1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Pierre Chambart, OCamlPro *)
(* Mark Shinwell and Leo White, Jane Street Europe *)
(* *)
(* Copyright 2013--2016 OCamlPro SAS *)
(* Copyright 2014--2016 Jane Street Group LLC *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
[@@@ocaml.warning "+a-4-9-30-40-41-42-66"]
open! Int_replace_polymorphic_compare
module Env = struct
type scope = Current | Outer
type t = {
backend : (module Backend_intf.S);
round : int;
ppf_dump : Format.formatter;
approx : (scope * Simple_value_approx.t) Variable.Map.t;
approx_mutable : Simple_value_approx.t Mutable_variable.Map.t;
approx_sym : Simple_value_approx.t Symbol.Map.t;
projections : Variable.t Projection.Map.t;
current_functions : Set_of_closures_origin.Set.t;
(* The functions currently being declared: used to avoid inlining
recursively *)
inlining_level : int;
(* Number of times "inline" has been called recursively *)
inside_branch : int;
freshening : Freshening.t;
never_inline : bool ;
never_inline_inside_closures : bool;
never_inline_outside_closures : bool;
unroll_counts : int Set_of_closures_origin.Map.t;
inlining_counts : int Closure_origin.Map.t;
actively_unrolling : int Set_of_closures_origin.Map.t;
closure_depth : int;
inlining_stats_closure_stack : Inlining_stats.Closure_stack.t;
inlined_debuginfo : Debuginfo.t;
}
let create ~never_inline ~backend ~round ~ppf_dump =
{ backend;
round;
ppf_dump;
approx = Variable.Map.empty;
approx_mutable = Mutable_variable.Map.empty;
approx_sym = Symbol.Map.empty;
projections = Projection.Map.empty;
current_functions = Set_of_closures_origin.Set.empty;
inlining_level = 0;
inside_branch = 0;
freshening = Freshening.empty;
never_inline;
never_inline_inside_closures = false;
never_inline_outside_closures = false;
unroll_counts = Set_of_closures_origin.Map.empty;
inlining_counts = Closure_origin.Map.empty;
actively_unrolling = Set_of_closures_origin.Map.empty;
closure_depth = 0;
inlining_stats_closure_stack =
Inlining_stats.Closure_stack.create ();
inlined_debuginfo = Debuginfo.none;
}
let backend t = t.backend
let round t = t.round
let ppf_dump t = t.ppf_dump
let local env =
{ env with
approx = Variable.Map.empty;
projections = Projection.Map.empty;
freshening = Freshening.empty_preserving_activation_state env.freshening;
inlined_debuginfo = Debuginfo.none;
}
let inlining_level_up env =
let max_level =
Clflags.Int_arg_helper.get ~key:(env.round) !Clflags.inline_max_depth
in
if (env.inlining_level + 1) > max_level then
Misc.fatal_error "Inlining level increased above maximum";
{ env with inlining_level = env.inlining_level + 1 }
let print ppf t =
Format.fprintf ppf
"Environment maps: %a@.Projections: %a@.Freshening: %a@."
