1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Luc Maranget, projet Moscova, INRIA Rocquencourt *)
(* *)
(* Copyright 2000 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* see high-level comments in switch.mli *)
type 'a shared = Shared of 'a | Single of 'a
type ('a, 'ctx) t_store =
{act_get : unit -> 'a array ;
act_get_shared : unit -> 'a shared array ;
act_store : 'ctx -> 'a -> int ;
act_store_shared : 'ctx -> 'a -> int ; }
module type Stored = sig
type t
type key
val compare_key : key -> key -> int
val make_key : t -> key option
end
module type CtxStored = sig
include Stored
type context
val make_key : context -> t -> key option
end
module CtxStore(A:CtxStored) = struct
module AMap =
Map.Make(struct type t = A.key let compare = A.compare_key end)
type intern =
{ mutable map : (bool * int) AMap.t ;
mutable next : int ;
mutable acts : (bool * A.t) list; }
let mk_store () =
let st =
{ map = AMap.empty ;
next = 0 ;
acts = [] ; } in
let add mustshare act =
let i = st.next in
st.acts <- (mustshare,act) :: st.acts ;
st.next <- i+1 ;
i in
let store mustshare ctx act = match A.make_key ctx act with
| Some key ->
begin try
let (shared,i) = AMap.find key st.map in
if not shared then st.map <- AMap.add key (true,i) st.map ;
i
with Not_found ->
let i = add mustshare act in
st.map <- AMap.add key (mustshare,i) st.map ;
i
end
| None ->
add mustshare act
and get () = Array.of_list (List.rev_map (fun (_,act) -> act) st.acts)
and get_shared () =
let acts =
Array.of_list
(List.rev_map
(fun (shared,act) ->
if shared then Shared act else Single act)
st.acts) in
AMap.iter
(fun _ (shared,i) ->
if shared then match acts.(i) with
| Single act -> acts.(i) <- Shared act
| Shared _ -> ())
st.map ;
acts in
{act_store = store false ; act_store_shared = store true ;
act_get = get; act_get_shared = get_shared; }
end
module Store(A:Stored) = struct
module Me =
CtxStore
(struct
include A
type context = unit
let make_key () = A.make_key
end)
let mk_store = Me.mk_store
end
module type S =
sig
type primitive
val eqint : primitive
val neint : primitive
val leint : primitive
val ltint : primitive
val geint : primitive
val gtint : primitive
type loc
type arg
type test
type act
val bind : arg -> (arg -> act) -> act
val make_const : int -> arg
val make_offset : arg -> int -> arg
val make_prim : primitive -> arg list -> test
val make_isout : arg -> arg -> test
val make_isin : arg -> arg -> test
val make_is_nonzero : arg -> test
val arg_as_test : arg -> test
val make_if : test -> act -> act -> act
val make_switch : loc -> arg -> int array -> act array -> act
val make_catch : act -> int * (act -> act)
val make_exit : int -> act
end
(* The module will ``produce good code for the case statement''
Adaptation of
Robert L. Berstein
``Producing good code for the case statement''
Software Practice and Experience, 15(10) (1985)
and
Sampath Kannan and Todd A. Proebsting
``Correction to ``Producing good code for the case statement'' ''
Software Practice and Experience, 24(2) (1993)
and
David L. Spuler
``Two-Way Comparison Search Trees, a Generalisation of Binary Search Trees
and Split Trees''
``Compiler Code Generation for Multiway Branch Statement as
a Static Search Problem''
Technical Reports, James Cook University
The article of Bernstein considers how to compile C-style switches:
arrays of actions indexed over non-negative integers with some "missing"
cases that are sent to a default action.
The strategy proposed, which is followed in our implementation below,
is as follows:
1. Compute a "clustering" of the cases as a disjoint union of smaller intervals
with a high enough "density" (few default cases on the interval).
2. Generate "dense switch" code for each cluster, typically using a jump table.
3. Generate a sequence of tests for the whole switch, whose leaves
are the dense switches generated for each cluster.
Berstein believes that computing the optimal clustering
(smaller number of clusters) is NP-complete, and only proposes
a suboptimal heuristic method. Kannan and Proebsting remark that it
can be solved by a quadratic dynamic algorithm, which is also used in
our implementation.
