1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Pierre Chambart, OCamlPro *)
(* Mark Shinwell and Leo White, Jane Street Europe *)
(* *)
(* Copyright 2013--2016 OCamlPro SAS *)
(* Copyright 2014--2016 Jane Street Group LLC *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
[@@@ocaml.warning "+a-4-9-30-40-41-42-66"]
open! Int_replace_polymorphic_compare
(* Simple approximation of the space cost of a primitive. *)
let prim_size (prim : Clambda_primitives.primitive) args =
match prim with
| Pmakeblock _ -> 5 + List.length args
| Pfield _ -> 1
| Psetfield (_, isptr, init) ->
begin match init with
| Root_initialization -> 1 (* never causes a write barrier hit *)
| Assignment | Heap_initialization ->
match isptr with
| Pointer -> 4
| Immediate -> 1
end
| Pfloatfield _ -> 1
| Psetfloatfield _ -> 1
| Pduprecord _ -> 10 + List.length args
| Pccall p -> (if p.Primitive.prim_alloc then 10 else 4) + List.length args
| Praise _ -> 4
| Pstringlength -> 5
| Pbyteslength -> 5
| Pstringrefs -> 6
| Pbytesrefs | Pbytessets -> 6
| Pmakearray _ -> 5 + List.length args
| Parraylength Pgenarray -> 6
| Parraylength _ -> 2
| Parrayrefu Pgenarray -> 12
| Parrayrefu _ -> 2
| Parraysetu Pgenarray -> 16
| Parraysetu _ -> 4
| Parrayrefs Pgenarray -> 18
| Parrayrefs _ -> 8
| Parraysets Pgenarray -> 22
| Parraysets _ -> 10
| Pbigarrayref (_, ndims, _, _) -> 4 + ndims * 6
| Pbigarrayset (_, ndims, _, _) -> 4 + ndims * 6
| Psequand | Psequor ->
Misc.fatal_error "Psequand and Psequor are not allowed in Prim \
expressions; translate out instead (cf. closure_conversion.ml)"
(* CR-soon mshinwell: This match must be made exhaustive.
mshinwell: Let's do this when we have the new size computation. *)
| _ -> 2 (* arithmetic and comparisons *)
(* Simple approximation of the space cost of an Flambda expression. *)
(* CR-soon mshinwell: Investigate revised size numbers. *)
let direct_call_size = 4
let project_size = 1
let lambda_smaller' lam ~than:threshold =
let size = ref 0 in
let rec lambda_size (lam : Flambda.t) =
if !size > threshold then raise Exit;
match lam with
| Var _ -> ()
| Apply ({ func = _; args = _; kind = direct }) ->
let call_cost =
match direct with Indirect -> 6 | Direct _ -> direct_call_size
in
size := !size + call_cost
| Assign _ -> incr size
| Send _ -> size := !size + 8
| Proved_unreachable -> ()
| Let { defining_expr; body; _ } ->
lambda_named_size defining_expr;
lambda_size body
| Let_mutable { body } -> lambda_size body
| Switch (_, sw) ->
let cost cases =
let size = List.length cases in
if size <= 1 then 0
else 3 + size
in
size := !size + cost sw.consts + cost sw.blocks;
List.iter (fun (_, lam) -> lambda_size lam) sw.consts;
List.iter (fun (_, lam) -> lambda_size lam) sw.blocks;
Option.iter lambda_size sw.failaction
| String_switch (_, sw, def) ->
List.iter (fun (_, lam) ->
size := !size + 2;
lambda_size lam)
sw;
Option.iter lambda_size def
| Static_raise _ -> ()
| Static_catch (_, _, body, handler) ->
incr size; lambda_size body; lambda_size handler
| Try_with (body, _, handler) ->
size := !size + 8; lambda_size body; lambda_size handler
| If_then_else (_, ifso, ifnot) ->
size := !size + 2;
lambda_size ifso; lambda_size ifnot
| While (cond, body) ->
size := !size + 2; lambda_size cond; lambda_size body