Variable.Set.print (Variable.Map.keys t.approx)
(Projection.Map.print Variable.print) t.projections
Freshening.print t.freshening
let mem t var = Variable.Map.mem var t.approx
let add_internal t var (approx : Simple_value_approx.t) ~scope =
let approx =
(* The semantics of this [match] are what preserve the property
described at the top of simple_value_approx.mli, namely that when a
[var] is mem on an approximation (amongst many possible [var]s),
it is the one with the outermost scope. *)
match approx.var with
| Some var when mem t var -> approx
| _ -> Simple_value_approx.augment_with_variable approx var
in
{ t with approx = Variable.Map.add var (scope, approx) t.approx }
let add t var approx = add_internal t var approx ~scope:Current
let add_outer_scope t var approx = add_internal t var approx ~scope:Outer
let add_mutable t mut_var approx =
{ t with approx_mutable =
Mutable_variable.Map.add mut_var approx t.approx_mutable;
}
let really_import_approx t =
let module Backend = (val (t.backend) : Backend_intf.S) in
Backend.really_import_approx
let really_import_approx_with_scope t (scope, approx) =
scope, really_import_approx t approx
let find_symbol_exn t symbol =
really_import_approx t
(Symbol.Map.find symbol t.approx_sym)
let find_symbol_opt t symbol =
try Some (really_import_approx t
(Symbol.Map.find symbol t.approx_sym))
with Not_found -> None
let find_symbol_fatal t symbol =
match find_symbol_exn t symbol with
| exception Not_found ->
Misc.fatal_errorf "Symbol %a is unbound. Maybe there is a missing \
[Let_symbol], [Import_symbol] or similar?"
Symbol.print symbol
| approx -> approx
let find_or_load_symbol t symbol =
match find_symbol_exn t symbol with
| exception Not_found ->
if Compilation_unit.equal
(Compilation_unit.get_current_exn ())
(Symbol.compilation_unit symbol)
then
Misc.fatal_errorf "Symbol %a from the current compilation unit is \
unbound. Maybe there is a missing [Let_symbol] or similar?"
Symbol.print symbol;
let module Backend = (val (t.backend) : Backend_intf.S) in
Backend.import_symbol symbol
| approx -> approx
let add_projection t ~projection ~bound_to =
{ t with
projections =
Projection.Map.add projection bound_to t.projections;
}
let find_projection t ~projection =
match Projection.Map.find projection t.projections with
| exception Not_found -> None
| var -> Some var
let does_not_bind t vars =
not (List.exists (mem t) vars)
let does_not_freshen t vars =
Freshening.does_not_freshen t.freshening vars
let add_symbol t symbol approx =
match find_symbol_exn t symbol with
| exception Not_found ->
{ t with
approx_sym = Symbol.Map.add symbol approx t.approx_sym;
}
| _ ->
Misc.fatal_errorf "Attempt to redefine symbol %a (to %a) in environment \
for [Inline_and_simplify]"
Symbol.print symbol
Simple_value_approx.print approx
let redefine_symbol t symbol approx =
match find_symbol_exn t symbol with
| exception Not_found ->
assert false
| _ ->
{ t with
approx_sym = Symbol.Map.add symbol approx t.approx_sym;
}
let find_with_scope_exn t id =
try
really_import_approx_with_scope t
(Variable.Map.find id t.approx)
with Not_found ->
Misc.fatal_errorf "Env.find_with_scope_exn: Unbound variable \
%a@.%s@. Environment: %a@."
Variable.print id
(Printexc.raw_backtrace_to_string (Printexc.get_callstack max_int))
print t
let find_exn t id =
snd (find_with_scope_exn t id)
let find_mutable_exn t mut_var =
try Mutable_variable.Map.find mut_var t.approx_mutable
with Not_found ->
Misc.fatal_errorf "Env.find_mutable_exn: Unbound variable \
%a@.%s@. Environment: %a@."
