _) when Ident.same v id ->
Lassign(id, eliminate_ref id e)
| Lprim(Poffsetref delta, [Lvar v], loc) when Ident.same v id ->
Lassign(id, Lprim(Poffsetint delta, [Lmutvar id], loc))
| Lprim(p, el, loc) ->
Lprim(p, List.map (eliminate_ref id) el, loc)
| Lswitch(e, sw, loc) ->
Lswitch(eliminate_ref id e,
{sw_numconsts = sw.sw_numconsts;
sw_consts =
List.map (fun (n, e) -> (n, eliminate_ref id e)) sw.sw_consts;
sw_numblocks = sw.sw_numblocks;
sw_blocks =
List.map (fun (n, e) -> (n, eliminate_ref id e)) sw.sw_blocks;
sw_failaction =
Option.map (eliminate_ref id) sw.sw_failaction; },
loc)
| Lstringswitch(e, sw, default, loc) ->
Lstringswitch
(eliminate_ref id e,
List.map (fun (s, e) -> (s, eliminate_ref id e)) sw,
Option.map (eliminate_ref id) default, loc)
| Lstaticraise (i,args) ->
Lstaticraise (i,List.map (eliminate_ref id) args)
| Lstaticcatch(e1, i, e2) ->
Lstaticcatch(eliminate_ref id e1, i, eliminate_ref id e2)
| Ltrywith(e1, v, e2) ->
Ltrywith(eliminate_ref id e1, v, eliminate_ref id e2)
| Lifthenelse(e1, e2, e3) ->
Lifthenelse(eliminate_ref id e1,
eliminate_ref id e2,
eliminate_ref id e3)
| Lsequence(e1, e2) ->
Lsequence(eliminate_ref id e1, eliminate_ref id e2)
| Lwhile(e1, e2) ->
Lwhile(eliminate_ref id e1, eliminate_ref id e2)
| Lfor(v, e1, e2, dir, e3) ->
Lfor(v, eliminate_ref id e1, eliminate_ref id e2,
dir, eliminate_ref id e3)
| Lassign(v, e) ->
Lassign(v, eliminate_ref id e)
| Lsend(k, m, o, el, loc) ->
Lsend(k, eliminate_ref id m, eliminate_ref id o,
List.map (eliminate_ref id) el, loc)
| Levent(l, ev) ->
Levent(eliminate_ref id l, ev)
| Lifused(v, e) ->
Lifused(v, eliminate_ref id e)
(* Simplification of exits *)
type exit = {
mutable count: int;
mutable max_depth: int;
}
let simplify_exits lam =
(* Count occurrences of (exit n ...) statements *)
let exits = Hashtbl.create 17 in
let get_exit i =
try Hashtbl.find exits i
with Not_found -> {count = 0; max_depth = 0}
and incr_exit i nb d =
match Hashtbl.find_opt exits i with
| Some r ->
r.count <- r.count + nb;
r.max_depth <- Int.max r.max_depth d
| None ->
let r = {count = nb; max_depth = d} in
Hashtbl.add exits i r
in
let rec count ~try_depth = function
| (Lvar _| Lmutvar _ | Lconst _) -> ()
| Lapply ap ->
count ~try_depth ap.ap_func;
List.iter (count ~try_depth) ap.ap_args
| Lfunction {body} -> count ~try_depth body
| Llet(_, _kind, _v, l1, l2)
| Lmutlet(_kind, _v, l1, l2) ->
count ~try_depth l2; count ~try_depth l1
| Lletrec(bindings, body) ->
List.iter (fun { def = { body } } -> count ~try_depth body) bindings;
count ~try_depth body
| Lprim(_p, ll, _) -> List.iter (count ~try_depth) ll
| Lswitch(l, sw, _loc) ->
count_default ~try_depth sw ;
count ~try_depth l;
List.iter (fun (_, l) -> count ~try_depth l) sw.sw_consts;
List.iter (fun (_, l) -> count ~try_depth l) sw.sw_blocks
| Lstringswitch(l, sw, d, _) ->
count ~try_depth l;
List.iter (fun (_, l) -> count ~try_depth l) sw;
begin match d with
| None -> ()
| Some d -> match sw with
| []|[_] -> count ~try_depth d
| _ -> (* default will get replicated *)
count ~try_depth d; count ~try_depth d
end
| Lstaticraise (i,ls) ->
incr_exit i 1 try_depth;
List.iter (count ~try_depth) ls
| Lstaticcatch (l1,(i,[]),Lstaticraise (j,[])) ->