The article of Spuler explains how to generate good test sequences
(optimal in worst-case number of tests) for a two-way tests instead
of three-way tests: traditional dichotomic search assumes that we
check at each step whether the key is (1) equal to the pivot, (2)
strictly less or (3) strictly more, but the test instructions in our
intermediate representations typically only let us test for (1)
lesser or equal or (2) strictly bigger (or: (1) strictly less, (2)
bigger or equal, which is symmetric.). Spuler proves that, even in
this two-way setting, dichotomic search generates optimal test
sequences.
The code below uses two additional ideas from Luc Maranget.
1. The code to compute an optimal sequence of tests also makes use of
an interval check (is the input in the range [m; n]), which
(as remarked by Bernstein) can be implemented efficiently as
a subtraction and an unsigned comparison. We don't know of an
efficient algorithm to compute optimal test sequences using both
comparison and interval checks, so instead:
a. on large input intervals, we use the dichotomy
b. on medium-sized input intervals, we use the best of
the dichotomy and an interval check carving out
exactly the lowest and highest cases
c. on small input intervals, we use optimal exhaustive search.
2. The works of Bernstein and Kannan-Proebsting compute clusters of
sufficient density, where density is defined naturally as the
proportion of non-default cases. Maranget instead computes density
as the height of the test sequence divided by interval size
(note that the number of non-default cases is an upperbound on the
test sequence height, as the length of the linear test sequence).
As a result, sub-intervals that can be efficiently decided by
tests get a lower density, so they are more likely to be merged
into the toplevel test sequence instead of generating a less
compact jump table.
*)
module Make (Arg : S) =
struct
(* A representation of switches over intervals rather than discrete
values the [cases] array stores triples [(low, high, act)], where
[low] is the lowest input value of the interval, [high] is the
highest input value, and [act] is an index into the [actions]
array.
(There can be substantially less actions than intervals if many
actions are shared.)
*)
type 'a inter = {
cases : (int * int * int) array ;
actions : 'a array
}
let small_size_limit = 8
and medium_size_limit = 16
(*
let pint chan i =
if i = min_int then Printf.fprintf chan "-oo"
else if i=max_int then Printf.fprintf chan "oo"
else Printf.fprintf chan "%d" i
let pcases chan cases =
for i =0 to Array.length cases-1 do
let l,h,act = cases.(i) in
if l=h then
Printf.fprintf chan "%d:%d " l act
else
Printf.fprintf chan "%a..%a:%d " pint l pint h act
done
let prerr_inter i = Printf.fprintf stderr
"cases=%a" pcases i.cases
*)
let get_act cases i =
let _,_,r = cases.(i) in
r
and get_low cases i =
let r,_,_ = cases.(i) in
r
and get_high cases i =
let _,r,_ = cases.(i) in
r
(* a "cost" as a number of tests in the worst case;
[n] is the total number of tests
[ni] is the number of interval tests
If two choices have the same total number of tests, we will prefer
the one with less interval tests as they cost slightly more.
