1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Vincent Laviron, OCamlPro *)
(* *)
(* Copyright 2023 OCamlPro SAS *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(** Compilation of generic recursive definitions *)
(** The surface language allows a wide range of recursive definitions, but
Lambda only allows syntactic functions in recursive bindings.
This file implements the translation from generic definitions to Lambda.
The first step occurs during typechecking, in [Value_rec_check]:
[Dynamic] bindings need to be compiled as normal let bindings. This file
mostly deals with the [Static] bindings.
The three phases in this module are the following:
- Sizing: we first classify the definitions by their size, which determines
the compilation strategy for each binding.
- Function lifting: we then apply a transformation from general function
definitions to syntactic functions accepted by [Lletrec].
Examples:
{[
let rec f x = f x (* Syntactic *)
let rec f = fun x -> f x (* Syntactic *)
let rec f = let g x = f x in g (* Not syntactic *)
let rec f = let a = ... in (fun x -> f x) (* Not syntactic *)
]}
- Compilation: we finally combine all of this to produce a Lambda term
for the recursive bindings.
*)
open Lambda
(** {1. Sizing} *)
(* Simple blocks *)
type block_size =
| Regular_block of int
| Float_record of int
type size =
| Unreachable
(** Non-returning expressions, like [raise exn].
In [Value_rec_check], they would be classified as [Dynamic],
but some of those appear during translation to Lambda.
For example, in [let rec f = let [| x |] = ... in fun y -> x + y]
the inner let binding gets translated to code that raises
[Match_failure] for non-matching branches.
Tracking [Unreachable] explicitly allows us to recover the size
of the only non-raising branch. *)
| Constant
(** Constant values.
Can be either an integer-like constant ([0], ['a'], [None],
the empty list or the unit constructor), or a structured constant
(["hello"], [Some 1], ...).
Integer constants cannot be pre-allocated, so need their own
classification and compilation scheme (See {!Compilation} below).
Structured constants could fit into the [Block] category, but we
choose to reuse the [constant] classification to avoid sorting
through the [Lconst] definitions.
It also generates slightly better code. *)
| Function
(** Function definitions.
This includes more than just obvious, syntactic function definitions;
see {!Function Lifting} for details. *)
| Block of block_size
(** Allocated values of a fixed size.
This corresponds to expressions ending in a single obvious allocation,
but also some more complex expressions where the block is bound to
an intermediate variable before being returned.
*)
type binding_size = (lambda_with_env, size) Lazy_backtrack.t
and lambda_with_env = {
lambda : lambda;
env : binding_size Ident.Map.t;
}
let dynamic_size () =
Misc.fatal_error "letrec: No size found for Static binding"
(* [join_sizes] is used to compute the size of an expression with multiple
branches. Such expressions are normally classified as [Dynamic] by
[Value_rec_check], so the default behaviour is a compile-time failure.
However, for partial pattern-matching (typically in let bindings)
the compiler will later add a branch for the failing cases, and this
is handled here with the [Unreachable] case.
Note that the current compilation scheme would work if we allowed the
[Constant] and [Block] cases to be joined, but [Function] needs to be
a single function. *)
let join_sizes size1 size2 =
match size1, size2 with
| Unreachable, size | size, Unreachable -> size
| _, _ -> dynamic_size ()
let compute_static_size lam =
let rec compute_expression_size env lam =
match lam with
| Lvar v ->
begin match Ident.Map.find_opt v env with
| None ->
dynamic_size ()
| Some binding_size ->
Lazy_backtrack.force
(fun { lambda; env } -> compute_expression_size env lambda)
binding_size
end
| Lmutvar _ -> dynamic_size ()
| Lconst _ -> Constant
| Lapply _ -> dynamic_size ()
| Lfunction _ -> Function
| Llet (_, _, id, def, body) ->
