1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Frédéric Bour *)
(* Gabriel Scherer, projet Partout, INRIA Saclay *)
(* Basile Clément, projet Cambium, INRIA Paris *)
(* *)
(* Copyright 2020 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
open Lambda
(* Error-reporting information for ambiguous TMC calls *)
type tmc_call_information = {
loc: scoped_location;
explicit: bool;
}
type subterm_information = {
tmc_calls: tmc_call_information list;
}
type ambiguous_arguments = {
explicit: bool;
(** When [explicit = true], we have an ambiguity between
arguments containing calls that have been explicitly
marked [@tailcall]. Otherwise we have an ambiguity
between un-annotated calls. *)
arguments: subterm_information list;
}
type error =
| Ambiguous_constructor_arguments of ambiguous_arguments
exception Error of Location.t * error
type 'offset destination = {
var: Ident.t;
offset: 'offset;
loc : Debuginfo.Scoped_location.t;
}
and offset = Offset of lambda
(** In the OCaml value model, interior pointers are not allowed. To
represent the "placeholder to mutate" in DPS code, we thus use a pair
of the block containing the placeholder, and the offset of the
placeholder within the block.
In the common case, this offset is an arbitrary lambda expression, typically
a constant integer or a variable. We define ['a destination] as parametrized
over the offset type to represent formal destination parameters (where
the offset is an Ident.t), and maybe in the future statically-known
offsets (where the offset is an integer).
*)
let offset_code (Offset t) = t
let add_dst_params ({var; offset} : Ident.t destination) params =
(var, Pgenval) :: (offset, Pintval) :: params
let add_dst_args ({var; offset} : offset destination) args =
Lvar var :: offset_code offset :: args
let assign_to_dst {var; offset; loc} lam =
Lprim(Psetfield_computed(Pointer, Heap_initialization),
[Lvar var; offset_code offset; lam], loc)
module Constr : sig
(** The type [Constr.t] represents a reified constructor with
a single hole, which can be either directly applied to a [lambda]
term, or be used to create a fresh [lambda destination] with
a placeholder. *)
type t = {
tag : int;
flag: Asttypes.mutable_flag;
shape : block_shape;
before: lambda list;
after: lambda list;
loc : Debuginfo.Scoped_location.t;
}
(** [apply constr e] plugs the expression [e] in the hole of the
constructor [const]. *)
val apply : t -> lambda -> lambda
(** [with_placeholder constr body] binds a placeholder
for the constructor [constr] within the scope of [body]. *)
val with_placeholder : t -> (offset destination -> lambda) -> lambda
(** We may want to delay the application of a constructor to a later
time. This may move the constructor application below some
effectful expressions (for example if we move into a context of
the form [foo; bar_with_tmc_inside]), and we want to preserve
the evaluation order of the other arguments of the
constructor. So we bind them before proceeding, unless they are
obviously side-effect free.
[delay_impure ~block_id constr body] binds all inpure arguments
of the constructor [constr] within the scope of [body], which is
passed a pure constructor.
[block_id] is a counter that is used as a suffix in the generated
variable names, for readability purposes. *)
val delay_impure : block_id:int -> t -> (t -> lambda) -> lambda
end = struct
type t = {
tag : int;
flag: Asttypes.mutable_flag;
shape : block_shape;
before: lambda list;
after: lambda list;
loc : Debuginfo.Scoped_location.t;
}
let apply constr t =
let block_args = List.append constr.before @@ t :: constr.after in
Lprim (Pmakeblock (constr.tag, constr.flag, constr.shape),
block_args, constr.loc)
let tmc_placeholder =
(* we choose a placeholder whose tagged representation will be
reconizable. *)
Lambda.dummy_constant
let with_placeholder constr (body : offset destination -> lambda) =
let k_with_placeholder =
apply { constr with flag = Mutable } tmc_placeholder in
let placeholder_pos = List.length constr.before in
let placeholder_pos_lam = Lconst (Const_base (Const_int placeholder_pos)) in
let block_var = Ident.create_local "block" in
Llet (Strict, Pgenval, block_var, k_with_placeholder,
body {
var = block_var;
offset = Offset placeholder_pos_lam ;
loc = constr.loc;
})
let delay_impure : block_id:int -> t -> (t -> lambda) -> lambda =
let bind_list ~block_id ~arg_offset lambdas k =
let can_be_delayed =
(* Note that the delayed subterms will be used
exactly once in the linear-static subterm. So
we are happy to delay constants, which we would
not want to duplicate. *)
function
| Lvar _ | Lconst _ -> true
| _ -> false in
let bindings, args =
lambdas
|> List.mapi (fun i lam ->
if can_be_delayed lam then (None, lam)
else begin
let v = Ident.create_local
(Printf.sprintf "block%d_arg%d" block_id (arg_offset + i)) in
(Some (v, lam), Lvar v)
end)
|> List.split in
let body = k args in
List.fold_right (fun binding body ->
match binding with
| None -> body
| Some (v, lam) -> Llet(Strict, Pgenval, v, lam, body)
) bindings body in
fun ~block_id constr body ->
bind_list ~block_id ~arg_offset:0 constr.before @@ fun vbefore ->
let arg_offset = List.length constr.before + 1 in
bind_list ~block_id ~arg_offset constr.after @@ fun vafter ->
body { constr with before = vbefore; after = vafter }
end
(** The type ['a Dps.t] (destination-passing-style) represents a
version of ['a] that is parametrized over a [lambda destination].