*)
type ctests = {
mutable n : int ;
mutable ni : int ;
}
let too_much = {n=max_int ; ni=max_int}
(*
let ptests chan {n=n ; ni=ni} =
Printf.fprintf chan "{n=%d ; ni=%d}" n ni
let pta chan t =
for i =0 to Array.length t-1 do
Printf.fprintf chan "%d: %a\n" i ptests t.(i)
done
*)
let less_tests c1 c2 =
if c1.n < c2.n then
true
else if c1.n = c2.n then begin
if c1.ni < c2.ni then
true
else
false
end else
false
and eq_tests c1 c2 = c1.n = c2.n && c1.ni=c2.ni
let less2tests (c1,d1) (c2,d2) =
if eq_tests c1 c2 then
less_tests d1 d2
else
less_tests c1 c2
let add_test t1 t2 =
t1.n <- t1.n + t2.n ;
t1.ni <- t1.ni + t2.ni ;
(* Represents tests in a test sequence
[Inter (low, high)] is an interval test
[Sep bound] is [fun x -> x < bound]
[No] is when no tests are necessary. *)
type t_ret = Inter of int * int | Sep of int | No
(*
let pret chan = function
| Inter (i,j)-> Printf.fprintf chan "Inter %d %d" i j
| Sep i -> Printf.fprintf chan "Sep %d" i
| No -> Printf.fprintf chan "No"
*)
let coupe cases i =
let l,_,_ = cases.(i) in
l,
Array.sub cases 0 i,
Array.sub cases i (Array.length cases-i)
let case_append c1 c2 =
let len1 = Array.length c1
and len2 = Array.length c2 in
match len1,len2 with
| 0,_ -> c2
| _,0 -> c1
| _,_ ->
let l1,h1,act1 = c1.(Array.length c1-1)
and l2,h2,act2 = c2.(0) in
if act1 = act2 then
let r = Array.make (len1+len2-1) c1.(0) in
for i = 0 to len1-2 do
r.(i) <- c1.(i)
done ;
let l =
if len1 < 2 then l1
else begin (* 0 <= len1 - 2 < len1 *)
let _,h,_ = r.(len1-2) in
min (h + 1) l1
end
and h =
if len2 < 2 then h2
else begin (* 0 <= 1 < len2 *)
let l,_,_ = c2.(1) in
max h2 (l - 1)
end
in
r.(len1-1) <- (l,h,act1) ;
for i=1 to len2-1 do
r.(len1-1+i) <- c2.(i)
done ;
r
else if h1 > l1 then
let r = Array.make (len1+len2) c1.(0) in
for i = 0 to len1-2 do
r.(i) <- c1.(i)
done ;
r.(len1-1) <- (l1,l2-1,act1) ;
for i=0 to len2-1 do
r.(len1+i) <- c2.(i)
done ;
r
else if h2 > l2 then
let r = Array.make (len1+len2) c1.(0) in
for i = 0 to len1-1 do
r.(i) <- c1.(i)
done ;
r.(len1) <- (h1+1,h2,act2) ;
for i=1 to len2-1 do
r.(len1+i) <- c2.(i)
done ;
r
else
Array.append c1 c2
let coupe_inter i j cases =
let lcases = Array.length cases in
let low,_,_ = cases.(i)
and _,high,_ = cases.(j) in
low,high,
Array.sub cases i (j-i+1),
case_append (Array.sub cases 0 i) (Array.sub cases (j+1) (lcases-(j+1)))
type kind = Kvalue of int | Kinter of int | Kempty
(*
let pkind chan = function
| Kvalue i ->Printf.fprintf chan "V%d" i
| Kinter i -> Printf.fprintf chan "I%d" i
| Kempty -> Printf.fprintf chan "E"
let rec pkey chan = function
| [] -> ()
| [k] -> pkind chan k
| k::rem ->
Printf.fprintf chan "%a %a" pkey rem pkind k
*)
let t = Hashtbl.create 17
let make_key cases =
let seen = ref []
and count = ref 0 in
let rec got_it act = function
| [] ->
seen := (act,!count):: !seen ;
let r = !count in
incr count ;
r
| (act0,index) :: rem ->
if act0 = act then
index
else
got_it act rem in
let make_one l h act =
if l=h then
Kvalue (got_it act !seen)
else
Kinter (got_it act !seen) in
let rec make_rec i pl =
if i < 0 then
[]
else
let l,h,act = cases.(i) in
if pl = h+1 then
make_one l h act::make_rec (i-1) l
else
Kempty::make_one l h act::make_rec (i-1) l in
let l,h,act = cases.(Array.length cases-1) in
make_one l h act::make_rec (Array.length cases-2) l
let same_act t =
let len = Array.length t in
let a = get_act t (len-1) in
let rec do_rec i =
if i < 0 then true
else