(* i will be replaced by j in l1, so each occurrence of i in l1
increases j's ref count *)
count ~try_depth l1 ;
let ic = get_exit i in
incr_exit j ic.count (Int.max try_depth ic.max_depth)
| Lstaticcatch(l1, (i,_), l2) ->
count ~try_depth l1;
(* If l1 does not contain (exit i),
l2 will be removed, so don't count its exits *)
if (get_exit i).count > 0 then
count ~try_depth l2
| Ltrywith(l1, _v, l2) ->
count ~try_depth:(try_depth+1) l1;
count ~try_depth l2;
| Lifthenelse(l1, l2, l3) ->
count ~try_depth l1;
count ~try_depth l2;
count ~try_depth l3
| Lsequence(l1, l2) -> count ~try_depth l1; count ~try_depth l2
| Lwhile(l1, l2) -> count ~try_depth l1; count ~try_depth l2
| Lfor(_, l1, l2, _dir, l3) ->
count ~try_depth l1;
count ~try_depth l2;
count ~try_depth l3
| Lassign(_v, l) -> count ~try_depth l
| Lsend(_k, m, o, ll, _) -> List.iter (count ~try_depth) (m::o::ll)
| Levent(l, _) -> count ~try_depth l
| Lifused(_v, l) -> count ~try_depth l
and count_default ~try_depth sw = match sw.sw_failaction with
| None -> ()
| Some al ->
let nconsts = List.length sw.sw_consts
and nblocks = List.length sw.sw_blocks in
if
nconsts < sw.sw_numconsts && nblocks < sw.sw_numblocks
then begin (* default action will occur twice in native code *)
count ~try_depth al ; count ~try_depth al
end else begin (* default action will occur once *)
assert (nconsts < sw.sw_numconsts || nblocks < sw.sw_numblocks) ;
count ~try_depth al
end
in
count ~try_depth:0 lam;
(*
Second pass simplify ``catch body with (i ...) handler''
- if (exit i ...) does not occur in body, suppress catch
- if (exit i ...) occurs exactly once in body,
substitute it with handler
- If handler is a single variable, replace (exit i ..) with it
Note:
In ``catch body with (i x1 .. xn) handler''
Substituted expression is
let y1 = x1 and ... yn = xn in
handler[x1 <- y1 ; ... ; xn <- yn]
For the sake of preserving the uniqueness of bound variables.
(No alpha conversion of ``handler'' is presently needed, since
substitution of several ``(exit i ...)''
occurs only when ``handler'' is a variable.)
*)
let subst = Hashtbl.create 17 in
let rec simplif ~try_depth = function
| (Lvar _| Lmutvar _ | Lconst _) as l -> l
| Lapply ap ->
Lapply{ap with ap_func = simplif ~try_depth ap.ap_func;
ap_args = List.map (simplif ~try_depth) ap.ap_args}
| Lfunction lfun ->
Lfunction (map_lfunction (simplif ~try_depth) lfun)
| Llet(str, kind, v, l1, l2) ->
Llet(str, kind, v, simplif ~try_depth l1, simplif ~try_depth l2)
| Lmutlet(kind, v, l1, l2) ->
Lmutlet(kind, v, simplif ~try_depth l1, simplif ~try_depth l2)
| Lletrec(bindings, body) ->
let bindings =
List.map (fun ({ def = {kind; params; return; body = l; attr; loc} }
as rb) ->
let def =
lfunction' ~kind ~params ~return
~body:(simplif ~try_depth l) ~attr ~loc
in
{ rb with def })
bindings
in
Lletrec(bindings, simplif ~try_depth body)
| Lprim(p, ll, loc) -> begin
let ll = List.map (simplif ~try_depth) ll in
match p, ll with
(* Simplify Obj.with_tag *)
| Pccall { Primitive.prim_name = "caml_obj_with_tag"; _ },
[Lconst (Const_base (Const_int tag));
Lprim (Pmakeblock (_, mut, shape), fields, loc)] ->
Lprim (Pmakeblock(tag, mut, shape), fields, loc)
| Pccall { Primitive.prim_name = "caml_obj_with_tag"; _ },