A [lambda Dps.t] is a code fragment in destination-passing-style,
a [(lambda * lambda) Dps.t] represents two subterms parametrized
over the same destination. *)
module Dps : sig
type 'a dps = tail:bool -> dst:offset destination -> 'a
(** A term parameterized over a destination. The [tail] argument
is passed by the caller to indicate whether the term will be placed
in tail-position -- this allows to generate correct @tailcall
annotations. *)
type 'a t
val make : lambda dps -> lambda t
val run : lambda t -> lambda dps
val delay_constructor : Constr.t -> lambda t -> lambda t
val lambda : lambda -> lambda t
val map : ('a -> 'b) -> 'a t -> 'b t
val pair : 'a t -> 'b t -> ('a * 'b) t
val unit : unit t
end = struct
type 'a dps = tail:bool -> dst:offset destination -> 'a
type 'a t = {
code : delayed:Constr.t list -> 'a dps;
delayed_use_count : int;
}
(** We want to optimize nested constructors, for example:
{[
(x () :: y () :: tmc call)
]}
which would naively generate (in a DPS context parametrized
over a location dst.i):
{[
let dstx = x () :: Placeholder in
dst.i <- dstx;
let dsty = y () :: Placeholder in
dstx.1 <- dsty;
tmc dsty.1 call
]}
when we would rather hope for
{[
let vx = x () in
let dsty = y () :: Placeholder in
dst.i <- vx :: dsty;
tmc dsty.1 call
]}
The idea is that the unoptimized version first creates a
destination site [dstx], which is then used by the following
code. If we keep track of the current destination:
{[
(* Destination is [dst.i] *)
let dstx = x () :: Placeholder in
dst.i (* Destination *) <- dstx;
(* Destination is [dstx.1] *)
let dsty = y () :: Placeholder in
dstx.1 (* Destination *) <- dsty;
(* Destination is [dsty.1] *)
tmc dsty.1 call
]}
Instead of binding the whole newly-created destination, we can
simply let-bind the non-placeholder arguments (in order to
preserve execution order), and keep track of a list of blocks to
be created along with the current destination. Instead of seeing
a DPS fragment as writing to a destination, we see it as a term
with shape [dst.i <- C .] where [C .] is a linear context consisting
only of constructor applications.
{[
(* Destination is [dst.i <- C .] *)
let vx = x () in
(* Destination is [dst.i <- C (vx :: .)] *)
let vy = y () in
(* Destination is [dst.i <- C (vx :: vy :: .)] *)
(* Making a call: reify the destination *)
let dsty = vy :: Placeholder in
dst.i <- vx :: dsty;
tmc dsty.1 call
]}
The [delayed] argument represents the context [C] as a list of
reified constructors, to allow both to build the final holey
block ([vy :: Placeholder]) at the recursive call site, and
the delayed constructor applications ([vx :: dsty]).
In practice, it is not desirable to perform this simplification
when there are multiple TMC calls (e.g. in different branches of
an [if] block), because it would cause duplication of the nested
constructor applications. The [delayed_use_count] field keeps track
of this information, it counts the number of syntactic use sites
of the delayed constructors, if any, in the generated code.
*)
let write_to_dst dst delayed t =
assign_to_dst dst @@
List.fold_left (fun t constr -> Constr.apply constr t) t delayed
let lambda (v : lambda) : lambda t = {
code = (fun ~delayed ~tail:_ ~dst ->
write_to_dst dst delayed v
);
delayed_use_count = 1;
}
(** Create a new destination-passing-style term which is simply
setting the destination with the given [v], hence "returning"
it.