| For { body; _ } ->
size := !size + 4; lambda_size body
and lambda_named_size (named : Flambda.named) =
if !size > threshold then raise Exit;
match named with
| Symbol _ | Read_mutable _ -> ()
| Const _ | Allocated_const _ -> incr size
| Read_symbol_field _ -> incr size
| Set_of_closures ({ function_decls = ffuns }) ->
Variable.Map.iter (fun _ (ffun : Flambda.function_declaration) ->
lambda_size ffun.body)
ffuns.funs
| Project_closure _ | Project_var _ ->
size := !size + project_size
| Move_within_set_of_closures _ ->
incr size
| Prim (prim, args, _) ->
size := !size + prim_size prim args
| Expr expr -> lambda_size expr
in
try
lambda_size lam;
if !size <= threshold then Some !size
else None
with Exit ->
None
let lambda_size lam =
match lambda_smaller' lam ~than:max_int with
| Some size ->
size
| None ->
(* There is no way that an expression of size max_int could fit in
memory. *)
assert false
module Threshold = struct
type t =
| Never_inline
| Can_inline_if_no_larger_than of int
let add t1 t2 =
match t1, t2 with
| Never_inline, t -> t
| t, Never_inline -> t
| Can_inline_if_no_larger_than i1, Can_inline_if_no_larger_than i2 ->
Can_inline_if_no_larger_than (i1 + i2)
let sub t1 t2 =
match t1, t2 with
| Never_inline, _ -> Never_inline
| t, Never_inline -> t
| Can_inline_if_no_larger_than i1, Can_inline_if_no_larger_than i2 ->
if i1 > i2 then Can_inline_if_no_larger_than (i1 - i2)
else Never_inline
let min t1 t2 =
match t1, t2 with
| Never_inline, _ -> Never_inline
| _, Never_inline -> Never_inline
| Can_inline_if_no_larger_than i1, Can_inline_if_no_larger_than i2 ->
Can_inline_if_no_larger_than (Int.min i1 i2)
let equal t1 t2 =
match t1, t2 with
| Never_inline, Never_inline -> true
| Can_inline_if_no_larger_than i1, Can_inline_if_no_larger_than i2 ->
i1 = i2
| (Never_inline | Can_inline_if_no_larger_than _), _ ->
false
end
let can_try_inlining lam inlining_threshold ~number_of_arguments
~size_from_approximation =
match inlining_threshold with
| Threshold.Never_inline -> Threshold.Never_inline
| Threshold.Can_inline_if_no_larger_than inlining_threshold ->
let bonus =
(* removing a call will reduce the size by at least the number
of arguments *)
number_of_arguments
in
let size =
let than = inlining_threshold + bonus in
match size_from_approximation with
| Some size -> if size <= than then Some size else None
| None -> lambda_smaller' lam ~than
in
match size with
| None -> Threshold.Never_inline
| Some size ->
Threshold.Can_inline_if_no_larger_than
(inlining_threshold - size + bonus)
let lambda_smaller lam ~than =
match lambda_smaller' lam ~than with
| Some _ -> true
| None -> false
let can_inline lam inlining_threshold ~bonus =
match inlining_threshold with
| Threshold.Never_inline -> false
| Threshold.Can_inline_if_no_larger_than inlining_threshold ->
lambda_smaller
lam
~than:(inlining_threshold + bonus)
let cost (flag : Clflags.Int_arg_helper.parsed) ~round =
Clflags.Int_arg_helper.get ~key:round flag
let benefit_factor = 1
module Benefit = struct
type t = {
remove_call : int;
remove_alloc : int;
remove_prim : int;
remove_branch : int;
(* CR-someday pchambart: branch_benefit : t list; *)
direct_call_of_indirect : int;
requested_inline : int;
(* Benefit to compensate the size of functions marked for inlining *)