[Lconst (Const_base (Const_int tag));
Lconst (Const_block (_, fields))] ->
Lconst (Const_block (tag, fields))
| _ -> Lprim(p, ll, loc)
end
| Lswitch(l, sw, loc) ->
let new_l = simplif ~try_depth l
and new_consts =
List.map (fun (n, e) -> (n, simplif ~try_depth e)) sw.sw_consts
and new_blocks =
List.map (fun (n, e) -> (n, simplif ~try_depth e)) sw.sw_blocks
and new_fail = Option.map (simplif ~try_depth) sw.sw_failaction in
Lswitch
(new_l,
{sw with sw_consts = new_consts ; sw_blocks = new_blocks;
sw_failaction = new_fail},
loc)
| Lstringswitch(l,sw,d,loc) ->
Lstringswitch
(simplif ~try_depth l,List.map (fun (s,l) -> s,simplif ~try_depth l) sw,
Option.map (simplif ~try_depth) d,loc)
| Lstaticraise (i,[]) as l ->
begin try
let _,handler = Hashtbl.find subst i in
handler
with
| Not_found -> l
end
| Lstaticraise (i,ls) ->
let ls = List.map (simplif ~try_depth) ls in
begin try
let xs,handler = Hashtbl.find subst i in
let ys = List.map (fun (x, k) -> Ident.rename x, k) xs in
let env =
List.fold_right2
(fun (x, _) (y, _) env -> Ident.Map.add x y env)
xs ys Ident.Map.empty
in
(* The evaluation order for Lstaticraise arguments is currently
right-to-left in all backends.
To preserve this, we use fold_left2 instead of fold_right2
(the first argument is inserted deepest in the expression,
so will be evaluated last).
*)
List.fold_left2
(fun r (y, kind) l -> Llet (Strict, kind, y, l, r))
(Lambda.rename env handler) ys ls
with
| Not_found -> Lstaticraise (i,ls)
end
| Lstaticcatch (l1,(i,[]),(Lstaticraise (_j,[]) as l2)) ->
Hashtbl.add subst i ([],simplif ~try_depth l2) ;
simplif ~try_depth l1
| Lstaticcatch (l1,(i,xs),l2) ->
let {count; max_depth} = get_exit i in
if count = 0 then
(* Discard staticcatch: not matching exit *)
simplif ~try_depth l1
else if
count = 1 && max_depth <= try_depth then begin
(* Inline handler if there is a single occurrence and it is not
nested within an inner try..with *)
assert(max_depth = try_depth);
Hashtbl.add subst i (xs,simplif ~try_depth l2);
simplif ~try_depth l1
end else
Lstaticcatch (simplif ~try_depth l1, (i,xs), simplif ~try_depth l2)
| Ltrywith(l1, v, l2) ->
let l1 = simplif ~try_depth:(try_depth + 1) l1 in
Ltrywith(l1, v, simplif ~try_depth l2)
| Lifthenelse(l1, l2, l3) -> Lifthenelse(simplif ~try_depth l1,
simplif ~try_depth l2, simplif ~try_depth l3)
| Lsequence(l1, l2) -> Lsequence(simplif ~try_depth l1, simplif ~try_depth l2)
| Lwhile(l1, l2) -> Lwhile(simplif ~try_depth l1, simplif ~try_depth l2)
| Lfor(v, l1, l2, dir, l3) ->
Lfor(v, simplif ~try_depth l1, simplif ~try_depth l2, dir,
simplif ~try_depth l3)
| Lassign(v, l) -> Lassign(v, simplif ~try_depth l)
| Lsend(k, m, o, ll, loc) ->
Lsend(k, simplif ~try_depth m, simplif ~try_depth o,
List.map (simplif ~try_depth) ll, loc)
| Levent(l, ev) -> Levent(simplif ~try_depth l, ev)
| Lifused(v, l) -> Lifused (v,simplif ~try_depth l)
in
simplif ~try_depth:0 lam
(* Compile-time beta-reduction of functions immediately applied:
Lapply(Lfunction(Curried, params, body), args, loc) ->
let paramN = argN in ... let param1 = arg1 in body
Lapply(Lfunction(Tupled, params, body), [Lprim(Pmakeblock(args))], loc) ->
let paramN = argN in ... let param1 = arg1 in body
Assumes |args| = |params|.