*)
let unit : unit t = {
code = (fun ~delayed:_ ~tail:_ ~dst:_ ->
()
);
delayed_use_count = 0;
}
let map (f : 'a -> 'b) (d : 'a t) : 'b t = {
code = (fun ~delayed ~tail ~dst ->
f @@ d.code ~delayed ~tail ~dst);
delayed_use_count = d.delayed_use_count;
}
let pair (da : 'a t) (db : 'b t) : ('a * 'b) t = {
code = (fun ~delayed ~tail ~dst ->
(da.code ~delayed ~tail ~dst, db.code ~delayed ~tail ~dst));
delayed_use_count =
da.delayed_use_count + db.delayed_use_count;
}
let run (d : 'a t) : 'a dps =
fun ~tail ~dst ->
d.code ~tail ~dst ~delayed:[]
let reify_delay (dps : lambda dps) : lambda t = {
code = (fun ~delayed ~tail ~dst ->
match delayed with
| [] -> dps ~tail ~dst
| x :: xs ->
Constr.with_placeholder x @@ fun new_dst ->
Lsequence (
write_to_dst dst xs (Lvar new_dst.var),
dps ~tail ~dst:new_dst)
);
delayed_use_count = 1;
}
let ensures_affine (d : lambda t) : lambda t =
if d.delayed_use_count <= 1 then
d
else
reify_delay (run d)
(** Ensures that the resulting term does not duplicate delayed
constructors by reifying them now if needed.
*)
let make (dps : 'a dps) : 'a t =
reify_delay dps
let delay_constructor constr d =
let d = ensures_affine d in {
code = (fun ~delayed ~tail ~dst ->
let block_id = List.length delayed in
Constr.delay_impure ~block_id constr @@ fun constr ->
d.code ~tail ~dst ~delayed:(constr :: delayed));
delayed_use_count = d.delayed_use_count;
}
end
(** The TMC transformation requires information flows in two opposite
directions: the information of which callsites can be rewritten in
destination-passing-style flows from the leaves of the code to the
root, and the information on whether we remain in tail-position
flows from the root to the leaves -- and also the knowledge of
which version of the function we currently want to generate, the
direct version or a destination-passing-style version.
To clarify this double flow of information, we split the TMC
transform in two steps:
1. A function [choice t] that takes a term and processes it from
leaves to root; it produces a "code choice", a piece of data of
type [lambda Choice.t], that contains information on how to transform the
input term [t] *parameterized* over the (still missing) contextual
information.
2. Code-production operators that have contextual information
to transform a "code choice" into the final code.
The code-production choices for a single term have type [lambda Choice.t];
using a parametrized type ['a Choice.t] is useful to represent
simultaneous choices over several subterms; for example
[(lambda * lambda) Choice.t] makes a choice for a pair of terms,
for example the [then] and [else] cases of a conditional. With
this parameter, ['a Choice.t] has an applicative structure, which
is useful to write the actual code transformation in the {!choice}
function.
*)
module Choice = struct
type 'a t = {
dps : 'a Dps.t;
direct : unit -> 'a;
tmc_calls : tmc_call_information list;
benefits_from_dps: bool;
explicit_tailcall_request: bool;
}
(**
An ['a Choice.t] represents code that may be written
in destination-passing style if its usage context allows it.
More precisely:
- If the surrounding context is already in destination-passing
style, it has a destination available, we should produce the
code in [dps] -- a function parametrized over the destination.
- If the surrounding context is in direct style (no destination
is available), we should produce the fallback code from
[direct].
(Note: [direct] is also a function (on [unit]) to ensure that any
effects performed during code production will only happen once we
do know that we want to produce the direct-style code.)
- [tmc_calls] tracks the function calls in the subterms that are
in tail-modulo-cons position and get rewritten into tailcalls
in the [dps] version.
- [benefits_from_dps] is true when the [dps] calls strictly more
TMC functions than the [direct] version. See the
{!choice_makeblock} case.
- [explicit_tailcall_request] is true when the user
used a [@tailcall] annotation on the optimizable callsite.
When one of several calls could be optimized, we expect that
exactly one of them will be annotated by the user, or fail
because the situation is ambiguous.