let b = get_act t i in
b=a && do_rec (i-1) in
do_rec (len-2)
(*
Interval test x in [l,h] works by checking x-l in [0,h-l]
* This may be false for arithmetic modulo 2^31
* Subtracting l may change the relative ordering of values
and invalid the invariant that matched values are given in
increasing order
To avoid this, interval check is allowed only when the
integers indeed present in the whole case interval are
in [-2^16 ; 2^16]
This condition is checked by zyva
*)
let inter_limit = 1 lsl 16
let ok_inter = ref false
(* Compute a good test sequence. *)
let rec opt_count cases =
let key = make_key cases in
try
Hashtbl.find t key
with
| Not_found ->
let r =
let lcases = Array.length cases in
match lcases with
| 0 -> assert false
| _ when same_act cases -> No, ({n=0; ni=0},{n=0; ni=0})
| _ ->
if lcases < small_size_limit then
enum cases
else if lcases < medium_size_limit then
heuristic cases
else
divide cases in
Hashtbl.add t key r ;
r
(* Large inputs: dichotomic sequence. *)
and divide cases =
let lcases = Array.length cases in
let m = lcases/2 in
let _,left,right = coupe cases m in
let ci = {n=1 ; ni=0}
and cm = {n=1 ; ni=0}
and _,(cml,cleft) = opt_count left
and _,(cmr,cright) = opt_count right in
add_test ci cleft ;
add_test ci cright ;
(* To compute a worst-case cost, we add the more costly of the
left/right branches to the running total. *)
if less_tests cml cmr then
add_test cm cmr
else
add_test cm cml ;
Sep m,(cm, ci)
(* Medium-size inputs: dichotomy or interval tests. *)
and heuristic cases =
let lcases = Array.length cases in
let sep,csep = divide cases
and inter,cinter =
if !ok_inter then begin
let _,_,act0 = cases.(0)
and _,_,act1 = cases.(lcases-1) in
if act0 = act1 then begin
let low, high, inside, outside = coupe_inter 1 (lcases-2) cases in
let _,(cmi,cinside) = opt_count inside
and _,(cmo,coutside) = opt_count outside
and cmij = {n=1 ; ni=(if low=high then 0 else 1)}
and cij = {n=1 ; ni=(if low=high then 0 else 1)} in
add_test cij cinside ;
add_test cij coutside ;
if less_tests cmi cmo then
add_test cmij cmo
else
add_test cmij cmi ;
Inter (1,lcases-2),(cmij,cij)
end else
Inter (-1,-1),(too_much, too_much)
end else
Inter (-1,-1),(too_much, too_much) in
if less2tests csep cinter then
sep,csep
else
inter,cinter
(* Small inputs: exhaustive search for optimal sequence. *)
and enum cases =
let lcases = Array.length cases in
let lim, with_sep =
let best = ref (-1) and best_cost = ref (too_much,too_much) in
for i = 1 to lcases-(1) do
let _,left,right = coupe cases i in
let ci = {n=1 ; ni=0}
and cm = {n=1 ; ni=0}
and _,(cml,cleft) = opt_count left
and _,(cmr,cright) = opt_count right in
add_test ci cleft ;
add_test ci cright ;
if less_tests cml cmr then
add_test cm cmr
else
add_test cm cml ;
if
less2tests (cm,ci) !best_cost
then begin
best := i ;
best_cost := (cm,ci)
end
done ;
!best, !best_cost in
let ilow, ihigh, with_inter =
if not !ok_inter then
let rlow = ref (-1) and rhigh = ref (-1)
and best_cost= ref (too_much,too_much) in
for i=1 to lcases-2 do
let low, high, inside, outside = coupe_inter i i cases in
if low=high then begin
let _,(cmi,cinside) = opt_count inside
and _,(cmo,coutside) = opt_count outside
and cmij = {n=1 ; ni=0}
and cij = {n=1 ; ni=0} in
add_test cij cinside ;
add_test cij coutside ;
if less_tests cmi cmo then
add_test cmij cmo
else
add_test cmij cmi ;
if less2tests (cmij,cij) !best_cost then begin
rlow := i ;
rhigh := i ;
