1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Pierre Chambart, OCamlPro *)
(* Mark Shinwell and Leo White, Jane Street Europe *)
(* *)
(* Copyright 2013--2016 OCamlPro SAS *)
(* Copyright 2014--2016 Jane Street Group LLC *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
[@@@ocaml.warning "+a-4-9-30-40-41-42-66"]
open! Int_replace_polymorphic_compare
(* CR-someday pchambart to pchambart: in fact partial application doesn't
work because there are no 'known' partial application left: they are
converted to applications new partial function declaration.
That can be improved (and many other cases) by keeping track of aliases in
closure of functions. *)
(* These analyses are computed in two steps:
* accumulate the atomic <- relations
* compute the least-fixed point
The <- relation is represented by the type
t Variable.Pair.Map.t
if [Variable.Pair.Map.find (f, x) relation = Top] then (f, x) <- Top
is in the relation.
if [Variable.Pair.Map.find (f, x) relation = Implication s] and
[Variable.Pair.Set.mem (g, y) s] then (f, x) <- (g, y) is in the
relation.
*)
type t =
| Top
| Implication of Variable.Pair.Set.t
let _print ppf = function
| Top -> Format.fprintf ppf "Top"
| Implication args ->
Format.fprintf ppf "Implication: @[<hv>%a@]"
Variable.Pair.Set.print args
let top relation p =
Variable.Pair.Map.add p Top relation
let implies relation from to_ =
match Variable.Pair.Map.find to_ relation with
| Top -> relation
| Implication set ->
Variable.Pair.Map.add to_
(Implication (Variable.Pair.Set.add from set))
relation
| exception Not_found ->
Variable.Pair.Map.add to_
(Implication (Variable.Pair.Set.singleton from))
relation
let transitive_closure state =
(* Depth-first search for all implications for one argument.
Arguments are moved from candidate to frontier, assuming
they are newly added to the result. *)
let rec loop candidate frontier result =
match (candidate, frontier) with
| ([], []) -> Implication result
| ([], frontier::fs) ->
(* Obtain fresh candidate for the frontier argument. *)
(match Variable.Pair.Map.find frontier state with
| exception Not_found -> loop [] fs result
| Top -> Top
| Implication candidate ->
loop (Variable.Pair.Set.elements candidate) fs result)
| (candidate::cs, frontier) ->
let result' = Variable.Pair.Set.add candidate result in
if result' != result then
(* Result change means candidate becomes part of frontier. *)
loop cs (candidate :: frontier) result'
else
loop cs frontier result
in
Variable.Pair.Map.map
(fun set ->
match set with
| Top -> Top
| Implication set -> loop [] (Variable.Pair.Set.elements set) set)
state
(* CR-soon pchambart: to move to Flambda_utils and document
mshinwell: I think this calculation is basically the same as
[Flambda_utils.fun_vars_referenced_in_decls], so we should try
to share code. However let's defer until after 4.03. (And note CR
below.)
*)
(* Finds variables that represent the functions.
In a construction like:
let f x =
let g = Symbol f_closure in
..
the variable g is bound to the symbol f_closure which
is the current closure.
The result of [function_variable_alias] will contain
the association [g -> f]
*)
let function_variable_alias
(function_decls : Flambda.function_declarations)
~backend =
let fun_vars = Variable.Map.keys function_decls.funs in
let symbols_to_fun_vars =
let module Backend = (val backend : Backend_intf.S) in
Variable.Set.fold (fun fun_var symbols_to_fun_vars ->
let closure_id = Closure_id.wrap fun_var in
let symbol = Backend.closure_symbol closure_id in
Symbol.Map.add symbol fun_var symbols_to_fun_vars)
fun_vars
Symbol.Map.empty
in
let fun_var_bindings = ref Variable.Map.empty in
Variable.Map.iter (fun _ ( function_decl : Flambda.function_declaration ) ->
Flambda_iterators.iter_all_toplevel_immutable_let_bindings
~f:(fun var named ->
(* CR-soon mshinwell: consider having the body passed to this
function and using fv calculation instead of used_variables.