let env =
Ident.Map.add id (Lazy_backtrack.create { lambda = def; env }) env
in
compute_expression_size env body
| Lmutlet(_, _, _, body) ->
compute_expression_size env body
| Lletrec (bindings, body) ->
let env =
List.fold_left (fun env_acc { id; def = _ } ->
Ident.Map.add id (Lazy_backtrack.create_forced Function) env_acc)
env bindings
in
compute_expression_size env body
| Lprim (p, args, _) ->
size_of_primitive env p args
| Lswitch (_, sw, _) ->
let fail_case =
match sw.sw_failaction with
| None -> []
| Some fail -> [0 (* ignored *), fail]
in
compute_and_join_sizes_switch env [sw.sw_consts; sw.sw_blocks; fail_case]
| Lstringswitch (_, cases, fail, _) ->
let fail_case =
match fail with
| None -> []
| Some fail -> ["" (* ignored *), fail]
in
compute_and_join_sizes_switch env [cases; fail_case]
| Lstaticraise _ -> Unreachable
| Lstaticcatch (body, _, handler)
| Ltrywith (body, _, handler) ->
compute_and_join_sizes env [body; handler]
| Lifthenelse (_cond, ifso, ifnot) ->
compute_and_join_sizes env [ifso; ifnot]
| Lsequence (_, e) ->
compute_expression_size env e
| Lwhile _
| Lfor _
| Lassign _ -> Constant
| Lsend _ -> dynamic_size ()
| Levent (e, _) ->
compute_expression_size env e
| Lifused _ -> Constant
and compute_and_join_sizes env branches =
List.fold_left (fun size branch ->
join_sizes size (compute_expression_size env branch))
Unreachable branches
and compute_and_join_sizes_switch :
type a. binding_size Ident.Map.t -> (a * lambda) list list -> size =
fun env all_cases ->
List.fold_left (fun size cases ->
List.fold_left (fun size (_key, action) ->
join_sizes size (compute_expression_size env action))
size cases)
Unreachable all_cases
and size_of_primitive env p args =
match p with
| Pignore
| Psetfield _
| Psetfield_computed _
| Psetfloatfield _
| Poffsetint _
| Poffsetref _
| Pbytessetu
| Pbytessets
| Parraysetu _
| Parraysets _
| Pbigarrayset _
| Pbytes_set_16 _
| Pbytes_set_32 _
| Pbytes_set_64 _
| Pbigstring_set_16 _
| Pbigstring_set_32 _
| Pbigstring_set_64 _
| Ppoll ->
(* Unit-returning primitives. Most of these are only generated from
external declarations and not special-cased by [Value_rec_check],
but it doesn't hurt to be consistent. *)
Constant
| Pduprecord (repres, size) ->
begin match repres with
| Record_regular | Record_inlined _ | Record_extension _ ->
Block (Regular_block size)
| Record_float ->
Block (Float_record size)
| Record_unboxed _ ->
Misc.fatal_error "size_of_primitive"
end
| Pmakeblock _ ->
(* The block shape is unfortunately an option, so we rely on the
number of arguments instead.
Note that flat float arrays/records use Pmakearray, so we don't need
to check the tag here. *)
Block (Regular_block (List.length args))
| Pmakearray (kind, _) ->
let size = List.length args in
begin match kind with
| Pgenarray | Paddrarray | Pintarray ->
Block (Regular_block size)
| Pfloatarray ->
Block (Float_record size)
end
| Pduparray _ ->
(* The size has to be recovered from the size of the argument *)
begin match args with
| [arg] ->
compute_expression_size env arg
| [] | _ :: _ :: _ ->
Misc.fatal_error "size_of_primitive"
end
| Praise _ ->
Unreachable
| Pctconst _ ->
(* These primitives are not special-cased by [Value_rec_check],
so we should never end up here; but these are constants anyway. *)
Constant
| Pbytes_to_string
| Pbytes_of_string
| Pgetglobal _
| Psetglobal _
| Pfield _
| Pfield_computed
| Pfloatfield _
| Prunstack
| Pperform
| Presume
| Preperform
| Pccall _
| Psequand | Psequor | Pnot
| Pnegint | Paddint | Psubint | Pmulint
| Pdivint _ | Pmodint _
| Pandint | Porint | Pxorint
| Plslint | Plsrint | Pasrint
| Pintcomp _
| Pcompare_ints | Pcompare_floats | Pcompare_bints _
| Pintoffloat | Pfloatofint
| Pnegfloat | Pabsfloat
| Paddfloat | Psubfloat | Pmulfloat | Pdivfloat
| Pfloatcomp _
| Pstringlength | Pstringrefu | Pstringrefs
| Pbyteslength | Pbytesrefu | Pbytesrefs
| Parraylength _
| Parrayrefu _
| Parrayrefs _
| Pisint
| Pisout
| Pbintofint _
| Pintofbint _
| Pcvtbint _
| Pnegbint _
| Paddbint _
| Psubbint _
| Pmulbint _