best_cost := (cmij,cij)
end
end
done ;
!rlow, !rhigh, !best_cost
else
let rlow = ref (-1) and rhigh = ref (-1)
and best_cost= ref (too_much,too_much) in
for i=1 to lcases-2 do
for j=i to lcases-2 do
let low, high, inside, outside = coupe_inter i j cases in
let _,(cmi,cinside) = opt_count inside
and _,(cmo,coutside) = opt_count outside
and cmij = {n=1 ; ni=(if low=high then 0 else 1)}
and cij = {n=1 ; ni=(if low=high then 0 else 1)} in
add_test cij cinside ;
add_test cij coutside ;
if less_tests cmi cmo then
add_test cmij cmo
else
add_test cmij cmi ;
if less2tests (cmij,cij) !best_cost then begin
rlow := i ;
rhigh := j ;
best_cost := (cmij,cij)
end
done
done ;
!rlow, !rhigh, !best_cost in
let r = ref (Inter (ilow,ihigh)) and rc = ref with_inter in
if less2tests with_sep !rc then begin
r := Sep lim ; rc := with_sep
end ;
!r, !rc
(* Consider the following sequence of interval tests:
if a in [2; 10] then
if a in [2; 4] then act24
else if a in [5; 8] then act58
else act810
else act_default
Our interval check works by subtracting the interval lower
bound, then checking a range [0; n] using an unsigned
comparison. Naively we would generate code with one subtraction
to [a] before each comparison:
let tmp1 = a - 2 in
if tmp1 <=u 8 then
let tmp2 = a - 2 in
if tmp2 <=u 2 then act24
else
let tmp3 = a - 5 in
if tmp3 <=u 3 then act58
else act810
else act_default
but we can avoid some substractions by working with the result
of the first subtraction, instead of the original index [a],
inside the interval.
let a2 = a - 2 in
if a2 <=u 8 then
if a2 in <=u 2 then act24
else
let a5 = a2 - 3 in
if a5 <=u 3 then act58
else act810
else act_default
The type [t_ctx] represents an input argument "shifted" by a certain
(negative) offset by repeated substractions.
In the example above, [a5] would be represented with [off = -5].
*)
type 'a t_ctx = {off : int ; arg : 'a}
let make_if_test test arg i ifso ifnot =
Arg.make_if
(Arg.make_prim test [arg ; Arg.make_const i])
ifso ifnot
let make_if_lt arg i ifso ifnot = match i with
| 1 ->
make_if_test Arg.leint arg 0 ifso ifnot
| _ ->
make_if_test Arg.ltint arg i ifso ifnot
and make_if_ge arg i ifso ifnot = match i with
| 1 ->
make_if_test Arg.gtint arg 0 ifso ifnot
| _ ->
make_if_test Arg.geint arg i ifso ifnot
and make_if_eq arg i ifso ifnot =
make_if_test Arg.eqint arg i ifso ifnot
and make_if_ne arg i ifso ifnot =
make_if_test Arg.neint arg i ifso ifnot
let make_if_nonzero arg ifso ifnot =
Arg.make_if (Arg.make_is_nonzero arg) ifso ifnot
let make_if_bool arg ifso ifnot =
Arg.make_if (Arg.arg_as_test arg) ifso ifnot
let do_make_if_out h arg ifso ifno =
Arg.make_if (Arg.make_isout h arg) ifso ifno
let make_if_out ctx l d mk_ifso mk_ifno = match l with
| 0 ->
do_make_if_out
(Arg.make_const d) ctx.arg (mk_ifso ctx) (mk_ifno ctx)
| _ ->
Arg.bind
(Arg.make_offset ctx.arg (-l))
(fun arg ->
let ctx = {off= (-l+ctx.off) ; arg=arg} in
do_make_if_out
(Arg.make_const d) arg (mk_ifso ctx) (mk_ifno ctx))
let do_make_if_in h arg ifso ifno =
Arg.make_if (Arg.make_isin h arg) ifso ifno
let make_if_in ctx l d mk_ifso mk_ifno = match l with
| 0 ->
do_make_if_in
(Arg.make_const d) ctx.arg (mk_ifso ctx) (mk_ifno ctx)
| _ ->
Arg.bind
(Arg.make_offset ctx.arg (-l))
(fun arg ->
let ctx = {off= (-l+ctx.off) ; arg=arg} in
do_make_if_in
(Arg.make_const d) arg (mk_ifso ctx) (mk_ifno ctx))
(* Generate the code for a good test sequence. *)