Mutable_variable.print mut_var
(Printexc.raw_backtrace_to_string (Printexc.get_callstack max_int))
print t
let find_list_exn t vars =
List.map (fun var -> find_exn t var) vars
let find_opt t id =
try Some (really_import_approx t
(snd (Variable.Map.find id t.approx)))
with Not_found -> None
let activate_freshening t =
{ t with freshening = Freshening.activate t.freshening }
let enter_set_of_closures_declaration t origin =
{ t with
current_functions =
Set_of_closures_origin.Set.add origin t.current_functions; }
let inside_set_of_closures_declaration origin t =
Set_of_closures_origin.Set.mem origin t.current_functions
let at_toplevel t =
t.closure_depth = 0
let is_inside_branch env = env.inside_branch > 0
let branch_depth env = env.inside_branch
let inside_branch t =
{ t with inside_branch = t.inside_branch + 1 }
let set_freshening t freshening =
{ t with freshening; }
let increase_closure_depth t =
let approx =
Variable.Map.map (fun (_scope, approx) -> Outer, approx) t.approx
in
{ t with
approx;
closure_depth = t.closure_depth + 1;
}
let set_never_inline t =
if t.never_inline then t
else { t with never_inline = true }
let set_never_inline_inside_closures t =
if t.never_inline_inside_closures then t
else { t with never_inline_inside_closures = true }
let unset_never_inline_inside_closures t =
if t.never_inline_inside_closures then
{ t with never_inline_inside_closures = false }
else t
let set_never_inline_outside_closures t =
if t.never_inline_outside_closures then t
else { t with never_inline_outside_closures = true }
let unset_never_inline_outside_closures t =
if t.never_inline_outside_closures then
{ t with never_inline_outside_closures = false }
else t
let actively_unrolling t origin =
match Set_of_closures_origin.Map.find origin t.actively_unrolling with
| count -> Some count
| exception Not_found -> None
let start_actively_unrolling t origin i =
let actively_unrolling =
Set_of_closures_origin.Map.add origin i t.actively_unrolling
in
{ t with actively_unrolling }
let continue_actively_unrolling t origin =
let unrolling =
try
Set_of_closures_origin.Map.find origin t.actively_unrolling
with Not_found ->
Misc.fatal_error "Unexpected actively unrolled function"
in
let actively_unrolling =
Set_of_closures_origin.Map.add origin (unrolling - 1) t.actively_unrolling
in
{ t with actively_unrolling }
let unrolling_allowed t origin =
let unroll_count =
try
Set_of_closures_origin.Map.find origin t.unroll_counts
with Not_found ->
Clflags.Int_arg_helper.get
~key:t.round !Clflags.inline_max_unroll
in
unroll_count > 0
let inside_unrolled_function t origin =
let unroll_count =
try
Set_of_closures_origin.Map.find origin t.unroll_counts
with Not_found ->
Clflags.Int_arg_helper.get
~key:t.round !Clflags.inline_max_unroll
in
let unroll_counts =
Set_of_closures_origin.Map.add
origin (unroll_count - 1) t.unroll_counts
in
{ t with unroll_counts }
let inlining_allowed t id =
let inlining_count =
try
Closure_origin.Map.find id t.inlining_counts
with Not_found ->
Int.max 1 (Clflags.Int_arg_helper.get
~key:t.round !Clflags.inline_max_unroll)
in
inlining_count > 0
let inside_inlined_function t id =
let inlining_count =
try
Closure_origin.Map.find id t.inlining_counts
with Not_found ->
Int.max 1 (Clflags.Int_arg_helper.get
~key:t.round !Clflags.inline_max_unroll)
in
let inlining_counts =
Closure_origin.Map.add id (inlining_count - 1) t.inlining_counts
in
{ t with inlining_counts }
let inlining_level t = t.inlining_level
let freshening t = t.freshening
let never_inline t = t.never_inline || t.never_inline_outside_closures
let note_entering_closure t ~closure_id ~dbg =
if t.never_inline then t
else
{ t with
inlining_stats_closure_stack =
Inlining_stats.Closure_stack.note_entering_closure
t.inlining_stats_closure_stack ~closure_id ~dbg;
}
let note_entering_call t ~closure_id ~dbg =
if t.never_inline then t
else
{ t with
inlining_stats_closure_stack =
Inlining_stats.Closure_stack.note_entering_call
t.inlining_stats_closure_stack ~closure_id ~dbg;
}
let note_entering_inlined t =