*)
let lambda (v : lambda) : lambda t = {
dps = Dps.lambda v;
direct = (fun () -> v);
tmc_calls = [];
benefits_from_dps = false;
explicit_tailcall_request = false;
}
let map f s = {
dps = Dps.map f s.dps;
direct = (fun () -> f (s.direct ()));
tmc_calls = s.tmc_calls;
benefits_from_dps = s.benefits_from_dps;
explicit_tailcall_request = s.explicit_tailcall_request;
}
(** Apply function [f] to the transformed term. *)
let direct (c : 'a t) : 'a =
c.direct ()
let dps (c : lambda t) ~tail ~dst =
Dps.run c.dps ~tail ~dst
let pair ((c1, c2) : 'a t * 'b t) : ('a * 'b) t = {
dps = Dps.pair c1.dps c2.dps;
direct = (fun () -> (c1.direct (), c2.direct ()));
tmc_calls =
c1.tmc_calls @ c2.tmc_calls;
benefits_from_dps =
c1.benefits_from_dps || c2.benefits_from_dps;
explicit_tailcall_request =
c1.explicit_tailcall_request || c2.explicit_tailcall_request;
}
let unit = {
dps = Dps.unit;
direct = (fun () -> ());
tmc_calls = [];
benefits_from_dps = false;
explicit_tailcall_request = false;
}
(* Remark: we could define [pure v] as [map (fun () -> v) unit],
but we prefer to have the code explicit about using [unit],
in particular as it ignores the destination argument. *)
module Syntax = struct
let (let+) a f = map f a
let (and+) a1 a2 = pair (a1, a2)
end
open Syntax
let option (c : 'a t option) : 'a option t =
match c with
| None -> let+ () = unit in None
| Some c -> let+ v = c in Some v
let rec list (c : 'a t list) : 'a list t =
match c with
| [] -> let+ () = unit in []
| c :: cs ->
let+ v = c
and+ vs = list cs
in v :: vs
(** The [find_*] machinery is used to locate a single subterm to
optimize among a list of subterms. If there are several possible
choices, we require that exactly one of them be annotated with
[@tailcall], or we report an ambiguity. *)
type 'a tmc_call_search =
| No_tmc_call of 'a list
| Nonambiguous of 'a zipper
| Ambiguous of { explicit: bool; subterms: 'a t list; }
and 'a zipper = {
rev_before : 'a list;
choice : 'a t;
after: 'a list
}
let find_nonambiguous_tmc_call choices =
let has_tmc_calls c = c.tmc_calls <> [] in
let is_explicit s = s.explicit_tailcall_request in
let nonambiguous ~only_explicit_calls choices =
(* here is how we will compute the result once we know that there
is an unambiguously-determined tmc call, and whether
an explicit request was necessary to disambiguate *)
let rec split rev_before : 'a t list -> 'a zipper = function
| [] -> assert false (* we know there is at least one choice *)
| c :: rest ->
if has_tmc_calls c && (not only_explicit_calls || is_explicit c) then
{ rev_before; choice = c; after = List.map direct rest }
else
split (direct c :: rev_before) rest
in split [] choices
in
let tmc_call_subterms =
List.filter (fun c -> has_tmc_calls c) choices
in
match tmc_call_subterms with
| [] ->
No_tmc_call (List.map direct choices)
| [ _one ] ->
Nonambiguous (nonambiguous ~only_explicit_calls:false choices)
| several_subterms ->
let explicit_subterms = List.filter is_explicit several_subterms in
begin match explicit_subterms with
| [] ->
Ambiguous {
explicit = false;
subterms = several_subterms;
}
| [ _one ] ->
Nonambiguous (nonambiguous ~only_explicit_calls:true choices)
| several_explicit_subterms ->
Ambiguous {
explicit = true;
subterms = several_explicit_subterms;
}
end
end
open Choice.Syntax
type context = {
specialized: specialized Ident.Map.t;
}
and specialized = {
arity: int;
dps_id: Ident.t;
direct_kind: function_kind;
}
let llets lk vk bindings body =
List.fold_right (fun (var, def) body ->
Llet (lk, vk, var, def, body)
) bindings body
let find_candidate = function
| Lfunction lfun when lfun.attr.tmc_candidate -> Some lfun
| _ -> None
let declare_binding ctx (var, def) =
match find_candidate def with
| None -> ctx
| Some lfun ->
let arity = List.length lfun.params in
let dps_id = Ident.create_local (Ident.name var ^ "_dps") in
let direct_kind = lfun.kind in