}
let zero = {
remove_call = 0;
remove_alloc = 0;
remove_prim = 0;
remove_branch = 0;
direct_call_of_indirect = 0;
requested_inline = 0;
}
let remove_call t = { t with remove_call = t.remove_call + 1; }
let remove_alloc t = { t with remove_alloc = t.remove_alloc + 1; }
let remove_prim t = { t with remove_prim = t.remove_prim + 1; }
let remove_prims t n = { t with remove_prim = t.remove_prim + n; }
let remove_branch t = { t with remove_branch = t.remove_branch + 1; }
let direct_call_of_indirect t =
{ t with direct_call_of_indirect = t.direct_call_of_indirect + 1; }
let requested_inline t ~size_of =
let size = lambda_size size_of in
{ t with requested_inline = t.requested_inline + size; }
let remove_code_helper b (flam : Flambda.t) =
match flam with
| Assign _ -> b := remove_prim !b
| Switch _ | String_switch _ | Static_raise _ | Try_with _
| If_then_else _ | While _ | For _ -> b := remove_branch !b
| Apply _ | Send _ -> b := remove_call !b
| Let _ | Let_mutable _ | Proved_unreachable | Var _
| Static_catch _ -> ()
let remove_code_helper_named b (named : Flambda.named) =
match named with
| Set_of_closures _
| Prim ((Pmakearray _ | Pmakeblock _ | Pduprecord _), _, _) ->
b := remove_alloc !b
(* CR-soon pchambart: should we consider that boxed integer and float
operations are allocations ? *)
| Prim _ | Project_closure _ | Project_var _
| Move_within_set_of_closures _
| Read_symbol_field _ -> b := remove_prim !b
| Symbol _ | Read_mutable _ | Allocated_const _ | Const _ | Expr _ -> ()
let remove_code lam b =
let b = ref b in
Flambda_iterators.iter_toplevel (remove_code_helper b)
(remove_code_helper_named b) lam;
!b
let remove_code_named lam b =
let b = ref b in
Flambda_iterators.iter_named_toplevel (remove_code_helper b)
(remove_code_helper_named b) lam;
!b
let remove_projection (_proj : Projection.t) b =
(* They are all primitives for the moment. The [Projection.t] argument
is here for future expansion. *)
remove_prim b
let print ppf b =
Format.fprintf ppf "@[remove_call: %i@ remove_alloc: %i@ \
remove_prim: %i@ remove_branch: %i@ \
direct: %i@ requested: %i@]"
b.remove_call
b.remove_alloc
b.remove_prim
b.remove_branch
b.direct_call_of_indirect
b.requested_inline
let evaluate t ~round : int =
benefit_factor *
(t.remove_call * (cost !Clflags.inline_call_cost ~round)
+ t.remove_alloc * (cost !Clflags.inline_alloc_cost ~round)
+ t.remove_prim * (cost !Clflags.inline_prim_cost ~round)
+ t.remove_branch * (cost !Clflags.inline_branch_cost ~round)
+ (t.direct_call_of_indirect
* (cost !Clflags.inline_indirect_cost ~round)))
+ t.requested_inline
let (+) t1 t2 = {
remove_call = t1.remove_call + t2.remove_call;
remove_alloc = t1.remove_alloc + t2.remove_alloc;
remove_prim = t1.remove_prim + t2.remove_prim;
remove_branch = t1.remove_branch + t2.remove_branch;
direct_call_of_indirect =
t1.direct_call_of_indirect + t2.direct_call_of_indirect;
requested_inline = t1.requested_inline + t2.requested_inline;
}
let (-) t1 t2 = {
remove_call = t1.remove_call - t2.remove_call;
remove_alloc = t1.remove_alloc - t2.remove_alloc;
remove_prim = t1.remove_prim - t2.remove_prim;
remove_branch = t1.remove_branch - t2.remove_branch;
direct_call_of_indirect =
t1.direct_call_of_indirect - t2.direct_call_of_indirect;