if t.never_inline then t
else
{ t with
inlining_stats_closure_stack =
Inlining_stats.Closure_stack.note_entering_inlined
t.inlining_stats_closure_stack;
}
let note_entering_specialised t ~closure_ids =
if t.never_inline then t
else
{ t with
inlining_stats_closure_stack =
Inlining_stats.Closure_stack.note_entering_specialised
t.inlining_stats_closure_stack ~closure_ids;
}
let enter_closure t ~closure_id ~inline_inside ~dbg ~f =
let t =
if inline_inside && not t.never_inline_inside_closures then t
else set_never_inline t
in
let t = unset_never_inline_outside_closures t in
f (note_entering_closure t ~closure_id ~dbg)
let record_decision t decision =
Inlining_stats.record_decision decision
~closure_stack:t.inlining_stats_closure_stack
let set_inline_debuginfo t ~dbg =
{ t with inlined_debuginfo = dbg }
let add_inlined_debuginfo t ~dbg =
Debuginfo.inline t.inlined_debuginfo dbg
end
let initial_inlining_threshold ~round : Inlining_cost.Threshold.t =
let unscaled =
Clflags.Float_arg_helper.get ~key:round !Clflags.inline_threshold
in
(* CR-soon pchambart: Add a warning if this is too big
mshinwell: later *)
Can_inline_if_no_larger_than
(int_of_float
(unscaled *. float_of_int Inlining_cost.scale_inline_threshold_by))
let initial_inlining_toplevel_threshold ~round : Inlining_cost.Threshold.t =
let ordinary_threshold =
Clflags.Float_arg_helper.get ~key:round !Clflags.inline_threshold
in
let toplevel_threshold =
Clflags.Int_arg_helper.get ~key:round !Clflags.inline_toplevel_threshold
in
let unscaled =
(int_of_float ordinary_threshold) + toplevel_threshold
in
(* CR-soon pchambart: Add a warning if this is too big
mshinwell: later *)
Can_inline_if_no_larger_than
(unscaled * Inlining_cost.scale_inline_threshold_by)
module Result = struct
type t =
{ approx : Simple_value_approx.t;
used_static_exceptions : Static_exception.Set.t;
inlining_threshold : Inlining_cost.Threshold.t option;
benefit : Inlining_cost.Benefit.t;
num_direct_applications : int;
}
let create () =
{ approx = Simple_value_approx.value_unknown Other;
used_static_exceptions = Static_exception.Set.empty;
inlining_threshold = None;
benefit = Inlining_cost.Benefit.zero;
num_direct_applications = 0;
}
let approx t = t.approx
let set_approx t approx = { t with approx }
let meet_approx t env approx =
let really_import_approx = Env.really_import_approx env in
let meet =
Simple_value_approx.meet ~really_import_approx t.approx approx
in
set_approx t meet
let use_static_exception t i =
{ t with
used_static_exceptions =
Static_exception.Set.add i t.used_static_exceptions;
}
let used_static_exceptions t = t.used_static_exceptions
let exit_scope_catch t i =
{ t with
used_static_exceptions =
Static_exception.Set.remove i t.used_static_exceptions;
}
let map_benefit t f =
{ t with benefit = f t.benefit }
let add_benefit t b =
{ t with benefit = Inlining_cost.Benefit.(+) t.benefit b }
let benefit t = t.benefit
let reset_benefit t =
{ t with benefit = Inlining_cost.Benefit.zero; }
let set_inlining_threshold t inlining_threshold =
{ t with inlining_threshold }
let add_inlining_threshold t j =
match t.inlining_threshold with
| None -> t
| Some i ->
let inlining_threshold = Some (Inlining_cost.Threshold.add i j) in
{ t with inlining_threshold }
let sub_inlining_threshold t j =
match t.inlining_threshold with
| None -> t
| Some i ->
let inlining_threshold = Some (Inlining_cost.Threshold.sub i j) in
{ t with inlining_threshold }
let inlining_threshold t = t.inlining_threshold
let seen_direct_application t =
{ t with num_direct_applications = t.num_direct_applications + 1; }
let num_direct_applications t =
t.num_direct_applications
end
module A = Simple_value_approx
module E = Env
let keep_body_check ~is_classic_mode ~recursive =
if not is_classic_mode then begin
fun _ _ -> true
end else begin
let can_inline_non_rec_function (fun_decl : Flambda.function_declaration) =
(* In classic-inlining mode, the inlining decision is taken at
definition site (here). If the function is small enough
(below the -inline threshold) it will always be inlined.