let cand = { arity; dps_id; direct_kind; } in
{ specialized = Ident.Map.add var cand ctx.specialized }
let rec choice ctx t =
let rec choice ctx ~tail t =
match t with
| (Lvar _ | Lmutvar _ | Lconst _ | Lfunction _ | Lsend _
| Lassign _ | Lfor _ | Lwhile _) ->
let t = traverse ctx t in
Choice.lambda t
(* [choice_prim] handles most primitives, but the important case
of construction [Lprim(Pmakeblock(...), ...)] is handled by
[choice_makeblock] *)
| Lprim (prim, primargs, loc) ->
choice_prim ctx ~tail prim primargs loc
(* [choice_apply] handles applications, in particular tail-calls which
generate Set choices at the leaves *)
| Lapply apply ->
choice_apply ctx ~tail apply
(* other cases use the [lift] helper that takes the sub-terms in tail
position and the context around them, and generates a choice for
the whole term from choices for the tail subterms. *)
| Lsequence (l1, l2) ->
let l1 = traverse ctx l1 in
let+ l2 = choice ctx ~tail l2 in
Lsequence (l1, l2)
| Lifthenelse (l1, l2, l3) ->
let l1 = traverse ctx l1 in
let+ (l2, l3) = choice_pair ctx ~tail (l2, l3) in
Lifthenelse (l1, l2, l3)
| Lmutlet (vk, var, def, body) ->
(* mutable bindings are not TMC-specialized *)
let def = traverse ctx def in
let+ body = choice ctx ~tail body in
Lmutlet (vk, var, def, body)
| Llet (lk, vk, var, def, body) ->
let ctx, bindings = traverse_let ctx var def in
let+ body = choice ctx ~tail body in
llets lk vk bindings body
| Lletrec (bindings, body) ->
let ctx, bindings = traverse_letrec ctx bindings in
let+ body = choice ctx ~tail body in
Lletrec(bindings, body)
| Lswitch (l1, sw, loc) ->
(* decompose *)
let consts_lhs, consts_rhs = List.split sw.sw_consts in
let blocks_lhs, blocks_rhs = List.split sw.sw_blocks in
(* transform *)
let l1 = traverse ctx l1 in
let+ consts_rhs = choice_list ctx ~tail consts_rhs
and+ blocks_rhs = choice_list ctx ~tail blocks_rhs
and+ sw_failaction = choice_option ctx ~tail sw.sw_failaction in
(* rebuild *)
let sw_consts = List.combine consts_lhs consts_rhs in
let sw_blocks = List.combine blocks_lhs blocks_rhs in
let sw = { sw with sw_consts; sw_blocks; sw_failaction; } in
Lswitch (l1, sw, loc)
| Lstringswitch (l1, cases, fail, loc) ->
(* decompose *)
let cases_lhs, cases_rhs = List.split cases in
(* transform *)
let l1 = traverse ctx l1 in
let+ cases_rhs = choice_list ctx ~tail cases_rhs
and+ fail = choice_option ctx ~tail fail in
(* rebuild *)
let cases = List.combine cases_lhs cases_rhs in
Lstringswitch (l1, cases, fail, loc)
| Lstaticraise (id, ls) ->
let ls = traverse_list ctx ls in
Choice.lambda (Lstaticraise (id, ls))
| Ltrywith (l1, id, l2) ->
(* in [try l1 with id -> l2], the term [l1] is
not in tail-call position (after it returns
we need to remove the exception handler) *)
let+ l1 = choice ctx ~tail:false l1
and+ l2 = choice ctx ~tail l2 in
Ltrywith (l1, id, l2)
| Lstaticcatch (l1, ids, l2) ->
(* In [static-catch l1 with ids -> l2],
the term [l1] is in fact in tail-position *)
let+ l1 = choice ctx ~tail l1
and+ l2 = choice ctx ~tail l2 in
Lstaticcatch (l1, ids, l2)
| Levent (lam, lev) ->
let+ lam = choice ctx ~tail lam in
Levent (lam, lev)
| Lifused (x, lam) ->
let+ lam = choice ctx ~tail lam in
Lifused (x, lam)
and choice_apply ctx ~tail apply =
let exception No_tmc in
try
let explicit_tailcall_request =
match apply.ap_tailcall with
| Default_tailcall -> false
| Tailcall_expectation true -> true
| Tailcall_expectation false -> raise No_tmc
in
match apply.ap_func with
| Lvar f ->
let specialized =
try Ident.Map.find f ctx.specialized
with Not_found ->
if tail then
Location.prerr_warning
(Debuginfo.Scoped_location.to_location apply.ap_loc)
Warnings.Tmc_breaks_tailcall;
raise No_tmc;
in
let args =
(* Support of tupled functions: the [function_kind] of the
direct-style function is identical to the one of the
input function, which may be Tupled, but the dps
function is always Curried.