Need to be careful of "let rec" *)
match named with
| Symbol sym ->
begin match Symbol.Map.find sym symbols_to_fun_vars with
| exception Not_found -> ()
| fun_var ->
fun_var_bindings :=
Variable.Map.add var fun_var !fun_var_bindings
end
| _ -> ())
function_decl.body)
function_decls.funs;
!fun_var_bindings
let analyse_functions ~backend ~param_to_param
~anything_to_param ~param_to_anywhere
(decls : Flambda.function_declarations) =
let function_variable_alias = function_variable_alias ~backend decls in
let param_indexes_by_fun_vars =
Variable.Map.map (fun (decl : Flambda.function_declaration) ->
Array.of_list (Parameter.List.vars decl.params))
decls.funs
in
let find_callee_arg ~callee ~callee_pos =
match Variable.Map.find callee param_indexes_by_fun_vars with
| exception Not_found -> None (* not a recursive call *)
| arr ->
(* Ignore overapplied parameters: they are applied to a different
function. *)
if callee_pos < Array.length arr then Some arr.(callee_pos)
else None
in
let escaping_functions = Variable.Tbl.create 13 in
let escaping_function fun_var =
let fun_var =
match Variable.Map.find fun_var function_variable_alias with
| exception Not_found -> fun_var
| fun_var -> fun_var
in
if Variable.Map.mem fun_var decls.funs
then Variable.Tbl.add escaping_functions fun_var ();
in
let used_variables = Variable.Tbl.create 42 in
let used_variable var = Variable.Tbl.add used_variables var () in
let relation = ref Variable.Pair.Map.empty in
(* If the called closure is in the current set of closures, record the
relation (callee, callee_arg) <- (caller, caller_arg) *)
let check_argument ~caller ~callee ~callee_pos ~caller_arg =
escaping_function caller_arg;
match find_callee_arg ~callee ~callee_pos with
| None -> used_variable caller_arg (* not a recursive call *)
| Some callee_arg ->
match Variable.Map.find caller decls.funs with
| exception Not_found ->
assert false
| { params } ->
let new_relation =
(* We only track dataflow for parameters of functions, not
arbitrary variables. *)
if List.exists
(fun param -> Variable.equal (Parameter.var param) caller_arg)
params
then
param_to_param ~caller ~caller_arg ~callee ~callee_arg !relation
else begin
used_variable caller_arg;
anything_to_param ~callee ~callee_arg !relation
end
in
relation := new_relation
in
let arity ~callee =
match Variable.Map.find callee decls.funs with
| exception Not_found -> 0
| func -> Flambda_utils.function_arity func
in
let check_expr ~caller (expr : Flambda.t) =
match expr with
| Apply { func; args } ->
used_variable func;
let callee =
match Variable.Map.find func function_variable_alias with
| exception Not_found -> func
| callee -> callee
in
let num_args = List.length args in
for callee_pos = num_args to (arity ~callee) - 1 do
(* If a function is partially applied, consider all missing
arguments as "anything". *)
match find_callee_arg ~callee ~callee_pos with
| None -> ()
| Some callee_arg ->
relation := anything_to_param ~callee ~callee_arg !relation
done;
List.iteri (fun callee_pos caller_arg ->
check_argument ~caller ~callee ~callee_pos ~caller_arg)
args
| _ -> ()
in
Variable.Map.iter (fun caller (decl : Flambda.function_declaration) ->
Flambda_iterators.iter (check_expr ~caller)
(fun (_ : Flambda.named) -> ())
decl.body;
Variable.Set.iter
(fun var -> escaping_function var; used_variable var)
(* CR-soon mshinwell: we should avoid recomputing this, cache in
[function_declaration]. See also comment on
[only_via_symbols] in [Flambda_utils]. *)
(Flambda.free_variables ~ignore_uses_as_callee:()
~ignore_uses_as_argument:() decl.body))
decls.funs;
Variable.Map.iter
(fun func_var ({ params } : Flambda.function_declaration) ->
List.iter
(fun (param : Parameter.t) ->
if Variable.Tbl.mem used_variables (Parameter.var param) then
relation :=
param_to_anywhere ~caller:func_var
~caller_arg:(Parameter.var param) !relation;
if Variable.Tbl.mem escaping_functions func_var then
relation :=
anything_to_param ~callee:func_var
~callee_arg:(Parameter.var param) !relation)
params)
decls.funs;
transitive_closure !relation
(* A parameter [x] of the function [f] is considered as unchanging if
during an 'external' (call from outside the set of closures) call of
[f], every recursive call of [f] all the instances of [x] are aliased
to the original one. This function computes an underapproximation of
that set by computing the flow of parameters between the different
functions of the set of closures.