Closure gives a bonus of [8] to optional arguments. In classic
mode, however, we would inline functions with the "*opt*" argument
in all cases, as it is a stub. (This is ensured by
[middle_end/closure_conversion.ml]).
*)
let inlining_threshold = initial_inlining_threshold ~round:0 in
let bonus = Flambda_utils.function_arity fun_decl in
Inlining_cost.can_inline fun_decl.body inlining_threshold ~bonus
in
fun (var : Variable.t) (fun_decl : Flambda.function_declaration) ->
if fun_decl.stub then begin
true
end else if Variable.Set.mem var (Lazy.force recursive) then begin
false
end else begin
match fun_decl.inline with
| Default_inline -> can_inline_non_rec_function fun_decl
| Unroll factor -> factor > 0
| Always_inline | Hint_inline -> true
| Never_inline -> false
end
end
let prepare_to_simplify_set_of_closures ~env
~(set_of_closures : Flambda.set_of_closures)
~function_decls ~freshen
~(only_for_function_decl : Flambda.function_declaration option) =
let free_vars =
Variable.Map.map (fun (external_var : Flambda.specialised_to) ->
let var =
let var =
Freshening.apply_variable (E.freshening env) external_var.var
in
match
A.simplify_var_to_var_using_env (E.find_exn env var)
~is_present_in_env:(fun var -> E.mem env var)
with
| None -> var
| Some var -> var
in
let approx = E.find_exn env var in
(* The projections are freshened below in one step, once we know
the closure freshening substitution. *)
let projection = external_var.projection in
({ var; projection; } : Flambda.specialised_to), approx)
set_of_closures.free_vars
in
let specialised_args =
set_of_closures.specialised_args |> Variable.Map.filter_map
(fun param (spec_to : Flambda.specialised_to) ->
let keep =
match only_for_function_decl with
| None -> true
| Some function_decl ->
Variable.Set.mem param (Parameter.Set.vars function_decl.params)
in
if not keep then None
else
let external_var = spec_to.var in
let var =
Freshening.apply_variable (E.freshening env) external_var
in
let var =
match
A.simplify_var_to_var_using_env (E.find_exn env var)
~is_present_in_env:(fun var -> E.mem env var)
with
| None -> var
| Some var -> var
in
let projection = spec_to.projection in
Some ({ var; projection; } : Flambda.specialised_to))
in
let environment_before_cleaning = env in
(* [E.local] helps us to catch bugs whereby variables escape their scope. *)
let env = E.local env in
let free_vars, function_decls, sb, freshening =
Freshening.apply_function_decls_and_free_vars (E.freshening env) free_vars
function_decls ~only_freshen_parameters:(not freshen)
in
let env = E.set_freshening env sb in
let free_vars =
Freshening.freshen_projection_relation' free_vars
~freshening:(E.freshening env)
~closure_freshening:freshening
in
let specialised_args =
let specialised_args =
Variable.Map.map_keys (Freshening.apply_variable (E.freshening env))
specialised_args
in
Freshening.freshen_projection_relation specialised_args
~freshening:(E.freshening env)
~closure_freshening:freshening
in
let parameter_approximations =
(* Approximations of parameters that are known to always hold the same
argument throughout the body of the function. *)
Variable.Map.map_keys (Freshening.apply_variable (E.freshening env))
(Variable.Map.mapi (fun _id' (spec_to : Flambda.specialised_to) ->
E.find_exn environment_before_cleaning spec_to.var)
specialised_args)
in
let direct_call_surrogates =
Variable.Map.fold (fun existing surrogate surrogates ->
let existing =
Freshening.Project_var.apply_closure_id freshening
(Closure_id.wrap existing)