*)
let exact_application {kind; params; _} args =
let arity = List.length params in
Lambda.find_exact_application kind ~arity args
let beta_reduce params body args =
List.fold_left2 (fun l (param, kind) arg -> Llet(Strict, kind, param, arg, l))
body params args
(* Simplification of lets *)
let simplify_lets lam =
(* Disable optimisations for bytecode compilation with -g flag *)
let optimize = !Clflags.native_code || not !Clflags.debug in
(* First pass: count the occurrences of all let-bound identifiers *)
let occ = (Hashtbl.create 83: (Ident.t, int ref) Hashtbl.t) in
(* The global table [occ] associates to each let-bound identifier
the number of its uses (as a reference):
- 0 if never used
- 1 if used exactly once in and not under a lambda or within a loop
- > 1 if used several times or under a lambda or within a loop.
The local table [bv] associates to each locally-let-bound variable
its reference count, as above. [bv] is enriched at let bindings
but emptied when crossing lambdas and loops. *)
(* Current use count of a variable. *)
let count_var v =
try
!(Hashtbl.find occ v)
with Not_found ->
0
(* Entering a [let]. Returns updated [bv]. *)
and bind_var bv v =
let r = ref 0 in
Hashtbl.add occ v r;
Ident.Map.add v r bv
(* Record a use of a variable *)
and use_var bv v n =
try
let r = Ident.Map.find v bv in r := !r + n
with Not_found ->
(* v is not locally bound, therefore this is a use under a lambda
or within a loop. Increase use count by 2 -- enough so
that single-use optimizations will not apply. *)
try
let r = Hashtbl.find occ v in r := !r + 2
with Not_found ->
(* Not a let-bound variable, ignore *)
() in
let rec count bv = function
| Lconst _ -> ()
| Lvar v ->
use_var bv v 1
| Lmutvar _ -> ()
| Lapply{ap_func = ll; ap_args = args} ->
let no_opt () = count bv ll; List.iter (count bv) args in
begin match ll with
| Lfunction lf when optimize ->
begin match exact_application lf args with
| None -> no_opt ()
| Some exact_args ->
count bv (beta_reduce lf.params lf.body exact_args)
end
| _ -> no_opt ()
end
| Lfunction {body} ->
count Ident.Map.empty body
| Llet(_str, _k, v, Lvar w, l2) when optimize ->
(* v will be replaced by w in l2, so each occurrence of v in l2
increases w's refcount *)
count (bind_var bv v) l2;
use_var bv w (count_var v)
| Llet(str, _kind, v, l1, l2) ->
count (bind_var bv v) l2;
(* If v is unused, l1 will be removed, so don't count its variables *)
if str = Strict || count_var v > 0 then count bv l1
| Lmutlet(_kind, _v, l1, l2) ->
count bv l1;
count bv l2
| Lletrec(bindings, body) ->
List.iter (fun { def } -> count bv def.body) bindings;
count bv body
| Lprim(_p, ll, _) -> List.iter (count bv) ll
| Lswitch(l, sw, _loc) ->
count_default bv sw ;
count bv l;
List.iter (fun (_, l) -> count bv l) sw.sw_consts;
List.iter (fun (_, l) -> count bv l) sw.sw_blocks
| Lstringswitch(l, sw, d, _) ->
count bv l ;
List.iter (fun (_, l) -> count bv l) sw ;
begin match d with
| Some d ->
begin match sw with
| []|[_] -> count bv d
| _ -> count bv d ; count bv d
end
| None -> ()
end
| Lstaticraise (_i,ls) -> List.iter (count bv) ls
| Lstaticcatch(l1, _, l2) -> count bv l1; count bv l2
| Ltrywith(l1, _v, l2) -> count bv l1; count bv l2
| Lifthenelse(l1, l2, l3) -> count bv l1; count bv l2; count bv l3
| Lsequence(l1, l2) -> count bv l1; count bv l2
| Lwhile(l1, l2) -> count Ident.Map.empty l1; count Ident.Map.empty l2
| Lfor(_, l1, l2, _dir, l3) ->
count bv l1; count bv l2; count Ident.Map.empty l3
| Lassign(_v, l) ->
(* Lalias-bound variables are never assigned, so don't increase
v's refcount *)
count bv l
| Lsend(_, m, o, ll, _) -> List.iter (count bv) (m::o::ll)