| Pdivbint _
| Pmodbint _
| Pandbint _
| Porbint _
| Pxorbint _
| Plslbint _
| Plsrbint _
| Pasrbint _
| Pbintcomp _
| Pbigarrayref _
| Pbigarraydim _
| Pstring_load_16 _
| Pstring_load_32 _
| Pstring_load_64 _
| Pbytes_load_16 _
| Pbytes_load_32 _
| Pbytes_load_64 _
| Pbigstring_load_16 _
| Pbigstring_load_32 _
| Pbigstring_load_64 _
| Pbswap16
| Pbbswap _
| Pint_as_pointer
| Patomic_load _
| Patomic_exchange
| Patomic_cas
| Patomic_fetch_add
| Popaque
| Pdls_get ->
dynamic_size ()
in
compute_expression_size Ident.Map.empty lam
let lfunction_with_body { kind; params; return; body = _; attr; loc } body =
lfunction' ~kind ~params ~return ~body ~attr ~loc
(** {1. Function Lifting} *)
(* The compiler allows recursive definitions of functions that are not
syntactic functions:
{[
let rec f_syntactic_function = fun x ->
f_syntactic_function x
let rec g_needs_lift =
let () = ... in
(fun x -> g_needs_lift (foo x))
let rec h_needs_lift_and_closure =
let v = ref 0 in
(fun x -> incr v; h_needs_lift_and_closure (bar x))
let rec i_needs_lift_and_eta =
let aux x = i_needs_lift_and_eta (baz x) in
aux
]}
We need to translate those using only syntactic functions or blocks.
For some functions, we only need to lift a syntactic function in tail
position from its surrounding context:
{[
let rec g_context =
let () = ... in
()
and g_lifted = fun x ->
g_lifted (foo x)
]}
In general the function may refer to local variables, so we perform
a local closure conversion before lifting:
{[
let rec h_context =
let v = ref 0 in
{ v }
and h_lifted = fun x ->
incr h_context.v;
h_lifted (bar x)
]}
Note that the closure environment computed from the context is passed as a
mutually recursive definition, that is, a free variable, and not as an
additional function parameter (which is customary for closure conversion).
Finally, when the tail expression is a variable, we perform an eta-expansion
to get a syntactic function, that we can then close and lift:
{[
let rec i_context =
let aux x = i_lifted (baz x) in
{ aux }
and i_lifted = fun x -> i_context.aux x
]}
*)
type lifted_function =
{ lfun : Lambda.lfunction;
free_vars_block_size : int;
}
type 'a split_result =
| Unreachable
| Reachable of lifted_function * 'a
let ( let+ ) res f =
match res with
| Unreachable -> Unreachable
| Reachable (func, lam) -> Reachable (func, f lam)
(* The closure blocks are immutable.
(Note: It is usually safe to declare immutable blocks as mutable,
but in this case the blocks might be empty and declaring them as Mutable
would cause errors later.) *)
let lifted_block_mut : Asttypes.mutable_flag = Immutable
let no_loc = Debuginfo.Scoped_location.Loc_unknown
let rec split_static_function block_var local_idents lam :
Lambda.lambda split_result =
match lam with
| Lvar v ->
(* Eta-expand *)
(* Note: knowing the arity might let us generate slightly better code *)
let param = Ident.create_local "let_rec_param" in
let ap_func =
Lprim (Pfield (0, Pointer, lifted_block_mut), [Lvar block_var], no_loc)
in
let body =
Lapply {
ap_func;
ap_args = [Lvar param];
ap_loc = no_loc;
ap_tailcall = Default_tailcall;
ap_inlined = Default_inline;
ap_specialised = Default_specialise;
}
in
let wrapper =
lfunction'
~kind:Curried
~params:[param, Pgenval]
~return:Pgenval
~body
~attr:default_stub_attribute
~loc:no_loc
in
let lifted = { lfun = wrapper; free_vars_block_size = 1 } in
Reachable (lifted,
Lprim (Pmakeblock (0, lifted_block_mut, None), [Lvar v], no_loc))
| Lfunction lfun ->
let free_vars = Lambda.free_variables lfun.body in
let local_free_vars = Ident.Set.inter free_vars local_idents in
let free_vars_block_size, subst, block_fields_rev =
Ident.Set.fold (fun var (i, subst, fields) ->
let access =
Lprim (Pfield (i, Pointer, lifted_block_mut),
[Lvar block_var],
no_loc)
in
(succ i, Ident.Map.add var access subst, Lvar var :: fields))
local_free_vars (0, Ident.Map.empty, [])
in
(* Note: When there are no local free variables, we don't need the
substitution and we don't need to generate code for pre-allocating
and backpatching a block of size 0.