in
let surrogate =
Freshening.Project_var.apply_closure_id freshening
(Closure_id.wrap surrogate)
in
assert (not (Closure_id.Map.mem existing surrogates));
Closure_id.Map.add existing surrogate surrogates)
set_of_closures.direct_call_surrogates
Closure_id.Map.empty
in
let env =
E.enter_set_of_closures_declaration env
function_decls.set_of_closures_origin
in
(* we use the previous closure for evaluating the functions *)
let internal_value_set_of_closures =
let bound_vars =
Variable.Map.fold (fun id (_, desc) map ->
Var_within_closure.Map.add (Var_within_closure.wrap id) desc map)
free_vars Var_within_closure.Map.empty
in
let free_vars = Variable.Map.map fst free_vars in
let invariant_params = lazy Variable.Map.empty in
let recursive = lazy (Variable.Map.keys function_decls.funs) in
let is_classic_mode = function_decls.is_classic_mode in
let keep_body = keep_body_check ~is_classic_mode ~recursive in
let function_decls =
A.function_declarations_approx ~keep_body function_decls
in
A.create_value_set_of_closures ~function_decls ~bound_vars
~free_vars ~invariant_params ~recursive ~specialised_args
~freshening ~direct_call_surrogates
in
(* Populate the environment with the approximation of each closure.
This part of the environment is shared between all of the closures in
the set of closures. *)
let set_of_closures_env =
Variable.Map.fold (fun closure _ env ->
let approx =
A.value_closure ~closure_var:closure internal_value_set_of_closures
(Closure_id.wrap closure)
in
E.add env closure approx
)
function_decls.funs env
in
free_vars, specialised_args, function_decls, parameter_approximations,
internal_value_set_of_closures, set_of_closures_env
(* This adds only the minimal set of approximations to the closures.
It is not strictly necessary to have this restriction, but it helps
to catch potential substitution bugs. *)
let populate_closure_approximations
~(function_decl : Flambda.function_declaration)
~(free_vars : (_ * A.t) Variable.Map.t)
~(parameter_approximations : A.t Variable.Map.t)
~set_of_closures_env =
(* Add approximations of free variables *)
let env =
Variable.Map.fold (fun id (_, desc) env ->
E.add_outer_scope env id desc)
free_vars set_of_closures_env
in
(* Add known approximations of function parameters *)
let env =
List.fold_left (fun env id ->
let approx =
try Variable.Map.find id parameter_approximations
with Not_found -> (A.value_unknown Other)
in
E.add env id approx)
env (Parameter.List.vars function_decl.params)
in
env
let prepare_to_simplify_closure ~(function_decl : Flambda.function_declaration)
~free_vars ~specialised_args ~parameter_approximations
~set_of_closures_env =
let closure_env =
populate_closure_approximations ~function_decl ~free_vars
~parameter_approximations ~set_of_closures_env
in
(* Add definitions of known projections to the environment. *)
let add_projections ~closure_env ~which_variables ~map =
Variable.Map.fold (fun inner_var spec_arg env ->
let (spec_arg : Flambda.specialised_to) = map spec_arg in
match spec_arg.projection with
| None -> env
| Some projection ->
let from = Projection.projecting_from projection in
if Variable.Set.mem from function_decl.free_variables then
E.add_projection env ~projection ~bound_to:inner_var
else
env)
which_variables
closure_env
in
let closure_env =
add_projections ~closure_env ~which_variables:specialised_args
~map:(fun spec_to -> spec_to)
in
add_projections ~closure_env ~which_variables:free_vars
~map:(fun (spec_to, _approx) -> spec_to)
|