| Levent(l, _) -> count bv l
| Lifused(v, l) ->
if count_var v > 0 then count bv l
and count_default bv sw = match sw.sw_failaction with
| None -> ()
| Some al ->
let nconsts = List.length sw.sw_consts
and nblocks = List.length sw.sw_blocks in
if
nconsts < sw.sw_numconsts && nblocks < sw.sw_numblocks
then begin (* default action will occur twice in native code *)
count bv al ; count bv al
end else begin (* default action will occur once *)
assert (nconsts < sw.sw_numconsts || nblocks < sw.sw_numblocks) ;
count bv al
end
in
count Ident.Map.empty lam;
(* Second pass: remove Lalias bindings of unused variables,
and substitute the bindings of variables used exactly once. *)
let subst = Hashtbl.create 83 in
(* This (small) optimisation is always legal, it may uncover some
tail call later on. *)
let mklet str kind v e1 e2 =
match e2 with
| Lvar w when optimize && Ident.same v w -> e1
| _ -> Llet (str, kind,v,e1,e2)
in
let mkmutlet kind v e1 e2 =
match e2 with
| Lmutvar w when optimize && Ident.same v w -> e1
| _ -> Lmutlet (kind,v,e1,e2)
in
let rec simplif = function
Lvar v as l ->
begin try
Hashtbl.find subst v
with Not_found ->
l
end
| Lmutvar _ | Lconst _ as l -> l
| Lapply ({ap_func = ll; ap_args = args} as ap) ->
let no_opt () =
Lapply {ap with ap_func = simplif ap.ap_func;
ap_args = List.map simplif ap.ap_args} in
begin match ll with
| Lfunction lf when optimize ->
begin match exact_application lf args with
| None -> no_opt ()
| Some exact_args ->
simplif (beta_reduce lf.params lf.body exact_args)
end
| _ -> no_opt ()
end
| Lfunction{kind; params; return=return1; body = l; attr=attr1; loc}
->
begin match simplif l with
Lfunction{kind=Curried; params=params'; return=return2; body;
attr=attr2; loc}
when kind = Curried && optimize &&
attr1.may_fuse_arity && attr2.may_fuse_arity &&
List.length params + List.length params' <= Lambda.max_arity() ->
(* The return type is the type of the value returned after
applying all the parameters to the function. The return
type of the merged function taking [params @ params'] as
parameters is the type returned after applying [params']. *)
let return = return2 in
lfunction ~kind ~params:(params @ params') ~return ~body ~attr:attr2
~loc
| body ->
lfunction ~kind ~params ~return:return1 ~body ~attr:attr1 ~loc
end
| Llet(_str, _k, v, Lvar w, l2) when optimize ->
Hashtbl.add subst v (simplif (Lvar w));
simplif l2
| Llet(Strict, kind, v,
Lprim(Pmakeblock(0, Mutable, kind_ref) as prim, [linit], loc), lbody)
when optimize ->
let slinit = simplif linit in
let slbody = simplif lbody in
begin try
let kind = match kind_ref with
| None -> Pgenval
| Some [field_kind] -> field_kind
| Some _ -> assert false
in
mkmutlet kind v slinit (eliminate_ref v slbody)
with Real_reference ->
mklet Strict kind v (Lprim(prim, [slinit], loc)) slbody
end
| Llet(Alias, kind, v, l1, l2) ->
begin match count_var v with
0 -> simplif l2
| 1 when optimize -> Hashtbl.add subst v (simplif l1); simplif l2
| _ -> Llet(Alias, kind, v, simplif l1, simplif l2)
end
| Llet(StrictOpt, kind, v, l1, l2) ->
begin match count_var v with
0 -> simplif l2
| _ -> mklet StrictOpt kind v (simplif l1) (simplif l2)
end
| Llet(str, kind, v, l1, l2) -> mklet str kind v (simplif l1) (simplif l2)
| Lmutlet(kind, v, l1, l2) -> mkmutlet kind v (simplif l1) (simplif l2)
| Lletrec(bindings, body) ->
let bindings =
List.map (fun rb ->
{ rb with def = map_lfunction simplif rb.def }
) bindings
in
Lletrec(bindings, simplif body)
| Lprim(p, ll, loc) -> Lprim(p, List.map simplif ll, loc)
| Lswitch(l, sw, loc) ->
let new_l = simplif l