requested_inline = t1.requested_inline - t2.requested_inline;
}
let max ~round t1 t2 =
let c1 = evaluate ~round t1 in
let c2 = evaluate ~round t2 in
if c1 > c2 then t1 else t2
let add_code lam b =
b - (remove_code lam zero)
let add_code_named lam b =
b - (remove_code_named lam zero)
let add_projection proj b =
b - (remove_projection proj zero)
(* Print out a benefit as a table *)
let benefit_table =
[ "Calls", (fun b -> b.remove_call);
"Allocs", (fun b -> b.remove_alloc);
"Prims", (fun b -> b.remove_prim);
"Branches", (fun b -> b.remove_branch);
"Indirect calls", (fun b -> b.direct_call_of_indirect);
]
let benefits_table =
lazy begin
List.map
(fun (header, accessor) -> (header, accessor, String.length header))
benefit_table
end
let table_line =
lazy begin
let benefits_table = Lazy.force benefits_table in
let dashes =
List.map (fun (_, _, n) -> String.make n '-') benefits_table
in
"|-" ^ String.concat "-+-" dashes ^ "-|"
end
let table_headers =
lazy begin
let benefits_table = Lazy.force benefits_table in
let headers = List.map (fun (head, _, _) -> head) benefits_table in
"| " ^ String.concat " | " headers ^ " |"
end
let print_table_values ppf b =
let rec loop ppf = function
| [] -> Format.fprintf ppf "|"
| (_, accessor, width) :: rest ->
Format.fprintf ppf "| %*d %a" width (accessor b) loop rest
in
loop ppf (Lazy.force benefits_table)
let print_table ppf b =
let table_line = Lazy.force table_line in
let table_headers = Lazy.force table_headers in
Format.fprintf ppf
"@[<v>@[<h>%s@]@;@[<h>%s@]@;@[<h>%s@]@;@[<h>%a@]@;@[<h>%s@]@]"
table_line table_headers table_line
print_table_values b
table_line
end
module Whether_sufficient_benefit = struct
type t = {
round : int;
benefit : Benefit.t;
toplevel : bool;
branch_depth : int;
lifting : bool;
original_size : int;
new_size : int;
evaluated_benefit : int;
estimate : bool;
}
let create ~original ~toplevel ~branch_depth lam ~benefit ~lifting ~round =
let evaluated_benefit = Benefit.evaluate benefit ~round in
{ round; benefit; toplevel; branch_depth; lifting;
original_size = lambda_size original;
new_size = lambda_size lam;
evaluated_benefit;
estimate = false;
}
let create_estimate ~original_size ~toplevel ~branch_depth ~new_size
~benefit ~lifting ~round =
let evaluated_benefit = Benefit.evaluate benefit ~round in
{ round; benefit; toplevel; branch_depth; lifting; original_size;
new_size; evaluated_benefit; estimate = true;
}
let is_nan f =
match Float.classify_float f with
| FP_nan -> true
| FP_normal | FP_subnormal | FP_zero | FP_infinite -> false
let correct_branch_factor f =
(not (is_nan f))
&& (Float.compare f 0. >= 0)
let estimated_benefit t =
if t.toplevel && t.lifting && t.branch_depth = 0 then begin
let lifting_benefit =
Clflags.Int_arg_helper.get ~key:t.round !Clflags.inline_lifting_benefit
in
float (t.evaluated_benefit + lifting_benefit)
end else begin
(* The estimated benefit is the evaluated benefit times an
estimation of the probability that the branch does actually matter
for performance (i.e. is hot). The probability is very roughly
estimated by considering that under every branch the
sub-expressions have the same [1 / (1 + factor)] probability
[p] of being hot. Hence the probability for the current
call to be hot is [p ^ number of nested branches].