We record [(f, x) <- (g, y)] when the function g calls f and
the y parameter of g is used as argument for the x parameter of f. For
instance in
let rec f x = ...
and g y = f x
We record [(f, x) <- Top] when some unknown values can flow to the
[y] parameter.
let rec f x = f 1
We record also [(f, x) <- Top] if [f] could escape. This is over
approximated by considering that a function escape when its variable is used
for something else than an application:
let rec f x = (f, f)
[x] is not unchanging if either
(f, x) <- Top
or (f, x) <- (f, y) with x != y
Notice that having (f, x) <- (g, a) and (f, x) <- (g, b) does not make
x not unchanging. This is because (g, a) and (g, b) represent necessarily
different values only if g is the externally called function. If some
value where created during the execution of the function that could
flow to (g, a), then (g, a) <- Top, so (f, x) <- Top.
*)
let invariant_params_in_recursion (decls : Flambda.function_declarations)
~backend =
let param_to_param ~caller ~caller_arg ~callee ~callee_arg relation =
implies relation (caller, caller_arg) (callee, callee_arg)
in
let anything_to_param ~callee ~callee_arg relation =
top relation (callee, callee_arg)
in
let param_to_anywhere ~caller:_ ~caller_arg:_ relation = relation in
let relation =
analyse_functions ~backend ~param_to_param
~anything_to_param ~param_to_anywhere
decls
in
let not_unchanging =
Variable.Pair.Map.fold (fun (func, var) set not_unchanging ->
match set with
| Top -> Variable.Set.add var not_unchanging
| Implication set ->
if Variable.Pair.Set.exists (fun (func', var') ->
Variable.equal func func' && not (Variable.equal var var'))
set
then Variable.Set.add var not_unchanging
else not_unchanging)
relation Variable.Set.empty
in
let params = Variable.Map.fold (fun _
({ params } : Flambda.function_declaration) set ->
Variable.Set.union (Parameter.Set.vars params) set)
decls.funs Variable.Set.empty
in
let unchanging = Variable.Set.diff params not_unchanging in
let aliased_to =
Variable.Pair.Map.fold (fun (_, var) set aliases ->
match set with
| Implication set
when Variable.Set.mem var unchanging ->
Variable.Pair.Set.fold (fun (_, caller_args) aliases ->
if Variable.Set.mem caller_args unchanging then
let alias_set =
match Variable.Map.find caller_args aliases with
| exception Not_found ->
Variable.Set.singleton var
| alias_set ->
Variable.Set.add var alias_set
in
Variable.Map.add caller_args alias_set aliases
else
aliases)
set aliases
| Top | Implication _ -> aliases)
relation Variable.Map.empty
in
(* We complete the set of aliases such that there does not miss any
unchanging param *)
Variable.Map.of_set (fun var ->
match Variable.Map.find var aliased_to with
| exception Not_found -> Variable.Set.empty
| set -> set)
unchanging
let invariant_param_sources decls ~backend =
let param_to_param ~caller ~caller_arg ~callee ~callee_arg relation =
implies relation (caller, caller_arg) (callee, callee_arg)
in
let anything_to_param ~callee:_ ~callee_arg:_ relation = relation in
let param_to_anywhere ~caller:_ ~caller_arg:_ relation = relation in
let relation =
analyse_functions ~backend ~param_to_param
~anything_to_param ~param_to_anywhere
decls
in
Variable.Pair.Map.fold (fun (_, var) set relation ->
match set with
| Top -> relation
| Implication set -> Variable.Map.add var set relation)
relation Variable.Map.empty
let pass_name = "unused-arguments"
let () = Clflags.all_passes := pass_name :: !Clflags.all_passes
let unused_arguments (decls : Flambda.function_declarations) ~backend =
let dump = Clflags.dumped_pass pass_name in
let param_to_param ~caller ~caller_arg ~callee ~callee_arg relation =
implies relation (callee, callee_arg) (caller, caller_arg)
in
let anything_to_param ~callee:_ ~callee_arg:_ relation = relation in
let param_to_anywhere ~caller ~caller_arg relation =
top relation (caller, caller_arg)
in
let relation =
analyse_functions ~backend ~param_to_param
~anything_to_param ~param_to_anywhere
decls
in
let arguments =
Variable.Map.fold
(fun fun_var decl acc ->
List.fold_left
(fun acc param ->
match Variable.Pair.Map.find (fun_var, param) relation with
| exception Not_found -> Variable.Set.add param acc
| Implication _ -> Variable.Set.add param acc
| Top -> acc)
acc (Parameter.List.vars decl.Flambda.params))
decls.funs Variable.Set.empty
in
if dump then begin
Format.printf "Unused arguments: %a@." Variable.Set.print arguments
end;
arguments
|