and new_consts = List.map (fun (n, e) -> (n, simplif e)) sw.sw_consts
and new_blocks = List.map (fun (n, e) -> (n, simplif e)) sw.sw_blocks
and new_fail = Option.map simplif sw.sw_failaction in
Lswitch
(new_l,
{sw with sw_consts = new_consts ; sw_blocks = new_blocks;
sw_failaction = new_fail},
loc)
| Lstringswitch (l,sw,d,loc) ->
Lstringswitch
(simplif l,List.map (fun (s,l) -> s,simplif l) sw,
Option.map simplif d,loc)
| Lstaticraise (i,ls) ->
Lstaticraise (i, List.map simplif ls)
| Lstaticcatch(l1, (i,args), l2) ->
Lstaticcatch (simplif l1, (i,args), simplif l2)
| Ltrywith(l1, v, l2) -> Ltrywith(simplif l1, v, simplif l2)
| Lifthenelse(l1, l2, l3) -> Lifthenelse(simplif l1, simplif l2, simplif l3)
| Lsequence(Lifused(v, l1), l2) ->
if count_var v > 0
then Lsequence(simplif l1, simplif l2)
else simplif l2
| Lsequence(l1, l2) -> Lsequence(simplif l1, simplif l2)
| Lwhile(l1, l2) -> Lwhile(simplif l1, simplif l2)
| Lfor(v, l1, l2, dir, l3) ->
Lfor(v, simplif l1, simplif l2, dir, simplif l3)
| Lassign(v, l) -> Lassign(v, simplif l)
| Lsend(k, m, o, ll, loc) ->
Lsend(k, simplif m, simplif o, List.map simplif ll, loc)
| Levent(l, ev) -> Levent(simplif l, ev)
| Lifused(v, l) ->
if count_var v > 0 then simplif l else lambda_unit
in
simplif lam
(* Tail call info in annotation files *)
let rec emit_tail_infos is_tail lambda =
match lambda with
| Lvar _ -> ()
| Lmutvar _ -> ()
| Lconst _ -> ()
| Lapply ap ->
begin
(* Note: is_tail does not take backend-specific logic into
account (maximum number of parameters, etc.) so it may
over-approximate tail-callness.
Trying to do something more fine-grained would result in
different warnings depending on whether the native or
bytecode compiler is used. *)
let maybe_warn ~is_tail ~expect_tail =
if is_tail <> expect_tail then
Location.prerr_warning (to_location ap.ap_loc)
(Warnings.Wrong_tailcall_expectation expect_tail) in
match ap.ap_tailcall with
| Default_tailcall -> ()
| Tailcall_expectation expect_tail ->
maybe_warn ~is_tail ~expect_tail
end;
emit_tail_infos false ap.ap_func;
list_emit_tail_infos false ap.ap_args
| Lfunction lfun ->
emit_tail_infos_lfunction is_tail lfun
| Llet (_, _k, _, lam, body)
| Lmutlet (_k, _, lam, body) ->
emit_tail_infos false lam;
emit_tail_infos is_tail body
| Lletrec (bindings, body) ->
List.iter (fun { def } -> emit_tail_infos_lfunction is_tail def) bindings;
emit_tail_infos is_tail body
| Lprim ((Pbytes_to_string | Pbytes_of_string), [arg], _) ->
emit_tail_infos is_tail arg
| Lprim (Psequand, [arg1; arg2], _)
| Lprim (Psequor, [arg1; arg2], _) ->
emit_tail_infos false arg1;
emit_tail_infos is_tail arg2
| Lprim (_, l, _) ->
list_emit_tail_infos false l
| Lswitch (lam, sw, _loc) ->
emit_tail_infos false lam;
list_emit_tail_infos_fun snd is_tail sw.sw_consts;
list_emit_tail_infos_fun snd is_tail sw.sw_blocks;
Option.iter (emit_tail_infos is_tail) sw.sw_failaction
| Lstringswitch (lam, sw, d, _) ->
emit_tail_infos false lam;
List.iter
(fun (_,lam) -> emit_tail_infos is_tail lam)
sw ;
Option.iter (emit_tail_infos is_tail) d
| Lstaticraise (_, l) ->
list_emit_tail_infos false l
| Lstaticcatch (body, _, handler) ->
emit_tail_infos is_tail body;
emit_tail_infos is_tail handler
| Ltrywith (body, _, handler) ->
emit_tail_infos false body;
emit_tail_infos is_tail handler
| Lifthenelse (cond, ifso, ifno) ->
emit_tail_infos false cond;
emit_tail_infos is_tail ifso;
emit_tail_infos is_tail ifno
| Lsequence (lam1, lam2) ->
emit_tail_infos false lam1;
emit_tail_infos is_tail lam2
| Lwhile (cond, body) ->
emit_tail_infos false cond;
emit_tail_infos false body
| Lfor (_, low, high, _, body) ->
emit_tail_infos false low;