However, the general scheme also works and it's unlikely to be
noticeably worse, so we use it for simplicity. *)
let new_fun =
lfunction_with_body lfun
(Lambda.subst (fun _ _ env -> env) subst lfun.body)
in
let lifted = { lfun = new_fun; free_vars_block_size } in
let block =
Lprim (Pmakeblock (0, lifted_block_mut, None),
List.rev block_fields_rev,
no_loc)
in
Reachable (lifted, block)
| Llet (lkind, vkind, var, def, body) ->
let+ body =
split_static_function block_var (Ident.Set.add var local_idents) body
in
Llet (lkind, vkind, var, def, body)
| Lmutlet (vkind, var, def, body) ->
let+ body =
split_static_function block_var (Ident.Set.add var local_idents) body
in
Lmutlet (vkind, var, def, body)
| Lletrec (bindings, body) ->
let local_idents =
List.fold_left (fun ids { id } -> Ident.Set.add id ids)
local_idents bindings
in
let+ body =
split_static_function block_var local_idents body
in
Lletrec (bindings, body)
| Lprim (Praise _, _, _) -> Unreachable
| Lstaticraise _ -> Unreachable
| Lswitch (arg, sw, loc) ->
let sw_consts_res = rebuild_arms block_var local_idents sw.sw_consts in
let sw_blocks_res = rebuild_arms block_var local_idents sw.sw_blocks in
let sw_failaction_res =
Option.map (split_static_function block_var local_idents) sw.sw_failaction
in
begin match sw_consts_res, sw_blocks_res, sw_failaction_res with
| Unreachable, Unreachable, (None | Some Unreachable) -> Unreachable
| Reachable (lfun, sw_consts), Unreachable, (None | Some Unreachable) ->
Reachable (lfun, Lswitch (arg, { sw with sw_consts }, loc))
| Unreachable, Reachable (lfun, sw_blocks), (None | Some Unreachable) ->
Reachable (lfun, Lswitch (arg, { sw with sw_blocks }, loc))
| Unreachable, Unreachable, Some (Reachable (lfun, failaction)) ->
let switch =
Lswitch (arg, { sw with sw_failaction = Some failaction }, loc)
in
Reachable (lfun, switch)
| Reachable _, Reachable _, _ | Reachable _, _, Some (Reachable _)
| _, Reachable _, Some (Reachable _) ->
Misc.fatal_error "letrec: multiple functions"
end
| Lstringswitch (arg, arms, failaction, loc) ->
let arms_res = rebuild_arms block_var local_idents arms in
let failaction_res =
Option.map (split_static_function block_var local_idents) failaction
in
begin match arms_res, failaction_res with
| Unreachable, (None | Some Unreachable) -> Unreachable
| Reachable (lfun, arms), (None | Some Unreachable) ->
Reachable (lfun, Lstringswitch (arg, arms, failaction, loc))
| Unreachable, Some (Reachable (lfun, failaction)) ->
Reachable (lfun, Lstringswitch (arg, arms, Some failaction, loc))
| Reachable _, Some (Reachable _) ->
Misc.fatal_error "letrec: multiple functions"
end
| Lstaticcatch (body, (nfail, params), handler) ->
let body_res = split_static_function block_var local_idents body in
let handler_res =
let local_idents =
List.fold_left (fun vars (var, _) -> Ident.Set.add var vars)
local_idents params
in
split_static_function block_var local_idents handler
in
begin match body_res, handler_res with
| Unreachable, Unreachable -> Unreachable
| Reachable (lfun, body), Unreachable ->
Reachable (lfun, Lstaticcatch (body, (nfail, params), handler))
| Unreachable, Reachable (lfun, handler) ->
Reachable (lfun, Lstaticcatch (body, (nfail, params), handler))
| Reachable _, Reachable _ ->
Misc.fatal_error "letrec: multiple functions"
end
| Ltrywith (body, exn_var, handler) ->
let body_res = split_static_function block_var local_idents body in
let handler_res =
split_static_function block_var