let rec c_test ctx ({cases=cases ; actions=actions} as s) =
let lcases = Array.length cases in
assert(lcases > 0) ;
if lcases = 1 then
actions.(get_act cases 0) ctx
else begin
let w,_c = opt_count cases in
(*
Printf.fprintf stderr
"off=%d tactic=%a for %a\n"
ctx.off pret w pcases cases ;
*)
match w with
| No -> actions.(get_act cases 0) ctx
| Inter (i,j) ->
let low,high,inside, outside = coupe_inter i j cases in
let _,(cinside,_) = opt_count inside
and _,(coutside,_) = opt_count outside in
(* Costs are retrieved to put the code with more remaining tests
in the privileged (positive) branch of ``if'' *)
if low=high then begin
if less_tests coutside cinside then
make_if_eq
ctx.arg
(low+ctx.off)
(c_test ctx {s with cases=inside})
(c_test ctx {s with cases=outside})
else
make_if_ne
ctx.arg
(low+ctx.off)
(c_test ctx {s with cases=outside})
(c_test ctx {s with cases=inside})
end else begin
if less_tests coutside cinside then
make_if_in
ctx
(low+ctx.off)
(high-low)
(fun ctx -> c_test ctx {s with cases=inside})
(fun ctx -> c_test ctx {s with cases=outside})
else
make_if_out
ctx
(low+ctx.off)
(high-low)
(fun ctx -> c_test ctx {s with cases=outside})
(fun ctx -> c_test ctx {s with cases=inside})
end
| Sep i ->
let lim,left,right = coupe cases i in
let _,(cleft,_) = opt_count left
and _,(cright,_) = opt_count right in
let left = {s with cases=left}
and right = {s with cases=right} in
if i=1 && (lim+ctx.off)=1 && get_low cases 0+ctx.off=0 then
if lcases = 2 && get_high cases 1+ctx.off = 1 then
make_if_bool
ctx.arg
(c_test ctx right) (c_test ctx left)
else
make_if_nonzero
ctx.arg
(c_test ctx right) (c_test ctx left)
else if less_tests cright cleft then
make_if_lt
ctx.arg (lim+ctx.off)
(c_test ctx left) (c_test ctx right)
else
make_if_ge
ctx.arg (lim+ctx.off)
(c_test ctx right) (c_test ctx left)
end
(* Minimal density of dense switches. *)
let theta = 0.33333
(* Minimal number of tests to make a dense switch. *)
let switch_min = 3
(* Particular case 0, 1, 2. *)
let particular_case cases i j =
j-i = 2 &&
(let l1,_h1,act1 = cases.(i)
and l2,_h2,_act2 = cases.(i+1)
and l3,h3,act3 = cases.(i+2) in
l1+1=l2 && l2+1=l3 && l3=h3 &&
act1 <> act3)
(* Approximation of the test sequence height,
used to determine cluster density. *)
let approx_count cases i j =
let l = j-i+1 in
if l < small_size_limit then
(* on small input intervals, use test sequence height *)
let _,(_,{n=ntests}) = opt_count (Array.sub cases i l) in
ntests
else
(* otherwise use the standard notion of density
(number of non-default cases) *)
l-1
(* Sends back a boolean that says whether it is worth making a jump table. *)
let dense {cases} i j =
if i=j then true
else
let l,_,_ = cases.(i)
and _,h,_ = cases.(j) in
let ntests = approx_count cases i j in
(*
(ntests+1) >= theta * (h-l+1)
*)
particular_case cases i j ||
((* The switch_min test guarantees that we don't use jump tables
for very small switches. *)
ntests >= switch_min &&
float_of_int ntests +. 1.0 >=
theta *. (float_of_int h -. float_of_int l +. 1.0))
(* Compute an optimal clustering by dynamic programming. *)
let comp_clusters s =
let len = Array.length s.cases in
let min_clusters = Array.make len max_int
and k = Array.make len 0 in
let get_min i = if i < 0 then 0 else min_clusters.(i) in
for i = 0 to len-1 do
for j = 0 to i do
if
dense s j i &&
get_min (j-1) + 1 < min_clusters.(i)
then begin
k.(i) <- j ;
min_clusters.(i) <- get_min (j-1) + 1