emit_tail_infos false high;
emit_tail_infos false body
| Lassign (_, lam) ->
emit_tail_infos false lam
| Lsend (_, meth, obj, args, _loc) ->
emit_tail_infos false meth;
emit_tail_infos false obj;
list_emit_tail_infos false args
| Levent (lam, _) ->
emit_tail_infos is_tail lam
| Lifused (_, lam) ->
emit_tail_infos is_tail lam
and list_emit_tail_infos_fun f is_tail =
List.iter (fun x -> emit_tail_infos is_tail (f x))
and list_emit_tail_infos is_tail =
List.iter (emit_tail_infos is_tail)
and emit_tail_infos_lfunction _is_tail lfun =
(* Tail call annotations are only meaningful with respect to the
current function; so entering a function resets the [is_tail] flag *)
emit_tail_infos true lfun.body
(* Split a function with default parameters into a wrapper and an
inner function. The wrapper fills in missing optional parameters
with their default value and tail-calls the inner function. The
wrapper can then hopefully be inlined on most call sites to avoid
the overhead associated with boxing an optional argument with a
'Some' constructor, only to deconstruct it immediately in the
function's body. *)
let split_default_wrapper ~id:fun_id ~kind ~params ~return ~body ~attr ~loc =
let rec aux map = function
(* When compiling [fun ?(x=expr) -> body], this is first translated
to:
[fun *opt* ->
let x =
match *opt* with
| None -> expr
| Some *sth* -> *sth*
in
body]
We want to detect the let binding to put it into the wrapper instead of
the inner function.
We need to find which optional parameter the binding corresponds to,
which is why we need a deep pattern matching on the expected result of
the pattern-matching compiler for options.
*)
| Llet(Strict, k, id,
(Lifthenelse(Lprim (Pisint, [Lvar optparam], _), _, _) as def),
rest) when
Ident.name optparam = "*opt*" && List.mem_assoc optparam params
&& not (List.mem_assoc optparam map)
->
let wrapper_body, inner = aux ((optparam, id) :: map) rest in
Llet(Strict, k, id, def, wrapper_body), inner
| _ when map = [] -> raise Exit
| body ->
(* Check that those *opt* identifiers don't appear in the remaining
body. This should not appear, but let's be on the safe side. *)
let fv = Lambda.free_variables body in
List.iter (fun (id, _) -> if Ident.Set.mem id fv then raise Exit) map;
let inner_id = Ident.create_local (Ident.name fun_id ^ "_inner") in
let map_param p = try List.assoc p map with Not_found -> p in
let args = List.map (fun (p, _) -> Lvar (map_param p)) params in
let wrapper_body =
Lapply {
ap_func = Lvar inner_id;
ap_args = args;
ap_loc = Loc_unknown;
ap_tailcall = Default_tailcall;
ap_inlined = Default_inline;
ap_specialised = Default_specialise;
}
in
let inner_params = List.map map_param (List.map fst params) in
let new_ids = List.map Ident.rename inner_params in
let subst =
List.fold_left2 (fun s id new_id ->
Ident.Map.add id new_id s
) Ident.Map.empty inner_params new_ids
in
let body = Lambda.rename subst body in
let inner_fun =
lfunction' ~kind:Curried
~params:(List.map (fun id -> id, Pgenval) new_ids)
~return ~body ~attr ~loc
in
(wrapper_body, { id = inner_id;
def = inner_fun })
in
try
let body, inner = aux [] body in
let attr = default_stub_attribute in
[{ id = fun_id;
def = lfunction' ~kind ~params ~return ~body ~attr ~loc };
inner]
with Exit ->
[{ id = fun_id;
def = lfunction' ~kind ~params ~return ~body ~attr ~loc }]
(* Simplify local let-bound functions: if all occurrences are
fully-applied function calls in the same "tail scope", replace the
function by a staticcatch handler (on that scope).
This handles as a special case functions used exactly once (in any
scope) for a full application.