[find_exact_application] is in charge of recovering the
"real" argument list of a possibly-tupled call. *)
let kind, arity = specialized.direct_kind, specialized.arity in
match Lambda.find_exact_application kind ~arity apply.ap_args with
| None -> raise No_tmc
| Some args -> args
in
let tailcall tail =
(* If we are calling a tmc-specializable function in tail
context, then both the direct-style and dps-style calls
must be tailcalls. *)
if tail
then Tailcall_expectation true
else Default_tailcall
in
{
Choice.dps = Dps.make (fun ~tail ~dst ->
Lapply { apply with
ap_func = Lvar specialized.dps_id;
ap_args = add_dst_args dst args;
ap_tailcall = tailcall tail;
});
direct = (fun () ->
Lapply { apply with ap_tailcall = tailcall tail });
explicit_tailcall_request;
tmc_calls = [{
loc = apply.ap_loc;
explicit = explicit_tailcall_request;
}];
benefits_from_dps = true;
}
| _nontail -> raise No_tmc
with No_tmc ->
let apply_no_bailout =
(* [@tailcall false] is interpreted as a bailout annotation: "we
are (knowingly) leaving the dps calling convention". It only
has sense in the DPS version of the generated code, not in
direct style. *)
let ap_tailcall =
match apply.ap_tailcall with
| Tailcall_expectation false when tail -> Default_tailcall
| other -> other
in
{ apply with ap_tailcall } in
{ (Choice.lambda (Lapply apply)) with
direct = (fun () -> Lapply apply_no_bailout);
}
and choice_makeblock ctx ~tail:_ (tag, flag, shape) blockargs loc =
let choices = List.map (choice ctx ~tail:false) blockargs in
match Choice.find_nonambiguous_tmc_call choices with
| Choice.No_tmc_call args ->
Choice.lambda @@ Lprim (Pmakeblock (tag, flag, shape), args, loc)
| Choice.Ambiguous { explicit; subterms = ambiguous_subterms } ->
(* An ambiguous term should not lead to an error if it not
used in TMC position. Consider for example:
{[
type t = ... | K of t * (t * t)
let[@tail_mod_cons] rec map f = function
| [...]
| K (t, (u, v)) -> K ((map[@tailcall]) f t, (map f u, map f v))
]}
Calling [choice_makeblock] on the K constructor, we need to
determine whether its two arguments are ambiguous, which is
done by calling [choice] on each argument to see if they
would be TMC-able and if they are explicitly annotated.
These calls give the following results:
- there is an explicitly-requested tailcall in the first
argument
- the second argument is a nested pair whose arguments
themselves are ambiguous -- with no explicit annotation.
This determines that the arguments of K are not ambiguous,
as only one of them is annotated. But note that the nested
pair, in isolation, is ambiguous. This inner ambiguity is
innocuous and should not result in an error, as we never
use this inner pair in TMC position, only in direct style.
This example shows that it would be incorrect to fail with
an error whenever [choice] finds an ambiguity. Instead we
only error when generating the [dps] version of the
corresponding code; requesting the [direct] version is
accepted and produces the expected direct code.
*)
let term_choice =
let+ args = Choice.list choices in
Lprim (Pmakeblock(tag, flag, shape), args, loc)
in
{ term_choice with
Choice.dps = Dps.make (fun ~tail:_ ~dst:_ ->
let arguments =
let info (t : lambda Choice.t) : subterm_information = {
tmc_calls = t.tmc_calls;
} in
{
explicit;
arguments = List.map info ambiguous_subterms;
}
in
raise (Error (Debuginfo.Scoped_location.to_location loc,
Ambiguous_constructor_arguments arguments))
);
}
| Choice.Nonambiguous { Choice.rev_before; choice; after } ->
let constr = Constr.{
tag;
flag;
shape;
before = List.rev rev_before;
after;
loc;
} in
assert (choice.tmc_calls <> []);
{
Choice.direct = (fun () ->
if not choice.benefits_from_dps then
Constr.apply constr (Choice.direct choice)