end
done ;
done ;
min_clusters.(len-1),k
(* The code to generate a dense switch is provided
by the functor parameter as Arg.make_switch
(which will typically use a jump table) *)
let make_switch loc {cases=cases ; actions=actions} i j =
(* Assume j > i *)
let ll,_,_ = cases.(i)
and _,hh,_ = cases.(j) in
let tbl = Array.make (hh-ll+1) 0
and t = Hashtbl.create 17
and index = ref 0 in
let get_index act =
try
Hashtbl.find t act
with
| Not_found ->
let i = !index in
incr index ;
Hashtbl.add t act i ;
i in
for k=i to j do
let l,h,act = cases.(k) in
let index = get_index act in
for kk=l-ll to h-ll do
tbl.(kk) <- index
done
done ;
let acts = Array.make !index actions.(0) in
Hashtbl.iter
(fun act i -> acts.(i) <- actions.(act))
t ;
(fun ctx ->
match -ll-ctx.off with
| 0 -> Arg.make_switch loc ctx.arg tbl acts
| _ ->
Arg.bind
(Arg.make_offset ctx.arg (-ll-ctx.off))
(fun arg -> Arg.make_switch loc arg tbl acts))
(* Generate code from a clustering choice. *)
let make_clusters loc ({cases=cases ; actions=actions} as s) n_clusters k =
let len = Array.length cases in
let r = Array.make n_clusters (0,0,0)
and t = Hashtbl.create 17
and index = ref 0
and bidon = ref (Array.length actions) in
let get_index act =
try
let i,_ = Hashtbl.find t act in
i
with
| Not_found ->
let i = !index in
incr index ;
Hashtbl.add
t act
(i,(fun _ -> actions.(act))) ;
i
and add_index act =
let i = !index in
incr index ;
incr bidon ;
Hashtbl.add t !bidon (i,act) ;
i in
let rec zyva j ir =
let i = k.(j) in
begin if i=j then
let l,h,act = cases.(i) in
r.(ir) <- (l,h,get_index act)
else (* assert i < j *)
let l,_,_ = cases.(i)
and _,h,_ = cases.(j) in
r.(ir) <- (l,h,add_index (make_switch loc s i j))
end ;
if i > 0 then zyva (i-1) (ir-1) in
zyva (len-1) (n_clusters-1) ;
let acts = Array.make !index (fun _ -> assert false) in
Hashtbl.iter (fun _ (i,act) -> acts.(i) <- act) t ;
{cases = r ; actions = acts}
let do_zyva loc (low,high) arg cases actions =
let old_ok = !ok_inter in
ok_inter := (abs low <= inter_limit && abs high <= inter_limit) ;
if !ok_inter <> old_ok then Hashtbl.clear t ;
let s = {cases=cases ; actions=actions} in
(*
Printf.eprintf "ZYVA: %B [low=%i,high=%i]\n" !ok_inter low high ;
pcases stderr cases ;
prerr_endline "" ;
*)
let n_clusters,k = comp_clusters s in
let clusters = make_clusters loc s n_clusters k in
c_test {arg=arg ; off=0} clusters
let abstract_shared actions =
let handlers = ref (fun x -> x) in
let actions =
Array.map
(fun act -> match act with
| Single act -> act
| Shared act ->
let i,h = Arg.make_catch act in
let oh = !handlers in
handlers := (fun act -> h (oh act)) ;
Arg.make_exit i)
actions in
!handlers,actions
(* Standard entry point. *)
let zyva loc lh arg cases actions =
assert (Array.length cases > 0) ;
let actions = actions.act_get_shared () in
let hs,actions = abstract_shared actions in
hs (do_zyva loc lh arg cases actions)
(* Generate code using test sequences only, not Arg.make_switch *)
and test_sequence arg cases actions =
assert (Array.length cases > 0) ;
let actions = actions.act_get_shared () in
let hs,actions = abstract_shared actions in
let old_ok = !ok_inter in
ok_inter := false ;
if !ok_inter <> old_ok then Hashtbl.clear t ;
let s =
{cases=cases ;
actions=Array.map (fun act -> (fun _ -> act)) actions} in
(*
Printf.eprintf "SEQUENCE: %B\n" !ok_inter ;
pcases stderr cases ;
prerr_endline "" ;
*)
hs (c_test {arg=arg ; off=0} s)
end
|