The probability is expressed as [1 / (1 + factor)] rather
than letting the user directly provide [p], since for every
positive value of [factor] [p] is in [0, 1]. *)
let branch_taken_estimated_probability =
let inline_branch_factor =
let factor =
Clflags.Float_arg_helper.get ~key:t.round
!Clflags.inline_branch_factor
in
if is_nan factor then
Clflags.default_inline_branch_factor
else if Float.compare factor 0. < 0 then
0.
else
factor
in
assert (correct_branch_factor inline_branch_factor);
1. /. (1. +. inline_branch_factor)
in
let call_estimated_probability =
branch_taken_estimated_probability ** float t.branch_depth
in
float t.evaluated_benefit *. call_estimated_probability
end
let evaluate t =
Float.compare
(float t.new_size -. estimated_benefit t)
(float t.original_size) <= 0
let to_string t =
let lifting = t.toplevel && t.lifting && t.branch_depth = 0 in
let evaluated_benefit =
if lifting then
let lifting_benefit =
Clflags.Int_arg_helper.get ~key:t.round
!Clflags.inline_lifting_benefit
in
t.evaluated_benefit + lifting_benefit
else t.evaluated_benefit
in
let estimate = if t.estimate then "<" else "=" in
Printf.sprintf "{benefit%s{call=%d,alloc=%d,prim=%i,branch=%i,\
indirect=%i,req=%i,\
lifting=%B}, orig_size=%d,new_size=%d,eval_size=%d,\
eval_benefit%s%d,\
branch_depth=%d}=%s"
estimate
t.benefit.remove_call
t.benefit.remove_alloc
t.benefit.remove_prim
t.benefit.remove_branch
t.benefit.direct_call_of_indirect
t.benefit.requested_inline
lifting
t.original_size
t.new_size
(t.original_size - t.new_size)
estimate
evaluated_benefit
t.branch_depth
(if evaluate t then "yes" else "no")
let print_description ~subfunctions ppf t =
let pr_intro ppf =
let estimate = if t.estimate then " at most" else "" in
Format.pp_print_text ppf
"Specialisation of the function body";
if subfunctions then
Format.pp_print_text ppf
", including speculative inlining of other functions,";
Format.pp_print_text ppf " removed";
Format.pp_print_text ppf estimate;
Format.pp_print_text ppf " the following operations:"
in
let lifting = t.toplevel && t.lifting && t.branch_depth = 0 in
let requested = t.benefit.requested_inline in
let pr_requested ppf =
if requested > 0 then begin
Format.pp_open_box ppf 0;
Format.pp_print_text ppf
"and inlined user-annotated functions worth ";
Format.fprintf ppf "%d." requested;
Format.pp_close_box ppf ();
Format.pp_print_cut ppf ();
Format.pp_print_cut ppf ()
end
in
let pr_lifting ppf =
if lifting then begin
Format.pp_open_box ppf 0;
Format.pp_print_text ppf
"Inlining the function would also \
lift some definitions to toplevel.";
Format.pp_close_box ppf ();
Format.pp_print_cut ppf ();
Format.pp_print_cut ppf ()
end
in
let total_benefit =
if lifting then
let lifting_benefit =
Clflags.Int_arg_helper.get ~key:t.round
!Clflags.inline_lifting_benefit
in
t.evaluated_benefit + lifting_benefit
else t.evaluated_benefit
in
let expected_benefit = estimated_benefit t in
let size_change = t.new_size - t.original_size in
let result = if evaluate t then "less" else "greater" in
let pr_conclusion ppf =
Format.pp_print_text ppf "This gives a total benefit of ";
Format.pp_print_int ppf total_benefit;
Format.pp_print_text ppf ". At a branch depth of ";
Format.pp_print_int ppf t.branch_depth;
Format.pp_print_text ppf " this produces an expected benefit of ";
Format.fprintf ppf "%.1f" expected_benefit;
Format.pp_print_text ppf ". The new code has size ";
Format.pp_print_int ppf t.new_size;
Format.pp_print_text ppf ", giving a change in code size of ";
Format.pp_print_int ppf size_change;
Format.pp_print_text ppf ". The change in code size is ";
Format.pp_print_text ppf result;
Format.pp_print_text ppf " than the expected benefit."