(Ident.Set.add exn_var local_idents) handler
in
begin match body_res, handler_res with
| Unreachable, Unreachable -> Unreachable
| Reachable (lfun, body), Unreachable ->
Reachable (lfun, Ltrywith (body, exn_var, handler))
| Unreachable, Reachable (lfun, handler) ->
Reachable (lfun, Ltrywith (body, exn_var, handler))
| Reachable _, Reachable _ ->
Misc.fatal_error "letrec: multiple functions"
end
| Lifthenelse (cond, ifso, ifnot) ->
let ifso_res = split_static_function block_var local_idents ifso in
let ifnot_res = split_static_function block_var local_idents ifnot in
begin match ifso_res, ifnot_res with
| Unreachable, Unreachable -> Unreachable
| Reachable (lfun, ifso), Unreachable ->
Reachable (lfun, Lifthenelse (cond, ifso, ifnot))
| Unreachable, Reachable (lfun, ifnot) ->
Reachable (lfun, Lifthenelse (cond, ifso, ifnot))
| Reachable _, Reachable _ ->
Misc.fatal_error "letrec: multiple functions"
end
| Lsequence (e1, e2) ->
let+ e2 = split_static_function block_var local_idents e2 in
Lsequence (e1, e2)
| Levent (lam, lev) ->
let+ lam = split_static_function block_var local_idents lam in
Levent (lam, lev)
| Lmutvar _
| Lconst _
| Lapply _
| Lprim _
| Lwhile _
| Lfor _
| Lassign _
| Lsend _
| Lifused _ -> Misc.fatal_error "letrec binding is not a static function"
and rebuild_arms :
type a. _ -> _ -> (a * Lambda.lambda) list ->
(a * Lambda.lambda) list split_result =
fun block_var local_idents arms ->
match arms with
| [] -> Unreachable
| (i, lam) :: arms ->
let res = rebuild_arms block_var local_idents arms in
let lam_res = split_static_function block_var local_idents lam in
match lam_res, res with
| Unreachable, Unreachable -> Unreachable
| Reachable (lfun, lam), Unreachable ->
Reachable (lfun, (i, lam) :: arms)
| Unreachable, Reachable (lfun, arms) ->
Reachable (lfun, (i, lam) :: arms)
| Reachable _, Reachable _ ->
Misc.fatal_error "letrec: multiple functions"
(** {1. Compilation} *)
(** The bindings are split into three categories.
Static bindings are the ones that we can pre-allocate and backpatch later.
Function bindings are syntactic functions.
Dynamic bindings are non-recursive expressions.
The evaluation order is as follows:
- Evaluate all dynamic bindings
- Pre-allocate all static bindings
- Define all functions
- Backpatch all static bindings
Constants (and unreachable expressions) end up in the dynamic category,
because we substitute all occurrences of recursive variables in their
definition by a dummy expression, making them non-recursive.
This is correct because:
- [Value_rec_check] ensured that they never dereference the value of
those recursive variables
- their final value cannot depend on them either.
Functions that are not already in syntactic form also generate an additional
binding for the context. This binding fits into the static category.
Example input:
{[
let rec a x =
(* syntactic function *)
b x
and b =
(* non-syntactic function *)
let tbl = Hashtbl.make 17 in
fun x -> ... (tbl, c, a) ...
and c =
(* block *)
Some (d, default)
and d =
(* 'dynamic' value (not recursive *)
Array.make 5 0
and default =
(* constant, with (spurious) use
of a recursive neighbor *)
let _ = a in
42
]}
Example output:
{[
(* Dynamic bindings *)
let d = Array.make 5 0
let default =
let _ = *dummy_rec_value* in
42
(* Pre-allocations *)
let c = caml_alloc_dummy 2
let b_context = caml_alloc_dummy 1
(* Functions *)
let rec a x = b x
and b =
fun x -> ... (b_context.tbl, c, a) ...