else
Constr.with_placeholder constr @@ fun new_dst ->
Lsequence(Choice.dps choice ~tail:false ~dst:new_dst,
Lvar new_dst.var));
benefits_from_dps =
(* Whether or not the caller provides a destination,
we can always provide a destination to our settable
subterm, so the number of TMC sub-calls is identical
in the [direct] and [dps] versions. *)
false;
dps = Dps.delay_constructor constr choice.dps;
tmc_calls =
choice.tmc_calls;
explicit_tailcall_request =
choice.explicit_tailcall_request;
}
and choice_prim ctx ~tail prim primargs loc =
match prim with
(* The important case is the construction case *)
| Pmakeblock (tag, flag, shape) ->
choice_makeblock ctx ~tail (tag, flag, shape) primargs loc
(* Some primitives have arguments in tail-position *)
| Popaque ->
let l1 = match primargs with
| [l1] -> l1
| _ -> invalid_arg "choice_prim" in
let+ l1 = choice ctx ~tail l1 in
Lprim (Popaque, [l1], loc)
(* in common cases we just return *)
| Pbytes_to_string | Pbytes_of_string
| Pgetglobal _ | Psetglobal _
| Pfield _ | Pfield_computed
| Psetfield _ | Psetfield_computed _
| Pfloatfield _ | Psetfloatfield _
| Pccall _
| Praise _
| Pnot
| Pnegint | Paddint | Psubint | Pmulint | Pdivint _ | Pmodint _
| Pandint | Porint | Pxorint
| Plslint | Plsrint | Pasrint
| Pintcomp _
| Poffsetint _ | Poffsetref _
| Pintoffloat | Pfloatofint
| Pnegfloat | Pabsfloat
| Paddfloat | Psubfloat | Pmulfloat | Pdivfloat
| Pfloatcomp _
| Pstringlength | Pstringrefu | Pstringrefs
| Pbyteslength | Pbytesrefu | Pbytessetu | Pbytesrefs | Pbytessets
| Parraylength _ | Parrayrefu _ | Parraysetu _ | Parrayrefs _ | Parraysets _
| Pisint | Pisout
| Pignore
| Pcompare_ints | Pcompare_floats | Pcompare_bints _
(* we don't handle effect or DLS primitives *)
| Prunstack | Pperform | Presume | Preperform | Pdls_get
(* we don't handle atomic primitives *)
| Patomic_exchange | Patomic_cas | Patomic_fetch_add | Patomic_load _
(* we don't handle array indices as destinations yet *)
| (Pmakearray _ | Pduparray _)
(* we don't handle { foo with x = ...; y = recursive-call } *)
| Pduprecord _
(* operations returning boxed values could be considered
constructions someday *)
| Pbintofint _ | Pintofbint _
| Pcvtbint _
| Pnegbint _
| Paddbint _ | Psubbint _ | Pmulbint _ | Pdivbint _ | Pmodbint _
| Pandbint _ | Porbint _ | Pxorbint _ | Plslbint _ | Plsrbint _ | Pasrbint _
| Pbintcomp _
(* more common cases... *)
| Pbigarrayref _ | Pbigarrayset _
| Pbigarraydim _
| Pstring_load_16 _ | Pstring_load_32 _ | Pstring_load_64 _
| Pbytes_load_16 _ | Pbytes_load_32 _ | Pbytes_load_64 _
| Pbytes_set_16 _ | Pbytes_set_32 _ | Pbytes_set_64 _
| Pbigstring_load_16 _ | Pbigstring_load_32 _ | Pbigstring_load_64 _
| Pbigstring_set_16 _ | Pbigstring_set_32 _ | Pbigstring_set_64 _
| Pctconst _
| Pbswap16
| Pbbswap _
| Pint_as_pointer
| Psequand | Psequor
| Ppoll
->
let primargs = traverse_list ctx primargs in
Choice.lambda (Lprim (prim, primargs, loc))
and choice_list ctx ~tail terms =
Choice.list (List.map (choice ctx ~tail) terms)
and choice_pair ctx ~tail (t1, t2) =
Choice.pair (choice ctx ~tail t1, choice ctx ~tail t2)
and choice_option ctx ~tail t =
Choice.option (Option.map (choice ctx ~tail) t)
in choice ctx t
and traverse ctx = function
| Llet (lk, vk, var, def, body) ->
let ctx, bindings = traverse_let ctx var def in
let body = traverse ctx body in
llets lk vk bindings body
| Lletrec (bindings, body) ->
let ctx, bindings = traverse_letrec ctx bindings in
Lletrec (bindings, traverse ctx body)
| lam ->
shallow_map (traverse ctx) lam
and traverse_lfunction ctx lfun =
map_lfunction (traverse ctx) lfun
and traverse_let outer_ctx var def =
let inner_ctx = declare_binding outer_ctx (var, def) in
let bindings =