in
Format.fprintf ppf "%t@,@[<v>@[<v 2>@;%a@]@;@;%t%t@]%t"
pr_intro Benefit.print_table t.benefit pr_requested pr_lifting
pr_conclusion
end
let scale_inline_threshold_by = 8
let default_toplevel_multiplier = 8
(* CR-soon mshinwell for mshinwell: hastily-written comment, to review *)
(* We may in [Inlining_decision] need to measure the size of functions
that are below the inlining threshold. We also need to measure with
regard to benefit (see [Inlining_decision.inline_non_recursive). The
intuition for having a cached size in the second case is as follows.
If a function's body exceeds some maximum size and its argument
approximations are unknown (meaning that we cannot materially simplify
it further), we can infer without examining the function's body that
it cannot be inlined. The aim is to speed up [Inlining_decision].
The "original size" is [Inlining_cost.direct_call_size]. The "new size" is
the size of the function's body plus [Inlining_cost.project_size] for each
free variable and mutually recursive function accessed through the closure.
To be inlined we need:
body_size
+ (closure_accesses * project_size) <= direct_call_size
- (evaluated_benefit * call_prob)
i.e.:
body_size <= direct_call_size
+ (evaluated_benefit * call_prob)
- (closure_accesses * project_size)
In this case we would be removing a single call and a projection for each
free variable that can be accessed directly (i.e. not via the closure
or the internal variable).
evaluated_benefit =
benefit_factor
* (inline_call_cost
+ ((free_variables - indirect_accesses) * inline_prim_cost))
(For [inline_call_cost] and [inline_prim_cost], we use the maximum these
might be across any round.)
Substituting:
body_size <= direct_call_size
+ (benefit_factor
* (inline_call_cost
+ ((free_variables - indirect_accesses)
* inline_prim_cost)))
* call_prob
- (closure_accesses * project_size)
Rearranging:
body_size <= direct_call_size
+ (inline_call_cost * benefit_factor * call_prob)
+ (free_variables * inline_prim_cost
* benefit_factor * call_prob)
- (indirect_accesses * inline_prim_cost
* benefit_factor * call_prob)
- (closure_accesses * project_size)
The upper bound for the right-hand side is when call_prob = 1.0,
indirect_accesses = 0 and closure_accesses = 0, giving:
direct_call_size
+ (inline_call_cost * benefit_factor)
+ (free_variables * inline_prim_cost * benefit_factor)
So we should measure all functions at or below this size, but also record
the size discovered, so we can later re-check (without examining the body)
when we know [call_prob], [indirect_accesses] and [closure_accesses].
This number is split into parts dependent and independent of the
number of free variables:
base = direct_call_size + (inline_call_cost * benefit_factor)
multiplier = inline_prim_cost * benefit_factor
body_size <= base + free_variables * multiplier
*)
let maximum_interesting_size_of_function_body_base =
lazy begin
let max_cost = ref 0 in
for round = 0 to (Clflags.rounds ()) - 1 do
let max_size =
let inline_call_cost = cost !Clflags.inline_call_cost ~round in
direct_call_size + (inline_call_cost * benefit_factor)
in
max_cost := Int.max !max_cost max_size
done;
!max_cost
end
let maximum_interesting_size_of_function_body_multiplier =
lazy begin
let max_cost = ref 0 in
for round = 0 to (Clflags.rounds ()) - 1 do
let max_size =
let inline_prim_cost = cost !Clflags.inline_prim_cost ~round in
inline_prim_cost * benefit_factor
in
max_cost := Int.max !max_cost max_size
done;
!max_cost
end
let maximum_interesting_size_of_function_body num_free_variables =
let base = Lazy.force maximum_interesting_size_of_function_body_base in
let multiplier =
Lazy.force maximum_interesting_size_of_function_body_multiplier
in
base + (num_free_variables * multiplier)
|