*)
type slot =
{
func: lfunction;
function_scope: lambda;
mutable scope: lambda option;
}
module LamTbl = Hashtbl.Make(struct
type t = lambda
let equal = (==)
let hash = Hashtbl.hash
end)
let simplify_local_functions lam =
let slots = Hashtbl.create 16 in
let static_id = Hashtbl.create 16 in (* function id -> static id *)
let static = LamTbl.create 16 in (* scope -> static function on that scope *)
(* We keep track of the current "tail scope", identified
by the outermost lambda for which the the current lambda
is in tail position. *)
let current_scope = ref lam in
(* PR11383: We will only apply the transformation if we don't have to move
code across function boundaries *)
let current_function_scope = ref lam in
let check_static lf =
if lf.attr.local = Always_local then
Location.prerr_warning (to_location lf.loc)
(Warnings.Inlining_impossible
"This function cannot be compiled into a static continuation")
in
let enabled = function
| {local = Always_local; _}
| {local = Default_local; inline = (Never_inline | Default_inline); _}
-> true
| {local = Default_local;
inline = (Always_inline | Unroll _ | Hint_inline); _}
| {local = Never_local; _}
-> false
in
let rec tail = function
| Llet (_str, _kind, id, Lfunction lf, cont) when enabled lf.attr ->
let r =
{ func = lf;
function_scope = !current_function_scope;
scope = None }
in
Hashtbl.add slots id r;
tail cont;
begin match Hashtbl.find_opt slots id with
| Some {scope = Some scope; _} ->
let st = next_raise_count () in
let sc =
(* Do not move higher than current lambda *)
if scope == !current_scope then cont
else scope
in
Hashtbl.add static_id id st;
LamTbl.add static sc (st, lf);
(* The body of the function will become an handler
in that "scope". *)
with_scope ~scope lf.body
| _ ->
check_static lf;
(* note: if scope = None, the function is unused *)
function_definition lf
end
| Lapply {ap_func = Lvar id; ap_args; _} ->
begin match Hashtbl.find_opt slots id with
| Some {func; _}
when exact_application func ap_args = None ->
(* Wrong arity *)
Hashtbl.remove slots id
| Some {scope = Some scope; _} when scope != !current_scope ->
(* Different "tail scope" *)
Hashtbl.remove slots id
| Some {function_scope = fscope; _}
when fscope != !current_function_scope ->
(* Non local function *)
Hashtbl.remove slots id
| Some ({scope = None; _} as slot) ->
(* First use of the function: remember the current tail scope *)
slot.scope <- Some !current_scope
| _ ->
()
end;
List.iter non_tail ap_args
| Lvar id ->
Hashtbl.remove slots id
| Lfunction lf ->
check_static lf;
function_definition lf
| lam ->
Lambda.shallow_iter ~tail ~non_tail lam
and non_tail lam =
with_scope ~scope:lam lam
and function_definition lf =
let old_function_scope = !current_function_scope in
current_function_scope := lf.body;
non_tail lf.body;
current_function_scope := old_function_scope
and with_scope ~scope lam =
let old_scope = !current_scope in
current_scope := scope;
tail lam;
current_scope := old_scope
in
tail lam;
let rec rewrite lam0 =
let lam =
match lam0 with
| Llet (_, _, id, _, cont) when Hashtbl.mem static_id id ->
rewrite cont
| Lapply {ap_func = Lvar id; ap_args; _} when Hashtbl.mem static_id id ->
let st = Hashtbl.find static_id id in
let slot = Hashtbl.find slots id in
begin match exact_application slot.func ap_args with
| None -> assert false
| Some exact_args ->
Lstaticraise (st, List.map rewrite exact_args)
end
| lam ->
Lambda.shallow_map rewrite lam
in
List.fold_right
(fun (st, lf) lam ->
Lstaticcatch (lam, (st, lf.params), rewrite lf.body)
)
(LamTbl.find_all static lam0)
lam
in
if LamTbl.length static = 0 then
lam
else
rewrite lam
(* The entry point:
simplification
+ rewriting of tail-modulo-cons calls
+ emission of tailcall annotations, if needed
*)
let simplify_lambda lam =
let lam =
lam
|> (if !Clflags.native_code || not !Clflags.debug
then simplify_local_functions else Fun.id
)
|> simplify_exits
|> simplify_lets
|> Tmc.rewrite
in
if !Clflags.annotations
|| Warnings.is_active (Warnings.Wrong_tailcall_expectation true)
then emit_tail_infos true lam;
lam
|