traverse_let_binding outer_ctx inner_ctx var def
in
inner_ctx, bindings
and traverse_letrec ctx bindings =
let ctx =
List.fold_left (fun ctx { id; def } ->
declare_binding ctx (id, Lfunction def)
) ctx bindings
in
let bindings =
List.concat_map (traverse_letrec_binding ctx) bindings
in
ctx, bindings
and traverse_let_binding outer_ctx inner_ctx var def =
match find_candidate def with
| None -> [ var, traverse outer_ctx def ]
| Some lfun ->
let functions = make_dps_variant var inner_ctx outer_ctx lfun in
List.map (fun (var, lfun) -> var, Lfunction lfun) functions
and traverse_letrec_binding ctx { id; def } =
if def.attr.tmc_candidate
then
let functions = make_dps_variant id ctx ctx def in
List.map (fun (id, def) -> { id; def }) functions
else
[ { id; def = traverse_lfunction ctx def } ]
and make_dps_variant var inner_ctx outer_ctx (lfun : lfunction) =
let special = Ident.Map.find var inner_ctx.specialized in
let fun_choice = choice outer_ctx ~tail:true lfun.body in
if fun_choice.Choice.tmc_calls = [] then
Location.prerr_warning
(Debuginfo.Scoped_location.to_location lfun.loc)
Warnings.Unused_tmc_attribute;
let direct =
let { kind; params; return; body = _; attr; loc } = lfun in
let body = Choice.direct fun_choice in
lfunction' ~kind ~params ~return ~body ~attr ~loc in
let dps =
let dst_param = {
var = Ident.create_local "dst";
offset = Ident.create_local "offset";
loc = lfun.loc;
} in
let dst = { dst_param with offset = Offset (Lvar dst_param.offset) } in
Lambda.duplicate_function @@ lfunction'
~kind:
(* Support of Tupled function: see [choice_apply]. *)
Curried
~params:(add_dst_params dst_param lfun.params)
~return:lfun.return
~body:(Choice.dps ~tail:true ~dst:dst fun_choice)
~attr:lfun.attr
~loc:lfun.loc
in
let dps_var = special.dps_id in
[var, direct; dps_var, dps]
and traverse_list ctx terms =
List.map (traverse ctx) terms
let rewrite t =
let ctx = { specialized = Ident.Map.empty } in
traverse ctx t
module Style = Misc.Style
let () =
Location.register_error_of_exn
(function
| Error (loc,
Ambiguous_constructor_arguments
{ explicit = false; arguments }) ->
let print_msg ppf =
Format_doc.fprintf ppf
"%a:@ this@ constructor@ application@ may@ be@ \
TMC-transformed@ in@ several@ different@ ways.@ \
Please@ disambiguate@ by@ adding@ an@ explicit@ %a \
attribute@ to@ the@ call@ that@ should@ be@ made@ \
tail-recursive,@ or@ a@ %a attribute@ on@ \
calls@ that@ should@ not@ be@ transformed."
Style.inline_code "[@tail_mod_cons]"
Style.inline_code "[@tailcall]"
Style.inline_code "[@tailcall false]"
in
let submgs =
let sub (info : tmc_call_information) =
let loc = Debuginfo.Scoped_location.to_location info.loc in
Location.msg ~loc "This call could be annotated." in
arguments
|> List.map (fun t -> t.tmc_calls)
|> List.flatten
|> List.map sub
in
Some (Location.errorf ~loc ~sub:submgs "%t" print_msg)
| Error (loc,
Ambiguous_constructor_arguments
{ explicit = true; arguments }) ->
let print_msg ppf =
Format_doc.fprintf ppf
"%a:@ this@ constructor@ application@ may@ be@ \
TMC-transformed@ in@ several@ different@ ways.@ Only@ one@ of@ \
the@ arguments@ may@ become@ a@ TMC@ call,@ but@ several@ \
arguments@ contain@ calls@ that@ are@ explicitly@ marked@ as@ \
tail-recursive.@ Please@ fix@ the@ conflict@ by@ reviewing@ \
and@ fixing@ the@ conflicting@ annotations."
Style.inline_code "[@tail_mod_cons]"
in
let submgs =
let sub (info : tmc_call_information) =
let loc = Debuginfo.Scoped_location.to_location info.loc in
Location.msg ~loc "This call is explicitly annotated." in
arguments
|> List.map (fun t -> t.tmc_calls)
|> List.flatten
|> List.filter (fun (info: tmc_call_information) -> info.explicit)
|> List.map sub
in
Some (Location.errorf ~loc ~sub:submgs "%t" print_msg)
| _ ->
None
)
|