(* Backpatching *)
let () =
caml_update_dummy c (Some (d, default));
caml_update_dummy b_context
(let tbl = Hashtbl.make 17 in
{ tbl })
]}
Note on performance for non-syntactic functions:
The compiler would previously pre-allocate and backpatch function
closures. The new approach is designed to avoid back-patching
closures -- besides, we could not pre-allocate at this point in the
compiler pipeline, as the closure size will only be determined later.
For non-syntactic functions with local free variables, we now store the
local free variables in a block, which incurs an additional indirection
whenever a local variable is accessed by the function. On the other hand,
we generate regular function definitions, so the rest of the compiler
can either inline them or generate direct calls, and use the compact
representation for mutually recursive closures.
*)
type rec_bindings =
{ static : (Ident.t * block_size * Lambda.lambda) list;
functions : (Ident.t * Lambda.lfunction) list;
dynamic : (Ident.t * Lambda.lambda) list;
}
let empty_bindings =
{ static = [];
functions = [];
dynamic = [];
}
(** Allocation and backpatching primitives *)
let alloc_prim =
Primitive.simple ~name:"caml_alloc_dummy" ~arity:1 ~alloc:true
let alloc_float_record_prim =
Primitive.simple ~name:"caml_alloc_dummy_float" ~arity:1 ~alloc:true
let update_prim =
(* Note: [alloc] could be false, but it probably doesn't matter *)
Primitive.simple ~name:"caml_update_dummy" ~arity:2 ~alloc:true
(** Compilation function *)
let compile_letrec input_bindings body =
let subst_for_constants =
List.fold_left (fun subst (id, _, _) ->
Ident.Map.add id Lambda.dummy_constant subst)
Ident.Map.empty input_bindings
in
let all_bindings_rev =
List.fold_left (fun rev_bindings (id, rkind, def) ->
match (rkind : Value_rec_types.recursive_binding_kind) with
| Dynamic ->
{ rev_bindings with dynamic = (id, def) :: rev_bindings.dynamic }
| Static ->
let size = compute_static_size def in
begin match size with
| Constant | Unreachable ->
(* The result never escapes any recursive variables, so as we know
it doesn't inspect them either we can just bind the recursive
variables to dummy values and evaluate the definition normally.
*)
let def =
Lambda.subst (fun _ _ env -> env) subst_for_constants def
in
{ rev_bindings with dynamic = (id, def) :: rev_bindings.dynamic }
| Block size ->
{ rev_bindings with
static = (id, size, def) :: rev_bindings.static }
| Function ->
begin match def with
| Lfunction lfun ->
{ rev_bindings with
functions = (id, lfun) :: rev_bindings.functions
}
| _ ->
let ctx_id = Ident.create_local "letrec_function_context" in
begin match split_static_function ctx_id Ident.Set.empty def with
| Unreachable ->
Misc.fatal_error "letrec: no function for binding"
| Reachable ({ lfun; free_vars_block_size }, lam) ->
let functions = (id, lfun) :: rev_bindings.functions in
let static =
(ctx_id, Regular_block free_vars_block_size, lam) ::
rev_bindings.static
in
{ rev_bindings with functions; static }
end
end
end)
empty_bindings input_bindings
in
let body_with_patches =
List.fold_left (fun body (id, _size, lam) ->
let update =
Lprim (Pccall update_prim, [Lvar id; lam], no_loc)
in
Lsequence (update, body))
body (all_bindings_rev.static)
in
let body_with_functions =
match all_bindings_rev.functions with
| [] -> body_with_patches
| bindings_rev ->
let function_bindings =
List.rev_map (fun (id, lfun) ->
{ id; def = lfun })
bindings_rev
in
Lletrec (function_bindings, body_with_patches)
in
let body_with_dynamic_values =
List.fold_left (fun body (id, lam) ->
Llet(Strict, Pgenval, id, lam, body))
body_with_functions all_bindings_rev.dynamic
in
let body_with_pre_allocations =
List.fold_left (fun body (id, size, _lam) ->
let alloc_prim, size =
match size with
| Regular_block size -> alloc_prim, size
| Float_record size -> alloc_float_record_prim, size
in
let alloc =
Lprim (Pccall alloc_prim,
[Lconst (Lambda.const_int size)],
no_loc)
in
Llet(Strict, Pgenval, id, alloc, body))
body_with_dynamic_values all_bindings_rev.static
in
body_with_pre_allocations
|